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1. Introduction

The concept of the association scheme together with the partially balanced incomplete block
designs was defined in its own right by Bose and Shimamoto in 1952 [2]. It was introduced to
describe the balance relations among the treatments of partially balanced incomplete block designs.
Association schemes have close connections with coding theory, graph theory, and finite group theory
and, in particular, provide a framework for studying codes and designs. By the 1980s, association
scheme theory had become an important branch of algebraic combinatorics, and the research work on
association scheme theory had grown tremendously; see [1].

The study of association schemes in China was started by Chang and Hsu in the late 1950s. In the
mid 1960s, Wan constructed a family of association schemes on Hermitian matrices and computed the
parameters of the lower-dimensional ones and started a new direction of construction of association
schemes on matrices. The association scheme theory developed later indicates the association
schemes of maximal totally isotropic subspaces and of Hermitian matrices are what is known as
primitive P-polynomial and Q-polynomial association schemes. In the late 1970s, Wang continued the
study of association schemes of matrices. He derived formulas for the parameters of association
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schemes of Hermitian matrices and construct association schemes using rectangular matrices and
alternate matrices. Later, Wan et al., studied the association schemes of symmetric matrices in odd
characteristic. In the 1990s, Wang, with his students, studied the association schemes of symmetric
matrices and quadratic forms in even characteristic. Besides the parameters of these association
schemes, they discussed the subschemes, quotient schemes, and duality and
automorphisms [3, 4, 6, 7]. So, the study of association schemes of matrices reaches a more complete
stage. The results on association schemes of matrices are collected in [5].

Let Fq be the finite field with q elements, andMmn(Fq) be the set of m× n matrices over Fq, where q
is a power of a prime number and m ≤ n. For brevity, we writeMmn(Fq) byMmn. Let GLn(Fq) be the
general linear group of degree n over Fq and G0 = GLm(Fq)×GLn(Fq)(a direct product). The group G0

acts onMmn:

G0 ×Mmn −→ Mmn

((P,Q), X) 7−→ PXQ.

Let T0 be the group of right translation ofMmn, and G be the group generated by G0 and T0. Then
G acts transitively onMmn, which determines an association scheme (Mmn, {Ri}0≤i≤m), where

Ri = {(X,Y) ∈ Mmn ×Mmn|rank(X − Y) = i}.

It is called the association scheme of rectangular matrices and denoted by Mat(m × n, q).

Lemma 1.1. [5] (i) When m = 1, Mat(m × n, q) is a trivial association scheme, and its automorphism
group is S ym(qn).

(ii) When 1 < m ≤ n, each automorphism of the association scheme Mat(m × n, q) must have the
following form:

X 7→ PXσQ + A,∀X ∈ Mmn,

where P ∈ GLm(Fq), Q ∈ GLn(Fq), A ∈ Mmn, and σ is an automorphism of Fq.
In addition, if m = n, the following mapping is also an automorphism

X 7→ P(tX)σQ + A,∀X ∈ Mmn,

where tX is the transpose of X.

Next, let n = 2ν. We replace the group G0 with G0 = GLm(Fq) × S p2ν(Fq), where S p2ν(Fq) is
the symplectic group of degree 2ν over Fq. Then G, generated by G0 and T0, acts transitively on
Mmn, which determines a fission scheme of Mat(m × n, q). We call it the symplectic fission scheme
of Mat(m × n, q), denoted by SMat(m × n, q). In this paper, we discuss the association classes and
inner automorphism group of SMat(m×n, q). In particular, we determine the intersection numbers and
automorphism group for m = 1 and m = 2.

2. Preliminaries

2.1. Definition of association schemes

Definition 2.1. Let X be a nonempty set of cardinality n and R0,R1, · · · ,Rd be subsets of X × X that
satisfy the following conditions:
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(i) R0 = {(x, x)|x ∈ X};
(ii) X × X = R0 ∪ R1 ∪ · · · ∪ Rd,Ri ∩ R j = ∅(i , j);
(iii) for each i ∈ {0, 1, · · · , d}, there exists some i′ ∈ {0, 1, · · · , d} such that Rt

i = Ri′ , where Rt
i =

{(x, y)|(y, x) ∈ Ri};
(iv) for any i, j, k ∈ {0, 1, · · · , d}, the number

pk
i j =| {z ∈ X | (x, z) ∈ Ri, (z, y) ∈ R j} |

is constant whenever (x, y) ∈ Rk.
Such a configuration X = (X, {Ri}0≤i≤d) is called an association scheme of class d on X. R0 is

called the trivial or diagonal relation, while the others are called nontrivial relations. Note that d is
the number of nontrivial relations. The numbers pk

i j are called the intersection numbers of X. The
association scheme X is said to be commutative if

(v) pk
i j = pk

ji for all i, j, k ∈ {0, 1, ..., d}.
Further, X is said to be symmetric (or Bose-Mesner type) if

(vi) i′ = i for all i ∈ {0, 1, ..., d}.

Example 2.1. [5] Let G be a finite group acting transitively on a finite set Ω. This induces an action
on Ω × Ω: for (x, y) ∈ Ω × Ω and σ ∈ G, (x, y)σ = (xσ, yσ). Then G no longer acts transitively on
Ω × Ω if |Ω| = n > 1. Let R0,R1, · · · ,Rd be the orbits of G on Ω × Ω, where R0 = {(x, x)|x ∈ Ω}. Then
X = (Ω, {Ri}0≤i≤d) is an association scheme (not necessarily commutative).

Let X = (X, {Ri}0≤i≤d) be an association scheme of class d on X and ki = p0
ii′ . The number ki is the

number of y ∈ X such that (x, y) ∈ Ri for any fixed x ∈ X. It is called the valency of Ri. Clearly,

k0 = 1, |X| = k0 + k1 + · · · + kd.

Let δ be the Kronecker delta: δi j = 0 for i , j, and δii = 1. Then the following holds:

pk
0 j = δ jk, pk

i0 = δik, p0
i j = kiδi j′ ,

d∑
j=0

pk
i j = ki, kγp

γ
αβ = kβp

β
α′γ = kαpαγβ′ , (2.1)

where α, β, γ, α′, β′ ∈ {0, 1, · · · , d}, Rα′ = {(x, y)|(y, x) ∈ Rα}, and Rβ′ = {(x, y)|(y, x) ∈ Rβ}.
Let X = (X, {Ri}0≤i≤d) and X′ = (X, {S j}0≤ j≤d′) be two association schemes on X. If each relation

S j is a union of some Ri, then X′ is said to be a fusion scheme of X, and X is said to be a fission
scheme of X′. Furthermore, let Y = (Y, {Ti}0≤k≤d) is an association scheme satisfying |X| = |Y |. If a
bijection f : X → Y induces a permutation σ( f ) on {0, 1, · · · , d} by ( f (x), f (z)) ∈ Tiσ( f ) for (x, z) ∈ Ri,
f is called an isomorphism between X and Y. In this case, X and Y are said to be isomorphic. An
isomorphism f from an association scheme X to itself is called an automorphism. The set of all
automorphisms of X becomes a group, called the automorphism group of X and denoted by AutX.
An automorphism f of X is called an inner automorphism if it induces the identity permutation on
0, 1, · · · , d, i.e., iσ( f ) = i(i = 0, 1, · · · , d). Clearly, the set of inner automorphisms of X becomes
a normal subgroup of AutX, denoted by InnX. The quotient group AutX/InnX is called the outer
automorphism group of X.
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2.2. Symplectic geometry over the finite field

Let

K =
(

I(ν)

−I(ν)

)
,

where I(ν) is the ν × ν identity matrix. The set of all 2ν × 2ν matrices T over Fq satisfying T KtT = K
forms a group with respect to the matrix multiplication, called the symplectic group of degree 2ν over
Fq, and is denoted by S p2ν(Fq). A 2ν× 2ν matrix T is called a generalized symplectic matrix of degree
2ν over Fq if T KtT = kK for some k ∈ F∗q. The set of generalized symplectic matrices of degree 2ν over
Fq forms a group with respect to the matrix multiplication, which is called the generalized symplectic
group of degree 2ν over Fq and denoted by GS p2ν(Fq).

Let F(2ν)
q be the 2ν-dimensional row vector space over Fq. There is a natural action of S p2ν(Fq) on

F(2ν)
q by the vector matrix multiplication as follows:

F(2ν)
q × S p2ν(Fq) −→ F(2ν)

q

(α,T ) 7−→ αT.

The space F(2ν)
q together with this action is called the 2ν-dimensional symplectic space over Fq.

Suppose that P is an m-dimensional vector subspace of F(2ν)
q . We use the same letter P to denote a

matrix representation of P, i.e., P is an m × 2ν matrix whose rows form a basis of P. It is clear that a
matrix representation of a subspace is not unique. Two m × 2ν matrices P1 and P2 of rank m represent
the same subspace if and only if there is an m × m nonsingular matrix Q such that P1 = QP2. A
subspace P is said to be of type (m, s) if the dimension of P is m and rank(PKtP) = 2s.

Lemma 2.1. [5] Subspaces of type (m, s) exist in F(2ν)
q if and only if 2s ≤ m ≤ ν + s.

Lemma 2.2. [5] Let P1 and P2 be two m-dimensional subspaces of F(2ν)
q . Then there is a T ∈ S p2ν(Fq)

such that P1 = AP2T, where A ∈ GLm(Fq), if and only if P1 and P2 are of the same type. In other
words, S p2ν(Fq) acts transitively on each set of subspaces of the same type.

Corallary 2.1. Let P be a subspace of type (m, s) in F(2ν)
q , where 2s ≤ m ≤ ν + s. Then there are

A ∈ GLm(Fq) and T ∈ S p2ν(Fq) such that

APT =


s m − 2s ν + s − m s m − 2s ν + s − m

I(s) 0 0 0 0 0
0 0 0 I(s) 0 0
0 I(m−2s) 0 0 0 0


s
s
m − 2s

.

Lemma 2.3. [5] Let 2s ≤ m ≤ ν + s. Then the number of subspaces of type (m, s) in F(2ν)
q is given by

N(m, s; 2ν) = q2s(ν+s−m) Πνi=ν+s−m+1(q2i − 1)

Πs
i=1(q2i − 1)Πm−2s

i=1 (qi − 1)
.

In this paper, we define Πi∈ϕ f (i) = 1, where ϕ is empty set and f (i) is a function about i. For
example, Π1

i=2(qi − 1) = 1.
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3. Association classes of SMat(m × n, q)

Let n = 2ν and G0 = GLm(Fq) × S p2ν(Fq). By the introduction, G, generated by G0 and T0, acts
transitively on Mmn, which determines the symplectic fission scheme of Mat(m × n, q), denoted by
SMat(m × n, q). Let R0,R1, · · · ,Rd be the orbits of G onMmn ×Mmn, where R0 = {(X, X) | X ∈ Mmn}.
Then SMat(m × n, q) = (Mmn, {Ri}0≤i≤d).

Definition 3.1. A matrix inMmn is said to be of type (t, s), if the subspace generated by its row vectors
is of type (t, s) in F(2ν)

q . Two matrices P and Q inMmn are said to be S-equivalent, denoted by P ∼ Q,
if there exist A ∈ GLm(Fq) and T ∈ S p2ν(Fq) such that P = AQT.

Obviously, the S-equivalence between matrices is an equivalent relationship, and the equivalent
classes are the orbits of G0 acting onMmn.

Theorem 3.1. Let P ∈ Mmn be of type (t, s), then 2s ≤ t ≤ min{m, ν + s}, and

P ∼ M(t, s) =


s t − 2s ν + s − t s t − 2s ν + s − t

I(s) 0 0 0 0 0
0 0 0 I(s) 0 0
0 I(t−2s) 0 0 0 0
0 0 0 0 0 0


s
s
t − 2s
m − t

.

Proof. Obviously, 0 ≤ t ≤ m. By Lemma 2.2, we have 2s ≤ t ≤ min{m, ν + s}.
Since dim(P) = t, there is A1 ∈ GLm(Fq) such that

A1P =
(

P1

0

)
,

where P1 is the matrix representation of a subspace of type (t, s) in F(2ν)
q . Then, by Corollary 2.1, there

are A2 ∈ GLt(Fq) and T ∈ S p2ν(Fq) such that

A2P1T =


s t − 2s ν + s − t s t − 2s ν + s − t

I(s) 0 0 0 0 0
0 0 0 I(s) 0 0
0 I(m−2s) 0 0 0 0


s
s
t − 2s

.

Let

A3 =

( t m − t
A2 0
0 I(m−t)

)
t
m − t

,

then A3A1PT = M(t, s). The theorem holds. □

By the above theorem and Lemma 2.2, we obtain the necessary and sufficient conditions for two
matrices to be S-equivalent immediately.

Theorem 3.2. Let P, Q ∈ Mmn, then P and Q are S-equivalent if and only if they are of the same type.
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Theorem 3.3. Let n = 2ν, then SMat(m × n, q) = (Mmn, {R(t,s)}), where

(X, Y) ∈ R(t,s) if and only if Y − X ∼ M(t, s),

X, Y ∈ Mmn and 2s ≤ t ≤ min{m, ν + s}.
The class number d of SMat(m × n, q) satisfies

d + 1 =


(m + 1)(m + 3)/4, if 0 ≤ m ≤ ν and m is odd ;
(m + 2)2/4, if 0 ≤ m ≤ ν and m is even ;
(4mν − 2ν2 − m2 + 2m + 2ν + 3)/4, if ν < m ≤ 2ν and m is odd ;
(4mν − 2ν2 − m2 + 2m + 2ν + 4)/4, if ν < m ≤ 2ν and m is even .

The valency of R(t,s) is given by

k(t,s) = qt(t−1)/2Πm
i=m−t+1(qi − 1)N(t, s; 2ν),

where N(t, s; 2ν) is defined in Lemma 2.3.

Proof. We discuss the orbits of G onMmn ×Mmn first. Let P, Q ∈ Mmn and τ1 : X 7→ X − P for each
X ∈ Mmn. Then τ1 ∈ G and under this transformation, (P,Q) could be carried into (0,Q − P). Suppose
Q − P is of type (t, s), then 2s ≤ t ≤ min{m, ν + s} and there is τ2 ∈ G0 such that (τ2(0), τ2(Q − P) =
(0,M(t, s)) by Theorem 3.1. By Theorem 3.2, different (0,M(t, s)) represent different orbits. Thus
SMat(m × n, q) = (Mmn, {R(t,s)}).

In addition, let SMat(m × n, q) is an association scheme of class d, then d + 1 is the number of
S-equivalent classes, which is the number of (t, s). Clearly, 0 ≤ t ≤ m. From 2s ≤ t ≤ min{m, ν + s},
we deduce t − ν ≤ s ≤ [t/2]. If t ≤ ν, then s can take [t/2] + 1 values. If t > ν, then s can take
[t/2] − (t − ν) + 1 values. This means that

(i) If 0 ≤ m ≤ ν, then

d + 1 = Σm
t=0([t/2] + 1) = m + 1 + Σm

t=0[t/2].

(ii) If ν < m ≤ 2ν, then the number of SMat(m × n, q) is

d + 1 = Σνt=0([[t/2] + 1) + Σm
t=ν+1([t/2] − (t − ν) + 1) = m + 1 − Σm−ν

s=1 s + Σm
t=0[t/2].

The results in the theorem can be obtained through simple calculations.
Finally, let’s calculate the valency of R(t,s). By [5], the number of matrices of rank t inMmn is

nt = qt(t−1)/2Π
m
i=m−t+1(qi − 1)Πn

i=n−t+1(qi − 1)
Πt

i=1(qi − 1))
.

For different t-dimensional subspaces, there are the same number of representation matrices of rank
t inMmn. The number of t-dimensional subspaces in F(n)

q is

N(t, n) =
∏n

i=n−t+1(qi − 1)∏t
i=1(qi − 1)

.

