AIMS Mathematics, 9(11): 32696-32733.
DOI: 10.3934/math.20241565
ATMS Mathematics Received: 24 September 2024

Revised: 31 October 2024

Accepted: 06 November 2024
https://www.aimspress.com/journal/Math Published: 19 November 2024

Research article

Analysis of drug-resistant tuberculosis in a two-patch environment using
Caputo fractional-order modeling

Hongyan Wang, Shaoping Jiang*, Yudie Hu and Supaporn Lonapalawong
School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650500, China
* Correspondence: Email: shaopingjiang@ynni.edu.cn.

Abstract: In this study, a fractional-order mathematical model of the transmission dynamics of drug-
resistant tuberculosis within a two-patch system incorporating population migration was proposed
and analyzed using the Caputo operator. The positivity, boundedness, existence, and uniqueness of
the solutions as well as the Ulam-Hyers stability of the model were guaranteed. Additionally, the
basic reproduction numbers were derived and analyzed for sensitivity to identify the key parameters
that affected the spread of drug-resistant tuberculosis. Moreover, the cure rates were used as control
variables to formulate an optimal control problem, which examined the efficacy of the control measures
and the influence of fractional order on the control values. The numerical results showed that
controlling the cure rate can significantly reduce the number of drug-resistant tuberculosis infections,
thus verifying the effectiveness of the proposed control strategy. As the fractional order decreased, the
duration during which the maximum control intensity was applied in both patches increased.
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1. Introduction

Tuberculosis (TB) is an infectious disease caused by the Mycobacterium TB bacterium. When
patients cough, spit, or sneeze, the disease is transmitted through the air, most affecting the lungs.
It is estimated that approximately one-quarter of the global population has been infected with TB
bacteria. Globally, TB is the second-leading cause of infectious disease mortality after COVID-19
(see [1]). According to the World Health Organization (WHO) 2023 reports, in 2022, an estimated 10.6
million people worldwide were afflicted with TB, with approximately 40,000 individuals developing
multidrug-resistant or rifampicin-resistant TB. However, only two-fifths of drug-resistant TB (DR-TB)
patients receive treatment, and improper administration can lead to even more severe forms of the
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disease. Consequently, the transmission of DR-TB remains one of the most pressing challenges in
global TB control efforts [2].

Transmission dynamics modeling is an important analytical tool for studying infectious
diseases [3]. Dynamic transmission models can help decision-makers better understand disease
transmission patterns and guide policy development and resource allocation to achieve the goal of
controlling and eliminating infectious diseases. Nave et al. [4] applied the singular perturbed vector
field method to the COVID-19 mathematical model. By decomposing the model into fast and slow
subsystems, they compared the results of the model with actual data from China, and a fit of
approximately 96% was achieved. Abidemi et al. [5] established a new nonlinear mathematical model
to describe the dynamics of Lassa fever transmission between the interacting human and rodent
populations, and proposed relevant measures to prevent the spread of the disease within the
community.  Particularly, many scholars have developed mathematical models to reveal the
transmission process of TB and DR-TB. As early as 1962, Waaler et al. [6] used a mathematical
model to explain the epidemiological characteristics of TB for the first time. Based on this model,
subsequent generations developed various mathematical models to assess the effects of different
interventions by considering multiple influencing factors [7-9]. Yu et al. [10] built on the classical
model of TB to develop a framework for multidrug-resistant TB, analyzing the impact of model
parameters on TB development. Ronoh et al. [11] incorporated multidrug-resistant strains of TB into
a model based on the standard susceptible-exposed-infectious-recovered-susceptible epidemiologic
framework. Ao et al. developed a susceptible-exposed-infectious-recovered infectious disease model
that includes both drug-susceptible TB (DS-TB) and DR-TB, using real-world data from China to
simulate and predict the impact of different control strategies on DR-TB [12]. As transportation
continues to become more accessible, the movement of people between cities is increasing. In the
process of population movement, infectious diseases can easily spread from one place to another.
Numerous studies have explored the impact of migration on the spread of infectious diseases [13—16].
Several researchers have established patchy dynamic models to study the transmission mechanisms of
TB. Tewa et al. [17, 18] developed a two-patch mathematical model to study TB transmission,
assuming that only susceptible individuals are capable of migration. Wahid et al. [19] examined
uncontrolled migration and a two-patch model of TB with age-structure.

