Two inverse source problems for a space-time fractional differential equation involving bi-fractional Laplacian operators in the spatial variable and Caputo time-fractional derivatives of different orders between 1 and 2 are studied. In the first inverse source problem, the space-dependent term along with the diffusion concentration is recovered, while in the second inverse source problem, the time-dependent term along with the diffusion concentration is identified. Both inverse source problems are ill-posed in the sense of Hadamard. The existence and uniqueness of solutions for both inverse source problems are investigated. Finally, several examples are presented to illustrate the obtained results for the inverse source problems.
Citation: M. J. Huntul. Inverse source problems for multi-parameter space-time fractional differential equations with bi-fractional Laplacian operators[J]. AIMS Mathematics, 2024, 9(11): 32734-32756. doi: 10.3934/math.20241566
Two inverse source problems for a space-time fractional differential equation involving bi-fractional Laplacian operators in the spatial variable and Caputo time-fractional derivatives of different orders between 1 and 2 are studied. In the first inverse source problem, the space-dependent term along with the diffusion concentration is recovered, while in the second inverse source problem, the time-dependent term along with the diffusion concentration is identified. Both inverse source problems are ill-posed in the sense of Hadamard. The existence and uniqueness of solutions for both inverse source problems are investigated. Finally, several examples are presented to illustrate the obtained results for the inverse source problems.
[1] | C. H. Yu, Fractional derivatives of some fractional functions and their applications, Asian J. Appl. Sci. Technol., 4 (2020), 147–158. |
[2] | H. M. Srivastava, Fractional-order derivatives and integrals: introductory overview and recent developments, Kyungpook Math. J., 60 (2020), 73–116. https://doi.org/10.5666/KMJ.2020.60.1.73 doi: 10.5666/KMJ.2020.60.1.73 |
[3] | Y. Luchko, Operational calculus for the general fractional derivative and its applications, Fract. Calc. Appl. Anal., 24 (2021), 338–375. https://doi.org/10.1515/fca-2021-0016 doi: 10.1515/fca-2021-0016 |
[4] | A. A. Kilbas, Partial fractional differential equations and some of their applications, (2010). https://doi.org/10.1524/anly.2010.0934 |
[5] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[6] | G. H. Weiss, R. J. Rubin, Random walks: theory and selected applications, 52 (1982). https://doi.org/10.1002/9780470142769.ch5 |
[7] | R. B. Bird, D. J. Klingenberg, Multicomponent diffusion-a brief review, Adv. Water Resour., 62 (2013), 238–242. https://doi.org/10.1016/j.advwatres.2013.05.010 doi: 10.1016/j.advwatres.2013.05.010 |
[8] | R. Klages, G. Radons, I. M. Sokolov, Anomalous transport: foundations and applications, Hoboken: Wiley, 2008. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527622979 |
[9] | Y. Itto, Hetergeneous anomalous diffusion in view of superstatistics, Phys. Lett. A, 378 (2014), 3037–3040. https://doi.org/10.1016/j.physleta.2014.08.022 doi: 10.1016/j.physleta.2014.08.022 |
[10] | R. Hilfer, On fractional diffusion and its relation with continuous time random walks, In: Proceedings of the XIth Max Born Symposium held at Ladek Zdroj, Poland: Springer, 1998. https://doi.org/10.1007/BFb0106834 |
[11] | R. Matzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3 |
[12] | H. Brezis, Analyse fonctionnelle, Paris: Masson, 1983. |
[13] | M. J. Huntul, I. Tekin, M. K. Iqbal, M. Abbas, An inverse problem of recovering the heat source coefficient in a fourth-order time-fractional pseudo-parabolic equation, J. Comput. Appl. Math., 442 (2024), 115712. https://doi.org/10.1016/j.cam.2023.115712 doi: 10.1016/j.cam.2023.115712 |
[14] | K. Khompysh, M. J. Huntul, M. K. Shazyndayeva, M. Iqbal, An inverse problem for pseudoparabolic equation: existence, uniqueness, stability, and numerical analysis, Quaest. Math., 47 (2024), 1979–2001. https://doi.org/10.2989/16073606.2024.2347432 doi: 10.2989/16073606.2024.2347432 |
[15] | A. Ilyas, R. A. Khalid, S. A. Malik, Identifying temperature distribution and source term for generalized diffusion equation with arbitrary memory kernel, Math. Meth. Appl. Sci., 47 (2024), 5894–5915. https://doi.org/10.1002/mma.9896 doi: 10.1002/mma.9896 |
[16] | K. Suhaib, A. Ilyas, S. A. Malik, On the inverse problems for a family of integro-differential equations, Math. Model. Anal., 28 (2023), 255–270. https://doi.org/10.3846/mma.2023.16139 doi: 10.3846/mma.2023.16139 |
[17] | W. Fan, F. Liu, X. Jiang, I. Turner, Some noval numerical techniques for an inverse problem of the multi-term time fractional partial differential equuation, J. Comput. Appl. Math., 25 (2017), 1618–1638. https://doi.org/10.1016/j.cam.2017.12.034 doi: 10.1016/j.cam.2017.12.034 |
[18] | Z. Li, Y. Liu, M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients, Appl. Math. Comput., 257, (2015), 381–397. https://doi.org/10.1016/j.amc.2014.11.073 doi: 10.1016/j.amc.2014.11.073 |
[19] | Z. Lin, F. Liu, J. Wu, D. Wang, Y. Gu, Three dimensional meshfree analysis for time-Caputo and space-Laplacian fractional diffusion equation, Eng. Anal. Bound. Elem., 157 (2023), 553–564. https://doi.org/10.1016/j.enganabound.2023.10.005 doi: 10.1016/j.enganabound.2023.10.005 |
[20] | S. Pirnafasov, E. Karimov, On a higher order multi-term time-fractional partial differential equation involving Caputo-Fabrizio derivative, preprint paper, 2017. https://doi.org/10.48550/arXiv.1708.05502 |
[21] | A. Ilyas, S. A. Malik, Direct and some inverse problems for a generalized diffusion equation with variable coefficients, Comp. Appl. Math., 43 (2024), 364. https://doi.org/10.1007/s40314-024-02869-2 doi: 10.1007/s40314-024-02869-2 |
[22] | A. Ilyas, Z. Iqbal, S. A. Malik, On some direct and inverse problems for an integro-differential equation, Z. Angew. Math. Phys., 75 (2024), 39. https://doi.org/10.1007/s00033-024-02186-y doi: 10.1007/s00033-024-02186-y |
[23] | A. Ilyas, S. A. Malik, S. Saif, On the solvability of direct and inverse problems for a generalized diffusion equation, Phy. Scr., 98 (2023), 125221. https://doi.org/10.1088/1402-4896/ad03c5 doi: 10.1088/1402-4896/ad03c5 |
[24] | M. Ali, S. Aziz, S. A. Malik, Inverse problem for a multi-term fractional differential equation, Fract. Calc. Appl. Anal., 23 (2020), 799–821. https://doi.org/10.1515/fca-2020-0040 doi: 10.1515/fca-2020-0040 |
[25] | A. Ilyas, S. A. Malik, S. Saif, Inverse problems for a multi-term time fractional evolution equation with an involution, Inverse Probl. Sci. Eng., 29 (2021), 3377–3405. https://doi.org/10.1080/17415977.2021.2000606 doi: 10.1080/17415977.2021.2000606 |
[26] | K. Suhaib, S. A. Malik, A. Ilyas, Existence and uniqueness results for a multi-parameters nonlocal diffusion equation, Rep. Math. Phys., 90 (2022), 203–219. https://doi.org/10.1016/S0034-4877(22)00066-0 doi: 10.1016/S0034-4877(22)00066-0 |
[27] | H. Sun, G. Li, X. Jia, Simultaneous inversion for the diffusion and source coefficients in the multi-term TFDE, Inverse Probl. Sci. Eng., 336 (2018), 114–126. https://doi.org/10.1080/17415977.2016.1275612 doi: 10.1080/17415977.2016.1275612 |
[28] | A. Ilyas, S. A. Malik, K. Suhaib, Identifying diffusion concentration and source term for anomalous diffusion equation, Rep. Math. Phys., 93, (2024) 145–163. https://doi.org/10.1016/S0034-4877(24)00023-5 doi: 10.1016/S0034-4877(24)00023-5 |
[29] | E. Bazhlekova, I. Bazhlekov, Identification of a space-dependent source term in a nonlocal problem for the general time-fractional diffusion equation, J. Comput. Appl. Math., 386 (2021), 113213. https://doi.org/10.1016/j.cam.2020.113213 doi: 10.1016/j.cam.2020.113213 |
[30] | E. Bazhlekova, Completely monotone multinomial Mittag-Leffler type functions and diffusion equations with multiple time-derivatives, Fract. Calc. Appl. Anal., 24 (2021), 88–111. https://doi.org/10.1515/fca-2021-0005 doi: 10.1515/fca-2021-0005 |
[31] | Y. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietn., 24 (1999), 207–233. https://doi.org/10.1016/j.amc.2014.05.112 doi: 10.1016/j.amc.2014.05.112 |
[32] | S. A. Malik, A. Ilyas, A. Samreen, Simultaneous determination of a source term and diffusion concentration for a multi-term space-time fractional diffusion equation, Math. Model. Anal., 26 (2021), 411–431. https://doi.org/10.3846/mma.2021.11911 doi: 10.3846/mma.2021.11911 |
[33] | G. S. Samko, A. A. Kilbas, D. I. Marichev, Fractional integrals and derivatives: theory and applications, Sweden: Gordon and Breach Science Publishers, 1993. |