Thus, there are nt/N(t, n) matrices in Mmn that represent the same t-dimensional subspace. By
Lemma 2.3, there are ntN(t, s; 2ν)/N(t, n) matrices in Mmn that represent the same subspace of type
(t, s). The theorem holds. □
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Theorem 3.4. Let m = 1, then SMat(m × n, q) = (Mmn, {R(t,s)}) be a trivial association scheme, where
(t, s) = (0, 0), (1, 0). The valencies are k(0,0) = 1, k(1,0) = q2ν − 1. For the intersection numbers,

(i) when i = (0, 0), pk
i j = δ jk.

(ii) when i = (1, 0), pk
i j could be obtained by the following table, whose rows are indexed by the

value of j and columns indexed by the value of k.

(0, 0) (1, 0)
(0, 0) 0 1
(1, 0) q2ν − 1 q2ν − 2

Proof. The values of (t, s), k(0,0) and k(1,0) could be obtained by Theorem 3.3 immediately. For the
intersection numbers,

(i) when i = (0, 0), pk
i j = δ jk by (2.1).

(ii) when i = (1, 0), p(0,0)
(1,0)(0,0) = 0, p(1,0)

(1,0)(0,0) = 1, p(0,0)
(1,0)(1,0) = k(1,0) and p(1,0)

(1,0)(0,0) + p(1,0)
(1,0)(1,0) = k(1,0) by

Eq (2.1). Thus, p(1,0)
(1,0)(1,0) = k(1,0) − 1. □

Example 3.1. Let m = 1, n = 2ν = 2 and q = 2, then SMat(m × n, q) = (Mmn, {R(t,s)}) be a trivial
association scheme, where (t, s) = (0, 0), (1, 0). The valencies are k(0,0) = 1, k(1,0) = 3. For the
intersection numbers,

(i) p(0,0)
(0,0)(0,0) = p(1,0)

(0,0)(1,0) = 1 and p(1,0)
(0,0)(0,0) = p(0,0)

(0,0)(1,0) = 0.
(ii) p(0,0)

(1,0)(0,0) = 0, = p(1,0)
(1,0)(0,0) = 1, p(0,0)

(1,0)(1,0) = 3, and p(1,0)
(1,0)(1,0) = 2.

Example 3.2. Let m = 1, n = 2ν = 4 and q = 3, then SMat(m × n, q) = (Mmn, {R(t,s)}) be a trivial
association scheme, where (t, s) = (0, 0), (1, 0). The valencies are k(0,0) = 1, k(1,0) = 80. For the
intersection numbers,

(i) p(0,0)
(0,0)(0,0) = p(1,0)

(0,0)(1,0) = 1 and p(1,0)
(0,0)(0,0) = p(0,0)

(0,0)(1,0) = 0.
(ii) p(0,0)

(1,0)(0,0) = 0, = p(1,0)
(1,0)(0,0) = 1, p(0,0)

(1,0)(1,0) = 80, and p(1,0)
(1,0)(1,0) = 79.

Theorem 3.5. Let m = 2, then the association classes of SMat(m×n, q) are R(0,0),R(1,0), R(2,0)(vanishes
when n = 2), and R(2,1). Their valencies are k(0,0) = 1, k(1,0) = (q+1)(q2ν−1), k(2,0) = q(q2ν−1)(q2(ν−1)−

1)(vanishes when n = 2), k(2,1) = q2ν−1(q − 1)(q2ν − 1). For the intersection numbers,
(i) when i = (0, 0), pk

i j = δ jk.
(ii) when i , (0, 0), the intersection numbers pk

i j could be obtained by Tables 1–3. The rows are
indexed by the value of j and columns indexed by the value of k. When n = 2, there are no matrices of
type (2, 0), thus related intersection numbers pk

i j disappear.

Table 1. m = 2, i = (1, 0).

(0, 0) (1, 0) (2, 0) (2, 1)
(0, 0) 0 1 0 0
(1, 0) q2v+1 + q2v − q − 1 q2v + q2 − q − 2 q2 + q q2 + q
(2, 0) 0 q2v − q2 q2v + q2v−1 − q2 − 2q − 1 q2v + q2v−1 − q2 − q
(2, 1) 0 q2v+1 − q2v q2v+1 − q2v−1 q2v+1 − q2v−1 − q − 1

AIMS Mathematics Volume 9, Issue 11, 32819–32830.
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Table 2. m = 2, i = (2, 0).

