Research article

A symplectic fission scheme for the association scheme of rectangular matrices and its automorphisms

  • Received: 28 September 2024 Revised: 08 November 2024 Accepted: 11 November 2024 Published: 20 November 2024
  • MSC : 05B25, 05C20, 05E30

  • In this paper, a symplectic fission scheme for the association scheme of $ m\times n $ rectangular matrices over the finite field $ \mathbb{F}_q $, denoted by $ {\rm{SMat}}(m\times n, q) $, is constructed, where $ q $ is a power of a prime number. We discuss its association classes and inner automorphism group. In particular, we determine the intersection numbers and automorphism group of $ {\rm{SMat}}(m\times n, q) $ for $ m = 1 $ and $ m = 2 $.

    Citation: Yang Zhang, Shuxia Liu, Liwei Zeng. A symplectic fission scheme for the association scheme of rectangular matrices and its automorphisms[J]. AIMS Mathematics, 2024, 9(11): 32819-32830. doi: 10.3934/math.20241570

    Related Papers:

  • In this paper, a symplectic fission scheme for the association scheme of $ m\times n $ rectangular matrices over the finite field $ \mathbb{F}_q $, denoted by $ {\rm{SMat}}(m\times n, q) $, is constructed, where $ q $ is a power of a prime number. We discuss its association classes and inner automorphism group. In particular, we determine the intersection numbers and automorphism group of $ {\rm{SMat}}(m\times n, q) $ for $ m = 1 $ and $ m = 2 $.



    加载中


    [1] E. Bannai, T. Ito, Algebraic combinatorics Ⅰ: Association schemes, Menlo Park, Calif.: Benjamin/Cummings Pub. Co., 1984.
    [2] R. C. Bose, T. Shimamoto, Classification and analysis of partially balanced incomplete block designs with two associate classes, J. Am. Stat. Assoc., 47 (1952), 151–184. http://doi.org/10.1080/01621459.1952.10501161 doi: 10.1080/01621459.1952.10501161
    [3] Y. Huo, Z. Wan, Non-symmetric association schemes of symmetric matrices, Acta Math. Appl. Sin.-E., 9 (1993), 236–255. http://doi.org/10.1007/BF02032918 doi: 10.1007/BF02032918
    [4] C. Ma, Y. Wang, Automorphisms of association schemes of quadratic forms over a finite field of chatacteristic two, Algebra Colloq., 10 (2003), 63–74. http://doi.org/10.1007/s100110300008 doi: 10.1007/s100110300008
    [5] Y. Wang, Y. Huo, C. Ma, J. Ma, Association schemes of matrices, Beijing: Science Press, 2011.
    [6] Y. Wang, C. Wang, C. Ma, Association schemes of quadratic forms over a finite field of characteristic two, Chin. Sci. Bull., 43 (1998), 1965–1969. http://doi.org/10.1007/BF03186985 doi: 10.1007/BF03186985
    [7] Y. Wang, C. Wang, C. Ma, J. Ma, Association schemes of quadratic forms and symmetric bilinear forms, J. Algebr. Comb., 17 (2003), 149–161. http://doi.org/10.1023/A:1022978613368 doi: 10.1023/A:1022978613368
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(53) PDF downloads(12) Cited by(0)

Article outline

Figures and Tables

Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog