In this study, a fractional-order mathematical model of the transmission dynamics of drug-resistant tuberculosis within a two-patch system incorporating population migration was proposed and analyzed using the Caputo operator. The positivity, boundedness, existence, and uniqueness of the solutions as well as the Ulam-Hyers stability of the model were guaranteed. Additionally, the basic reproduction numbers were derived and analyzed for sensitivity to identify the key parameters that affected the spread of drug-resistant tuberculosis. Moreover, the cure rates were used as control variables to formulate an optimal control problem, which examined the efficacy of the control measures and the influence of fractional order on the control values. The numerical results showed that controlling the cure rate can significantly reduce the number of drug-resistant tuberculosis infections, thus verifying the effectiveness of the proposed control strategy. As the fractional order decreased, the duration during which the maximum control intensity was applied in both patches increased.
Citation: Hongyan Wang, Shaoping Jiang, Yudie Hu, Supaporn Lonapalawong. Analysis of drug-resistant tuberculosis in a two-patch environment using Caputo fractional-order modeling[J]. AIMS Mathematics, 2024, 9(11): 32696-32733. doi: 10.3934/math.20241565
In this study, a fractional-order mathematical model of the transmission dynamics of drug-resistant tuberculosis within a two-patch system incorporating population migration was proposed and analyzed using the Caputo operator. The positivity, boundedness, existence, and uniqueness of the solutions as well as the Ulam-Hyers stability of the model were guaranteed. Additionally, the basic reproduction numbers were derived and analyzed for sensitivity to identify the key parameters that affected the spread of drug-resistant tuberculosis. Moreover, the cure rates were used as control variables to formulate an optimal control problem, which examined the efficacy of the control measures and the influence of fractional order on the control values. The numerical results showed that controlling the cure rate can significantly reduce the number of drug-resistant tuberculosis infections, thus verifying the effectiveness of the proposed control strategy. As the fractional order decreased, the duration during which the maximum control intensity was applied in both patches increased.
[1] | World Health Organization, Tuberculosis, 2023. Available from: https://www.who.int/news-zoom/fact-sheets/detail/tuberculosis. |
[2] | World Health Organization, Global tuberculosis report 2023, 2023. Available from: https://www.who.int/publications/i/item/9789240083851. |
[3] | X. Zhang, A. Ali, M. A. Khan, M. Y. Alshahrani, T. Muhammad, S. Islam, Mathematical analysis of the TB model with treatment via Caputo-type fractional derivative, Discrete Dyn. Nature Soc., 2021 (2021), 9512371. https://doi.org/10.1155/2021/9512371 doi: 10.1155/2021/9512371 |
[4] | O. Nave, I. Hartuv, U. Shemesh, $\Theta$-SEIHRD mathematical model of COVID 19-stability analysis using fast-slow decomposition, PeerJ, 8 (2020), e10019. https://doi.org/10.7717/peerj.10019 doi: 10.7717/peerj.10019 |
[5] | A. Abidemi, K. M. Owolabi, E. Pindza, Modelling the transmission dynamics of Lassa fever with nonlinear incidence rate and vertical transmission, Phys. A, 597 (2022), 127259. https://doi.org/10.1016/j.physa.2022.127259 doi: 10.1016/j.physa.2022.127259 |
[6] | H. Waaler, A. Geser, S. Andersen, The use of mathematical models in the study of the epidemiology of tuberculosis, Amer. J. Public Health, 52 (1962), 1002–1013. https://doi.org/10.2105/ajph.52.6.1002 doi: 10.2105/ajph.52.6.1002 |
[7] | E. Pienaar, A. M. Fluitt, S. E. Whitney, A. G. Freifeld, H. J. Viljoen, A model of tuberculosis transmission and intervention strategies in an urban residential area, Comput. Biol. Chem., 34 (2010), 86–96. https://doi.org/10.1016/j.compbiolchem.2010.03.003 doi: 10.1016/j.compbiolchem.2010.03.003 |
[8] | M. A. Khan, M. Ahmad, S. Ullah, M. Farooq, T. Gul, Modeling the transmission dynamics of tuberculosis in Khyber Pakhtunkhwa Pakistan, Adv. Mech. Eng., 11 (2019), 4835. https://doi.org/10.1177/1687814019854835 doi: 10.1177/1687814019854835 |