(0, 0) (1, 0) (2, 0) (2, 1)
(0, 0) 0 0 1 0

(1, 0) 0 q2v − q2 q2v + q2v−1

−q2 − 2q − 1
q2v + q2v−1 − q2 − q

(2, 0)
q4v−1 − q2v+1

−q2v−1 + q
q4v−2 − 2q2v

−q2v−1 + q2 + q
q4v−2 − q2v

−3q2v−1 + q2 + 3q
q4v−2 − 2q2v

−q2v−1 + q2 + q

(2, 1) 0
q4v−1 − q4v−2

−q2v+1 + q2v
q4v−1 − q4v−2

−q2v+1 + q2v−1
q4v−1 − q4v−2 − q2v+1

+q2v − q2v−1 + q

Table 3. m = 2, i = (2, 1).

(0, 0) (1, 0) (2, 0) (2, 1)
(0, 0) 0 0 0 1
(1, 0) 0 q2v+1 − q2v q2v+1 − q2v−1 q2v+1 − q2v−1 − q − 1

(2, 0) 0
q4v−1 − q4v−2

−q2v+1 + q2v
q4v−1 − q4v−2

−q2v+1 + q2v−1
q4v−1 − q4v−2 − q2v+1

+q2v − q2v−1 + q

(2, 1)
q4v − q4v−1

−q2v + q2v−1
q4v − 2q4v−1

+q4v−2 − q2v + q2v−1
q4v − 2q4v−1

+q4v−2 − q2v + q2v−1
q4v − 2q4v−1

+q4v−2 − 2q2v + 3q2v−1

Proof. The values of (t, s), k(0,0) and k(1,0) could be obtained by Theorem 3.3 immediately. For the
intersection numbers,

(i) when i = (0, 0), pk
i j = δ jk by (2.1).

(ii) when i , (0, 0), we only take the 1st table as an example to give the proof in the case of i = (1, 0);
others’ are similar.

Let

X =
(

x1 x2 x3 · · · x2ν

y1 y2 y3 · · · y2ν

)
.

(1) By (2.1), pk
i0 = δik, p0

i j = kiδi j′ . Thus,

p(0,0)
(1,0)(0,0) = p(2,0)

(1,0)(0,0) = p(2,1)
(1,0)(0,0) = p(0,0)

(1,0)(2,0) = p(0,0)
(1,0)(2,1) = 0,

and
p(1,0)

(1,0)(0,0) = 1, p(0,0)
(1,0)(1,0) = k(1,0) = q2v+1 + q2v − q − 1.

(2) We will compute the value of p(1,0)
(1,0)(1,0).

By definition, p(1,0)
(1,0)(1,0) = |{X ∈ M2n|X ∼ M(1, 0), X − M(1, 0) ∼ M(1, 0)}|.

If (x1, x2, · · · , x2ν) = 0, then (y2, · · · , y2ν) = 0 and y1 , 0. In this case, X has q − 1 choices.
If (x1, x2, · · · , x2ν) , 0, then by X ∼ M(1, 0), we have (y1, y2, · · · , y2ν) = k(x1, x2, · · · , x2ν), where

k ∈ Fq. At this time, if (x2, · · · , x2ν) = 0, X has q2 − q − 1 choices. If (x2, · · · , x2ν) , 0, then k = 0, and
X has q(q2ν−1 − 1) choices.
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Above all, p(1,0)
(1,0)(1,0) = q − 1 + q2 − q − 1 + q(q2ν−1 − 1) = q2v + q2 − q − 2.

(3) When n > 2, we will compute the value of p(2,0)
(1,0)(1,0).

By definition, p(2,0)
(1,0)(1,0) = |{X ∈ M2n|X ∼ M(1, 0), X − M(2, 0) ∼ M(1, 0)}|.

If (x1, x2, · · · , x2ν) = 0, then y2 = 1 and (y3, · · · , y2ν) = 0. In this case, X has q choices.
If (x1, x2, · · · , x2ν) , 0, then by X ∼ M(1, 0), we have (y1, y2, · · · , y2ν) = k(x1, x2, · · · , x2ν), where

k ∈ Fq. At this time, (x3, · · · , x2ν) = 0, then X has q2 choices.
Above all, p(2,0)

(1,0)(1,0) = q2 + q.