All of the above models are defined using classical differential operators, however, these operators
are localized and cannot effectively capture genetic and memory processes [20]. Given that the human
immune system has a memory for viruses, there are inherent limitations in using integer-order
differential equations to describe the process of disease transmission. Fractional-order calculus has
become a powerful tool in the modeling of infectious diseases due to its nonlocal effects and memory
properties, which enable more accurate modeling and analyses of disease transmission dynamics [21].
Several fractional-order derivatives, including Caputo, Atangana-Baleanu-Caputo, and
Caputo-Fabrizio, have been proposed in the literature [22-24] and have gained significant attention
from researchers. Among them, Caputo derivatives can effectively reflect the historical dependence of
the system and have the advantages of physical interpretability, numerical stability, and
continuity [25,26]. Despite the Caputo-Fabrizio derivative possessing a nonsingular kernel, the clarity
of its function space remains uncertain and it lacks memory effects [27]. The main advantage of the
Atangana-Baleanu-Caputo operator is its nonlocal and nonsingular behavior [28], and there have also
been many applications of it modeling disease dynamics [29, 30]. In comparison to alternatives such
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as the Atangana-Baleanu-Caputo or Caputo-Fabrizio derivatives, the Caputo derivative stands out as
the preferred and widely acknowledged option for precisely modeling the transmission of TB [25].

In recent years, numerous research results have emerged on fractional-order kinetic modeling of
TB. For example, Kumar et al. [31] studied a fractional-order TB transmission model under
incomplete treatment using Caputo-Fabrizio and Atangana-Baleanu derivatives. Zafar et al. [32] used
different derivative operators to develop a mathematical model to study the dynamics of TB and
obtained more reasonable results for the fractional-order model through numerical simulations
compared to the corresponding integer-order TB model. Panchal et al. [33] developed a fractional
order mathematical model in the sense of Caputo and used real data from India (2000-2020) for
model fitting. Owolabi and co-workers [34] proposed and analyzed a Caputo fractional-order
mathematical model of TB with control measures and showed the effect of different control
parameters and fractional-order parameter values on the dynamic behavior of the fractional TB
model. Some scholars have also developed fractional-order patch dynamics models to study the
nature of the dynamics involved and the impact of population migration on infectious
diseases [35-38]. In the literature [26,38], many scholars have provided a reliable theoretical basis for
the stability of fractional-order infectious disease models, the uniqueness and existence of solution,
Ulam-Hyers stability, and other dynamical behaviors. Numerous articles describe various types of
infectious diseases such as TB, measles, and COVID-19 using the theory of fractional-order
differential equations. However, to the best of our knowledge, very few papers have modeled DR-TB
with population migration using the Caputo fractional-order derivative operator. Therefore, the
current study aims to describe the memory effect during the transmission of DR-TB using the Caputo
fractional-order operator and to establish a two-patch fractional-order dynamic model for DR-TB,
taking into account population migration. Theoretical analysis and numerical simulation are carried
out based on the modeling and its practical significance is illustrated.

This study is organized as follows: In Section 2, we briefly review the basic concepts of
fractional-order calculus. In Section 3, we outline the fractional-order model of the DR-TB epidemic
in a two-patch environment. In Section 4, we prove some basic properties of the model developed.
The existence, uniqueness, and Ulam-Hyers stability of the model solution are addressed in
Sections 5 and 6, respectively. In Section 7, we present the numerical scheme using a two-step
Lagrange interpolation method. The sensitivity analysis of the parameters and the numerical
simulation of the model are detailed in Section 8. In Section 9, the control parameter “cure rate”
provides an optimal control strategy for the two-patch DR-TB model. Section 10 concludes the paper.

2. System description

In this section, we introduce the formulation of a two-patch fractional-order DR-TB model. We
consider a susceptible-exposed-DS-TB infectious-DR-TB infectious-recovered (SEIMR) DR-TB
model that incorporates population migration between two patches. For this purpose, the populations
of patches 1 and 2 have been divided into five classes, namely: the susceptible individuals S,(7), the
latent individuals E;(¢), the DS-TB individuals I;(f), the DR-TB individuals M;(¢), and the recovered
individuals R;(¢), with each patch having its own total population N;(¢). Furthermore,