[9] | R. I. Gweryina, C. E. Madubueze, V. P. Bajiya, F. E. Esla, Modeling and analysis of tuberculosis and pneumonia co-infection dynamics with cost-effective strategies, Results Control Optim., 10 (2023), 100210. https://doi.org/10.1016/j.rico.2023.100210 doi: 10.1016/j.rico.2023.100210 |
[10] | Y. Yu, Y. Shi, W. Yao, Dynamic model of tuberculosis considering multi-drug resistance and their applications, Infect. Dis. Modell., 3 (2018), 362–372. https://doi.org/10.1016/j.idm.2018.11.001 doi: 10.1016/j.idm.2018.11.001 |
[11] | M. Ronoh, R. Jaroudi, P. Fotso, V. Kamdoum, N. Matendechere, J. Wairimu, et al., A mathematical model of tuberculosis with drug resistance effects, Appl. Math., 7 (2016), 1303–1316. https://doi.org/10.4236/am.2016.712115 doi: 10.4236/am.2016.712115 |
[12] | A. Xu, Z. Wen, Y. Wang, W. Wang, Prediction of different interventions on the burden of drug-resistant tuberculosis in China: a dynamic modelling study, J. Global Antimicrob. Resist., 29 (2022), 323–330. https://doi.org/10.1016/j.jgar.2022.03.018 doi: 10.1016/j.jgar.2022.03.018 |
[13] | W. Wang, X. Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97–112. https://doi.org/10.1016/j.mbs.2002.11.001 doi: 10.1016/j.mbs.2002.11.001 |
[14] | G. R. Phaijoo, D. B Gurung, Mathematical study of dengue disease transmission in multi-patch environment, Appl. Math., 7 (2016), 1521. https://doi.org/10.4236/am.2016.714132 doi: 10.4236/am.2016.714132 |
[15] | J. Rebaza, Global stability of a multipatch disease epidemics model, Chaos Solitons Fract., 120 (2019), 56–61. https://doi.org/10.1016/j.chaos.2019.01.020 doi: 10.1016/j.chaos.2019.01.020 |
[16] | J. Zhang, X. Ma, Z. Jin, Stability analysis of an HIV/AIDS epidemic model with sexual transmission in a patchy environment, J. Biol. Dyn., 17 (2023), 2227216. https://doi.org/10.1080/17513758.2023.2227216 doi: 10.1080/17513758.2023.2227216 |
[17] | J. J. Tewa, S. Bowong, B. Mewoli, Mathematical analysis of two-patch model for the dynamical transmission of tuberculosis, Appl. Math. Modell., 36 (2012), 2466–2485. https://doi.org/10.1016/j.apm.2011.09.004 doi: 10.1016/j.apm.2011.09.004 |
[18] | J. J. Tewa, S. Bowong, S. O. Noutchie, Mathematical analysis of a two-patch model of tuberculosis disease with staged progression, Appl. Math. Modell., 36 (2012), 5792–5807. https://doi.org/10.1016/j.apm.2012.01.026 doi: 10.1016/j.apm.2012.01.026 |
[19] | A. W. B. Kimba, D. Moustapha, B. Saley, Mathematical analysis and simulation of an age-structured model with two-patch and an uncontrolled migration: application to tuberculosis, Eur. J. Pure Appl. Math., 15 (2022), 2054–2073. https://doi.org/10.29020/nybg.ejpam.v15i4.4556 doi: 10.29020/nybg.ejpam.v15i4.4556 |
[20] | R. Ouncharoen, K. Shah, R. U. Din, T. Abdeljawad, A. Ahmadian, S. Salahshour, et al., Study of integer and fractional order COVID-19 mathematical model, Fractals, 31 (2023), 2340046. https://doi.org/10.1142/S0218348X23400467 doi: 10.1142/S0218348X23400467 |
[21] | C. W. Chukwu, E. Bonyah, M. L. Juga, Fatmawati, On mathematical modeling of fractional-order stochastic for tuberculosis transmission dynamics, Results Control Optim., 11 (2023), 100238. https://doi.org/10.1016/j.rico.2023.100238 doi: 10.1016/j.rico.2023.100238 |
[22] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[23] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, arXiv, 2016. https://doi.org/10.48550/arXiv.1602.03408 |
[24] | E. F. D. Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation, Math. Modell. Anal., 21 (2016), 188–198. https://doi.org/10.3846/13926292.2016.1145607 doi: 10.3846/13926292.2016.1145607 |
[25] | K. A. Adedokun, M. O. Olayiwola, I. A. Alaje, A. O. Yunus, A. O. Oladapo, K. O. Kareem, A Caputo fractional-order model of tuberculosis incorporating enlightenment and therapy using the Laplace-Adomian decomposition method, Int. J. Modell. Simul., 2024. https://doi.org/10.1080/02286203.2024.2315361 |
[26] | P. A. Naik, J. Zu, K. M. Owolabi, Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control, Chaos Solitons Fract., 138 (2020), 109826. https://doi.org/10.1016/j.chaos.2020.109826 doi: 10.1016/j.chaos.2020.109826 |