(4) When n > 2, we will compute the value of p(2,0)
(1,0)(2,0).

By definition, p(2,0)
(1,0)(2,0) = |{X ∈ M2n|X ∼ M(1, 0), X − M(2, 0) ∼ M(2, 0)}|.

If (x1, x2, · · · , x2ν) = 0, then (y1, y2, · · · , y2ν) , 0, (y2 − 1, y3, · · · , y2ν) , 0 and yν+1 = 0. In this case,
X has q2ν−1 − q − 1 choices.

If (x1, x2, · · · , x2ν) , 0, then by X ∼ M(1, 0), we have (y1, y2, · · · , y2ν) = k(x1, x2, · · · , x2ν), where
k ∈ Fq. At this time, if (x3, · · · , x2ν) = 0, then X has q3 − q2 − q choices. If (x3, · · · , x2ν) = 0, then X
has q2ν − q3 choices.

Above all, p(2,0)
(1,0)(2,0) = q2v + q2v−1 − q2 − 2q − 1.

(5) Other values of pk
i j could be obtained by

∑d
j=0 pk

i j = ki, kγp
γ
αβ = kβp

β
α′γ = kαpαγβ′ in (2.1).

□

Example 3.3. Let m = 2, n = 2ν = 4 and q = 2, then the association classes of SMat(m × n, q) are
R(0,0),R(1,0), R(2,0), and R(2,1). Their valencies are k(0,0) = 1, k(1,0) = 45, k(2,0) = 90, k(2,1) = 120. For the
intersection numbers,

(i) when i = (0, 0), p(0,0)
(0,0)(0,0) = p(1,0)

(0,0)(1,0) = p(2,0)
(0,0)(2,0) = p(2,1)

(0,0)(2,1) = 1, and pk
i j = 0 for other cases.

(ii) when i , (0, 0), the intersection numbers pk
i j are as follows (Tables 4–6).

Table 4. m = 2, i = (1, 0).

(0, 0) (1, 0) (2, 0) (2, 1)
(0, 0) 0 1 0 0
(1, 0) 45 16 6 6
(2, 0) 0 12 15 18
(2, 1) 0 16 24 21

Table 5. m = 2, i = (2, 0).

(0, 0) (1, 0) (2, 0) (2, 1)
(0, 0) 0 0 1 0
(1, 0) 0 12 15 18
(2, 0) 90 30 34 30
(2, 1) 0 48 40 42
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Table 6. m = 2, i = (2, 1).

(0, 0) (1, 0) (2, 0) (2, 1)
(0, 0) 0 0 0 1
(1, 0) 0 16 24 21
(2, 0) 0 48 40 42
(2, 1) 120 56 56 56

4. Automorphism group of SMat(m × n, q)

In this section, we give the inner automorphism group of SMat(m × n, q) as follows.

Theorem 4.1. Let n = 2ν and q is a power of a prime number.
(i) When m = 1, the automorphism group of SMat(m × n, q) is S ym(qn).
(ii) When 1 < m ≤ n, each inner automorphism of the association scheme SMat(m×n, q) must have

the following form:
τP,Q,A,σ : X 7→ PXσQ + A,∀X ∈ Mmn,

where P ∈ GLm(Fq), Q ∈ GS p2ν(Fq), A ∈ Mmn, and σ is an automorphism of Fq.
In addition, if m = n, the following mapping is also an inner automorphism

X 7→ P(tX)σQ + A,∀X ∈ Mnn.

Proof. (i) When m = 1, SMat(m × n, q) is a trivial association scheme, thus its automorphism group is
S ym(qn).

(ii) When 1 < m ≤ n, let P ∈ GLm(Fq), Q ∈ GS p2ν(Fq), A ∈ Mmn, and σ be an automorphism of
Fq. For (X,Y) ∈ R(s,t),

(τP,Q,A,σ(X), τP,Q,A,σ(Y)) = (PXσQ + A, PYσQ + A) ∈ R(s,t).