N@) =S+ E(t)+ (1) + M;(t) + Ri(r) (i=1,2).
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Our model is based on the model established by Ronoh et al [11]. Susceptible individuals acquire
TB from DS-TB and DR-TB patients due to the transmission rate ;. The fraction ¢ of newly infected
individuals moves to the class E;(¢), while the remaining portion 1-¢ transfers to class /;(¢) individuals
departed from class E;(f) at a rate of &; to enter [;(f). Class [;(¢) transitions to class M;(t) with a
conversion rate of b;, possibly due to reasons such as low treatment adherence or lower medical
standards. During the treatment process, class M;(¢) will transition to non-drug-resistant treatment at a
rate of ; . The cure rates for the class I;(#) and the class M;(t) are r; and c;, respectively. It is assumed
that recruitment in each patch occurs only among susceptible individuals, and only susceptible and
recovered individuals migrate between the two patches. At the same time, both natural and
disease-related deaths of the population during disease transmission are taken into account in our
model. Additionally, it is supposed that the total population remains unchanged and the latent
individuals are noninfectious.

The flow chart of this model is shown in Figure 1, and the biological meaning of the parameters
used in our proposed model is displayed in Table 1.
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Figure 1. Transfer diagram of the two patches fractional-order DR-TB epidemic model.

Table 1. The parameters used in the model.

Parameters Biological meanings (i = 1,2; j = 1,2)

) Rate at which susceptible individuals become exposed individuals
A; Recruitment rate

& Progression rate

Bi Transmission rate

a; Rate of drug resistance loss

b; DS-TB to DR-TB conversion rate

T Cure rate of DS-TB

Lo Cure rate of DR-TB

o Weight coefficients of DS-TB and DR-TB
Ui Natural mortality rate of patch i

y;. Disease-related mortality of patch i

m;; Migration rate from patch j to patch i (i # j)

AIMS Mathematics Volume 9, Issue 11, 32696-32733.



32700

Regarding the above hypotheses on the transmission dynamics of DR-TB, our considered Caputo
fractional-order derivative model for the dynamics of the transmission DR-TB, the following
dynamical system is given (i = 1,2):

(Z; +0',M)S
§DISi = A= B = S, + Z (mijS j = m;iS ),

N;
Jj=1,j#i
;i + o M;)S ;
gD?Ei = ﬁi5T — (& + WE;,
Ii + iMi Si ,
6D 1 = Bi(1 - 5)% +&E; + aiM; — (ri + b + pt; + ul;, (D

gD?Mi =bil; — (a; + p; + ¢; +,U;')Mi,
gD?Rl = rili + ciMi _/JiRi + Z (m,JR] — mﬁRi),
j=Lj#i
where the initial conditions satisfy the following nonnegative conditions:
Si0)>0, E(0)>0, I,(0)>0, M;0)>0, R;(0)=>0.

Here, 0 < g < 1 is the order of derivative and gD,q is the Caputo derivative of order g.
3. Basic fractional results

Mathematical models play a key role in both predicting disease dynamics and assessing the
effectiveness of public health interventions. Fractional order modeling has been widely used to model
many dynamic processes due to its ability to capture complex and nonlinear disease processes. In this
section, we will review some of the basic concepts and known theorems of the fractional calculus,
which will be used in the analysis of TB models in subsequent sections.

Definition 3.1. (Caputo fractional derivative [39]) For a given function h: [0,T] — R, the Caputo
fractional derivative is defined as

C g 3 1 f h™(s) B
oD h(t) = T=gq) Jo = S)q_n+lds, (n—-1<gqg<n).

Definition 3.2. (Mittag-Leffler function [39]) The Mittag-Leffler function is defined as

s k

Eop(2) = Zr(kz 5 @B>0

and

Eq1(2) = Eo(2).

Theorem 3.1. (Laplace transform) The Laplace transform of the Caputo fractional operator of order
q is given by

n—1
LISD{R(®)] = s"H(s) = > s7'H(0), neN,gen—1,n).

i=0
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Theorem 3.2. (Generalized mean value theorem [40]) Let g € (0, 1], where function h(t) is continuous
on interval [a, b, and if { D{h(t) € [a, b], then

1
I'(g)

with a < T < t,Vt € [a,b]. Thus, ¥t € (a,b), {D{h(t) > 0, h(¢) is increasing, and §DIh(t) < 0, h(t) is
decreasing.

W) = h(a) + =—(DH(@)(t - a)?