[27] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5 |
[28] | A. Hanif, A. I. Butt, Atangana-Baleanu fractional dynamics of dengue fever with optimal control strategies, AIMS Math., 8 (2023), 15499–15535. https://doi.org/10.3934/math.2023791 doi: 10.3934/math.2023791 |
[29] | A. Hanif, A. I. Butt, T. Ismaeel, Fractional optimal control analysis of COVID-19 and dengue fever co-infection model with Atangana-Baleanu derivative, AIMS Math., 9 (2024), 5171–5203. https://doi.org/10.3934/math.2024251 doi: 10.3934/math.2024251 |
[30] | A. Omame, M. Abbas, C. P. Onyenegecha, A fractional-order model for COVID-19 and tuberculosis co-infection using Atangana-Baleanu derivative, Chaos Solitons Fract., 153 (2021), 111486. https://doi.org/10.1016/j.chaos.2021.111486 doi: 10.1016/j.chaos.2021.111486 |
[31] | S. Kumar, R. P. Chauhan, S. Momani, S. Hadid, A study of fractional TB model due to mycobacterium tuberculosis bacteria, Chaos Solitons Fract., 153 (2021), 111452. https://doi.org/10.1016/j.chaos.2021.111452 doi: 10.1016/j.chaos.2021.111452 |
[32] | Z. U. A. Zafar, S. Zaib, M. T. Hussain, C. Tunç, S. Javeed, Analysis and numerical simulation of tuberculosis model using different fractional derivatives, Chaos Solitons Fract., 160 (2022), 112202. https://doi.org/10.1016/j.chaos.2022.112202 doi: 10.1016/j.chaos.2022.112202 |
[33] | J. Panchal, F. Acharya, K. Joshi, A noninteger order SEITR dynamical model for TB, Adv. Contin. Discrete Models, 2022 (2022), 27. https://doi.org/10.1186/s13662-022-03700-0 doi: 10.1186/s13662-022-03700-0 |
[34] | K. M. Owolabi, E. Pindza, A nonlinear epidemic model for tuberculosis with Caputo operator and fixed point theory, Healthcare Anal., 2 (2022), 100111. https://doi.org/10.1016/j.health.2022.100111 doi: 10.1016/j.health.2022.100111 |
[35] | M. Jafari, H. Kheiri, A. Jabbari, Backward bifurcation in a fractional-order and two-patch model of tuberculosis epidemic with incomplete treatment, Int. J. Biomath., 14 (2021), 2150007. https://doi.org/10.1142/S1793524521500078 doi: 10.1142/S1793524521500078 |
[36] | H. Kheiri, M. Jafari, Global stability and optimal control of a two-patch tuberculosis epidemic model using fractional-order derivatives, Int. J. Biomath., 13 (2020), 2050008. https://doi.org/10.1142/S1793524520500084 doi: 10.1142/S1793524520500084 |
[37] | Z. Lu, Y. Chen, Y. Yu, G. Ren, C. Xu, W. Ma, et al., The effect mitigation measures for COVID-19 by a fractional-order SEIHRDP model with individuals migration, ISA Trans., 132 (2023), 582–597. https://doi.org/10.1016/j.isatra.2022.12.006 doi: 10.1016/j.isatra.2022.12.006 |
[38] | H. Kheiri, M. Jafari, Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment, J. Comput. Appl. Math., 346 (2019), 323–339. https://doi.org/10.1016/j.cam.2018.06.055 doi: 10.1016/j.cam.2018.06.055 |
[39] | I. Petráš, Fractional-order nonlinear systems, Springer, 2011. http://doi.org/10.1007/978-3-642-18101-6 |
[40] | Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102 doi: 10.1016/j.amc.2006.07.102 |
[41] | A. Mahata, S. Paul, S. Mukherjee, M. Das, B. Roy, Dynamics of Caputo fractional order SEIRV epidemic model with optimal control and stability analysis, Int. J. Appl. Comput. Math., 8 (2022), 28. https://doi.org/10.1007/s40819-021-01224-x doi: 10.1007/s40819-021-01224-x |
[42] | P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6 |
[43] | H. L. Smith, P. Waltman, The theory of the chemostat: dynamics of microbial competition, Cambridge University Press, 1995. https://doi.org/110.2307/2405002 |
[44] | K. Shah, A. Ali, S. Zeb, A. Khan, M. A. Alqudah, T. Abdeljawad, Study of fractional order dynamics of nonlinear mathematical model, Alex. Eng. J., 61 (2002), 11211–11224. https://doi.org/10.1016/j.aej.2022.04.039 doi: 10.1016/j.aej.2022.04.039 |
[45] | M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444. https://doi.org/10.1140/EPJP/I2017-11717-0 doi: 10.1140/EPJP/I2017-11717-0 |
[46] | N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272–1296. https://doi.org/10.1007/s11538-008-9299-0 doi: 10.1007/s11538-008-9299-0 |
[47] | R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Math. Methods Appl. Sci., 70 (2014), 1668–1686. https://doi.org/10.1002/mma.2928 doi: 10.1002/mma.2928 |