Thus, every τP,Q,A,σ is an inner automorphism of SMat(m × n, q).
Conversely, let τ be an inner automorphism of SMat(m×n, q), i.e., τ induces the identity permutation

on (t, s). It is easy to verify that τ is also an automorphism of Mat(m × n, q). Thus, we can assume
τ = τP,Q,A,σ, where P ∈ GLm(Fq), Q ∈ GLn(Fq), A ∈ Mmn, and σ is an automorphism of Fq. In the
following, we will prove Q ∈ GS p2ν(Fq), that is, QKtQ = kK, where k ∈ F∗q. Denote the i-th unit row
vector by ei.

(1) Let 1 ≤ i ≤ n and

M =
(

ei

0

)
∈ Mmn.

Since (0,M) ∈ R(1,0), (τ(0), τ(M)) = (A, PMσQ + A) ∈ R(1,0), i.e., PMσQ ∼ M(1, 0). Thus,

0 = PMσQKt(PMσQ) = MQKt(MQ) =
(
αiKtαi 0

0 0

)
,

where αi be the i-th row vector of Q. This means that (QKtQ)ii = 0 when 1 ≤ i ≤ n.
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(2) Let 1 ≤ i , j ≤ ν and

M =


ei

e j

0

 ∈ Mmn.

Since (0,M) ∈ R(2,0), (τ(0), τ(M)) = (A, PMσQ + A) ∈ R(2,0), i.e., PMσQ ∼ M(2, 0). Thus,

0 = PMσQKt(PMσQ) = MQKt(MQ) =


0 αiKtα j 0

α jKtαi 0 0
0 0 0

 .
This means that (QKtQ)i j = 0 when 1 ≤ i , j ≤ ν. Similarly, it can be proven that (QKtQ)i j = 0

when ν ≤ i , j ≤ 2ν or 1 ≤ i ≤ ν, ν < j ≤ 2ν( j − i , ν).
(3) Let 1 ≤ i ≤ ν, j = i + ν, and M be shown as the case (2). Since (0,M) ∈ R(2,1), (τ(0), τ(M)) =

(A, PMσQ + A) ∈ R(2,1), i.e., PMσQ ∼ M(2, 1). Thus, the rank of

MQKt(MQ) =


0 αiKtα j 0

α jKtαi 0 0
0 0 0


is 2. Let αiKtα j = ki, then ki , 0, and

QKtQ =
(

J
−J

)
,

where J = diag{k1, k2, · · · , kν}.
(4) Let 1 ≤ i < j ≤ ν, and

M =


ei + e j

eν+i − eν+ j

0

 ∈ Mmn,

then (0,M) ∈ R(2,0). Through similar discussions, we have

0 = MQKt(MQ) =


0 ki − k j 0

k j − ki 0 0
0 0 0

 .
Thus ki = k j. If we assume ki = k j = k, then QKtQ = kK. Thus Q ∈ GS p2ν(Fq). The theorem now

follows from Lemma 1.1.
It should be pointed out the cases (2) and (4) don’t appear when n = 2. □

When m = 2, by Theorem 3.5, all valencies k(s,t) of SMat(m × n, q) are distinct. Thus, each
automorphism of SMat(m × n, q) must be an inner automorphism. We have the following theorem.

Theorem 4.2. When m = 2, each automorphism of the association scheme SMat(m × n, q) must have
the following form:

τP,Q,A,σ : X 7→ PXσQ + A,∀X ∈ Mmn,

where P ∈ GLm(Fq), Q ∈ GS p2ν(Fq), A ∈ Mmn, and σ is an automorphism of the finite field Fq.
In addition, if n = 2, the following mapping is also an automorphism

X 7→ P(tX)σQ + A,∀X ∈ Mnn.
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5. Conclusions

In this paper, we construct a symplectic fission scheme for the association scheme of m × n
rectangular matrices over the finite field Fq, denoted by SMat(m × n, q). Its association classes and
inner automorphism group are discussed. In particular, we determine the intersection numbers and
automorphism group of SMat(m × n, q) for m = 1 and m = 2.
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