Theorem 3.3. [41] Assume that f(t) € R* is a differentiable function. Then, for any t > 0,

0t - -l 2| < - 20

N DIf(), f*eR"Vqe(0,1).

4. Analysis of the system

Consider the dynamic of Caputo fractional-order model (1) in the biologically feasible region:

A+ Ay

Q= {(Sl,El,Il,Ml,Rl,Sz,Ez,Iz,Mz,Rz) eR) < , M =min {Nl,llz}}-

4.1. Nonnegativity and boundedness of the solution

Lemma 4.1. (Positivity) Model (1) solution is nonnegative by Y(S 1(0), E1(0), 1(0), M,(0), R,(0),
SZ(O)a E2(0)7 12(0)7 M2(0)9 RZ(O)) € R_]FO’ for t>0.

Proof. We suppose that every parameter is positive. The initial conditions are

$10)>0, E0)=>0, ,(0) >0, M©0) >0, R;(0) >0,
S2(O) >0, EZ(O) >0, IQ(O) >0, Mz(O) >0, Rz(O) > 0.

Using the generalized mean value theorem, the proof steps presented demonstrate the nonnegativity of
the proposed model R!?. From the model (1), we obtained

I, + o M))S
EDIS ) Is o0 = A1+ miSs > 0, §DIE, Is o= o 0 2,
|
oM S,
Ny
(hrodt)ss
N

6D 11-0 = B1(1 - 6) +eE) + M, >0,

OCDfsz ls,=0 = Ao+ mp§1 >0, OCD?Ez |E,=0= B20

o M>S
EDL |- = Bo(1 — 6)—22
N,

C C
OD?MZ |M2:0 = bz[z > O, OD?RQ |R2:0: 1’212 + C2M2 + m21R1 > 0.

+ & FE, + ayM, > 0,

As aresult, for any ¢ > 0, the set Q is nonnegative in R!? . O
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Lemma 4.2. (Boundedness) The solution of model (1) is bounded with nonnegative initial conditions
in the region Q.

Proof. Let
A=A+ Ay, p=mini{uy, po}

and
N@) =810+ Ei(@) + [;(1) + M(2) + R1(£) + S2(0) + Ex(2) + (1) + Ma(2) + Ry (D).

For model (1), on adding all equations, one has
SDIN(t) + uN(t) < A. (2)

Apply the Laplace transform on both sides of the Eq (2), and we get:

SILIN(D)} — 7' N(O) + uL {N()} < %

L{N(@®)} (s7 + p) < % + s7IN(0), 3)

A N ()
s(sq+p) s+ p

L{N(1)} <

Taking the inverse Laplace transform on both sides of Eq (3), we obtained

No <L {—A } i {—Sq_lN (O)},
s(s9 + W) s+ u

A q-1
<Zpl KU o {2
u s(s9 4+ W) s 4 u
A
< 1= Ey(opt)] + NOE (),
A A
<= = (= = NODE,(~ut,
TR
A
S - CEq(_/'ltq)9
u
where,
A
c=— —N(0).
u
So,
A
N() < —.
u
Therefore, the solution of model (1) is bounded within the feasible region Q . O
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4.2. Equilibrium points and basic reproduction number

The population free of both TB and DR-TB can be represented by the disease-free point, which is
obtained by considering

§Dli(1) =0
for each state variable ¢;(i = 1,2, ..., 10) and substituting
E(0) = 1,(0) = M(0) = R(0) = E»(0) = I,(0) = M>(0) = R,(0) = 0.

Therefore, with these substitutions, we can obtain:

_ mpAo + A(uy +myp) . _ my Ay + Ao(uy + myy)

9 2 .
MiMy + myppdy + Moo MiMy + mypfdy + Mmoo

Si
Thus, the disease-free equilibrium (DFE) point P for the model can be written as:

A+ A + A+ A +
P = (ml2 2 1(U2 +myp) 10.0.0.0, my1 Ay 2(uy m21)’ 0.0.0.0).
M1ty + mppy + Mmoo M1y + myppfy + mo o

Lemma 4.3. There exists a unique DFE point P{(57,0,0,0,0,53,0,0,0,0) for model (1).

Proof. Let

* ¥ Q% M1+ My —mj3
S =(@57,55), A=(A,N), A= .
(51,52) (A, Aa) —my pfp t mlz)

Obviously, P satisfies the following equation:

A= ST +mpS;—my ST =0,
Ay = 1S5 +my ST —mpS; =0,

then the above equation can be written as
AS* =A.

It can be found that the matrix A is a nonsingular M-matrix. According to [42],
AT >0.

Thus, there exists a unique solution
S*=A"'A.
Therefore, model (1) has a unique DFE point. O
The endemic disease equilibrium point of the model (1) is denoted by P;(S' * E . I . M I IAQ’I‘, S 55 E;,
f;, M;, f?;) and considering

SDIgi(t) = 0
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for each state variable ¢; (i = 1,2,...,

(1 +O’1M )S*

-
(I +0'1M )S

Bi6

Bi(1 = 6)
bll1 — () +u +c +p1)MT =0

— (a1 +m)E; =0,

IT+o 1 M7;)S
—( 7 )1+81E*+a’1
rllAi‘ + ClM* —,Ll]jé* +m12f€;
Ay =B

ﬁ 5(1 +0'2M )S

pao(1 —6)=
bzl; - (Q’z + U+ +/12)M; =0

- leRT = 0,

(I +0'2M )S

— (&2 +m)E; =0,

—(1 r M3, + 82E + Cl’zM

}"21; + C2M; —/JzR;< + mleT — mlsz =0.

We find the endemic disease equilibrium point

— ST+ mpSs —my Sy =

#2§§ +m21§’f _mIZSA; =0,

10). Thus, we solve the equation as follows:

(r1+b1+,u]+,ul)l =0,

(r2+b2 + U -|-/.l/2)i>2k =0

0
0o %

AIMS Mathematics

G+ by p)an + e+ + ) = bianl(en + pn + )N,

Bier + 1 = dpi)(ay + ¢1 + py + (1 + o1by)

~ OB + o M)S

_ BIN{[A,

b

Ni(er + )
Nl(a'l +op+ i+ EDIA = (o + mo)ST +mpS]
StBi(ar +c1 + py + 1) + oiby)
- (u + mzl)ST + m12§;]
SiBi(ar + i+ + ) +oby)
rllA]k +c11\;I]k +m12f?;

myy +

’

[+ by + iy + )@ + €2 + o + 1) = baanl(er + pa + 15)N:

Ba(&r + iy = Spo) @z + €3 + iy + i + 02by)

Bl + 02 M;)S

b

No(&r + o)

M@ to+m + 1)[As — (o + m)S + my S

’

SiBalar + ¢2 + po + iy, + 02b2)

_ Noby[Ay — (uz + m12)§; + m2]SAT]

SiBa(ar + c2 + i + iy + 02ba)

_ (my +,u1)(r2f;‘ + CzMS) + mzl(rliT + ClMT)

mpppy + po(y + myy)

2

2
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To study the disease equilibrium points, we first calculate the basic reproduction number (R),
calculating R, using the next generation approach method proposed by Driessche and Watmough [42].
Let

X = (E]’EZ,I]712’M1’M2)T7

and system (1) could be written as
¢Dix) =F =V,

where

Bi1o(1+a 1 My)S |
(&1 + )E,

(&2 + 12)Er
—a1Ey — My + (ry + by +uy + p)I,

N,
B20(lr+02M>)S >

N>
L1101+ 1 M1)S

= N = ’ .
d ﬁ—Z(l_‘s)(llzvl‘”Mz)SZ i —arEr — &My + (ry + by + pp + p,)lh
2 ’
0 =bI; + (ay + ¢1 + py + )M,
0 —byls + (a2 + 3 + pp + p))M>

Then, take the derivative of F and V for x at the DFE point P7; clearly, we can obtain

00 pBis 0 pioo 0
0 0 0 ,325 0 ﬁ250-2
O 00 BG-0 0 pd-50 0
Tox; 00 0 B(1-9) 0 B(l-8)o
00 0 0 0 0
00 0 0 0 0
and
e+ 1y 0 0 0 0 0
0 &+ Uy 0 0 0 0
0V, | & 0 r+ by + -1-,u'1 0 —a; 0
_a_,)cj P 0 —& 0 r+ by + U +/.l,2 0 %)
0 0 -b; 0 CL/1+C1+Ml+/JI1 0
0 0 0 —bl 0 ay +Cy+ Uy +/,l’2

Thus, the basic reproduction number(R) is as follows:

Ry = p(FV™") = max R}, R3}.

where
Rl Bi(bioy + @y + ¢y + i + (&1 + iy — p16)
O (e + )l + by + )@+ o+ ) = bian ]
) Ba(broy + @z + 2 + o + 15)(&2 + 12 — 126)

O (er + m)(ra + by + o + )@ + €2 + iy + 1) — brars]

AIMS Mathematics Volume 9, Issue 11, 32696-32733.
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4.3. The stability at the DFE points

Lemma 4.4. If
qr
larg(sp-v)l > =

system (1) is locally asymptotically stable at DFE Py.
Proof. The Jacobian matrix of model (1) at the DFE Pj is

s o_(F-V o0
T T Y

where
00 ry 0 (4] 0
I = 00 O r 0 C2
7100 8 0 —op 0
00 0 -5 0 —02f3
—Mmy1 — U1 my 0 0
I, = my —m; — M2 0 0 —_J
0 0 —hp — My mpp v
0 0 my —myz — 2
myy + —my; 0 0
7 = —Mmy Myt U 0 0
4 0 0 My + . —myp
0 0 —my Mg+

The stability at the DFE point is determined by all eigenvalues of the matrix J:, with F" and V see
Subsection 4.2. That is to say, the eigenvalues of J p; are the eigenvalues of F' — V and J4. Obviously,
JT; is a nonsingular M-matrix. According to [42], J4 has all eigenvalues with negative real parts since
the stability of DFE will depend on the eigenvalues of F' — V. Due to F' is a nonnegative matrix, V is a
nonsingular M-matrix, then

larg(sp_y)| > % e s(F-V)<0op(FV'<1)e Ry < 1.

If

T
larg(sp-v)| > %,

all the eigenvalues of F' — V are negative. Therefore, all the eigenvalues of the matrix J: are negative.

Hence, if
s

q
larg(sp-v)| > >

Pj is locally asymptotically stable. O
Lemma 4.5. If

larg(se-v)l > L.
the system (1) is globally asymptotically stable at p;.

AIMS Mathematics Volume 9, Issue 11, 32696-32733.
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Proof. To start, according to model (1), we can obtain

i+ M)
CDIS; = A; — B 0 WS + Z (mi;S j — m;S)),

j=1,j#i

4)
<A - S+ ZO"U —m;S)).

Jj=1,j#i

Let

- ¥ _Qr Qr _ _ (M T M i
=(81,82), §7=(51,53), A=(ALAy) andA—( —my po +mi)’

Equation (4) can be written as
§DIS < A—AS = AS* - AS.

Thus,
S <SS —(S" - So)Eq(—Atq).

Clearly,
S <S§; (k=1,2).

Next, the following auxiliary system is considered:

= (I; + oM)S =
SD?Ei = ﬂiéT — (& + WK,
- I_, + iM,' S;
DL = (1 - 5)% + &E + iy — (ry + by + i + )T,

thin = bil; — (@ + 1 + ¢ +:U;')Mi~
Let
W:(EalaM)a Ei:(ElaEZ)’ Ii:(llaIZ), Mi:(M17M2)'
It is obvious to see that
SDIW = (F — V)W.
Thus, if
n
larg(se-v)l > L.
the auxiliary system is locally asymptotically stable and globally asymptotically stable, and the
solutions of the equation satisfy

limE; = lim[; = lim M; = 0.

t—00 —00 t—00

Using the comparison theory by Smith and Waltman [43] , we gained

lim Ei = lim Ii = lim Mi =0.

[—o0 [—o0 [—o0

Based on the above analysis, when ¢ — oo, one has

SDIS = AS* — AS,

AIMS Mathematics Volume 9, Issue 11, 32696-32733.
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SO
limS () =
t—00
If -
larg(sp-v)| > 5
then model (1) is globally asymptotically stable at the DFE Pj. O

Theorem 4.1. The epidemic equilibrium P} of model (1) is globally asymptotically stable if Ry > 1.

Proof. The Lyapunov function W(?) is defined as
Wi(0) + Wh(1)

W(t) = — E
lesT + mlez
and
CDIW, (1) +€ DIW, (¢
CDIW(r) = L 10+ DR, 5)
I’I’lz]Si< + I’I’Z]zS;
where,
Wl(t):(Sl—§’f—$'}‘ln(%))+Bl(E1—E* Eln(—))+Bz(Il mn( ))+B3(M1 -M;
1 1 1 1
Wy(t) = (S,-85-S ln(A )+ B (Ey— Eln(A )+ B, (I~ Iln( ))+B (M,— Mln(ﬁ))

S5 E; I 2
Using Theorem 3.3, the fractional derivative of functions W;(¢) and W,(¥) is given as

SDIW (1) < (1 = =HSDIS (1) + Bi(1 — =L)SDIE, (1)
S E,
N L (6)
+ B 1 Il C N4 Ml C N4
(1 — =)y D1 (t) + B3(1 — —); DY M, (1).
11 Ml

Bringing { D{S (¢), { D{E (1), D! 11(¢), § D} M, () from the model(1) into Eq (6), and letting

s B 5 B
ﬁl_Nl, IBZ_NZ’

we get

A~
*

S "
gD?WI(t) <(- S—l)[Al =By + o M)S T — 1S+ mppS, —my Sl
1
Er
+ Bi(1 = ZOBS(h + o M)S = (1 + p)En]
1
A (7N
I* A ’
+ By (1 - I—l)[B](l =o)L +oM)S | +eEy +aMy = (ry + by + g +up)]
1

M ,
+ B3(1 — ﬁl)[blll —(ay +py + ¢y +u))M.
1
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We have model (1) in the steady state,
Ay = B + o MDST + 8T — mipS + my S (8)
Substituting Eq (8) into Eq (7), we have

CDqu(f) [B (1* + O_IM*)S* +l11§T - m12§§ + mzuﬁ —mS1+mpS, —myS]
S BT + o MDS + ST = maSs + my St — St + mpaSs — mySi]

S
_ B E[Bi6(I + o1 M)S | — (&1 + ) E)]
E;
_ Bof{[Bi(1 =)y + i M)S 1 + 1By + aaMy = (ry + b+ + p)]] ©)
I
ByM; b1 — (o + py + €1 + )M ] A A
: m —— + (h + I M)S[BiS16 + Bopr(1 = 6) — 1]
1

+ Ei[Bye; — Bi(g) +up)] + Il[ST,él —(r+b+m +,U’1) + B3b]
+ Ml[Slk,éla'l +Bza’1 - Bg(a’l + U+ +/.l’1)]

Adding all infected classes without a single star (*) from (9) to zero:
B35+ B3i(1-6)—1=0

Brey — Bi(g1 +u;) =0

PP , (10)
S —(ri+by +uy +uy) + Bsby =0,

S“;BIO'I + Bray — Bs(ay + g + ¢ +,UI1) =0

Substituting the expression from (10) into (9) gives:

C l“’ll G #\2 & * & Gx 1 G 1 & *
0D?W1(l) < —S—l(Sl - Sl) + (m21S1 - m1252 - m2151 + M12S2 —mzlSls—l + mleZS—I + m2151

S+ SiEin 8T EL
- S—+B 5513 T a T =T
mSa>=) 1,31 ( S Efr S, E I

S\MEr St o nm E I Sy S
+ Bf1601 8 M(4—— Ll N N el —1—1)+Bz,81SI(2 -y an

ST M*El S f*Ml Et 1 Sl S
51 Mll* Si_n; EL L BL
+BBi(1 =6 SM3 ——— - ——)+B El———— 7
N 1 M; 1 M;
+B2a1M1‘(2——1—1——1—)+sz [ -t =1+ =20,
Mm: L M, Il M, IT M,

We have an arithmetic mean that is greater than the geometric mean

s\Ern, St E L S\MyE: St M E T 0
StEilr Si Er D S*M:E. Sy My EL T

AIMS Mathematics Volume 9, Issue 11, 32696-32733.
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SR SR KUK
A S S’[Mi‘ll

Thus,

C g & & A 1 A % 1 A
ODt W](l) < I’l’l2151k - I’I’Z]QS; —myS1+mpS, — mg]STS— + mleZS— + m21S’f
1 1

Using the same method of proof, we also ge

ODI Wz(t) < mleZ - m21ST - m1252 + leSl - mleSS— + m21SIS— + mleZ - I’I’Z21S1
2 2

Bringing Eqs (12) and (13) into Eq (5) yields

Sy LM
— - —— <0,
S IfMl

A AL
* *

t

1
- mlgsz—.

~ S‘v* S G* §* A Sw S* §* S‘v*
2 1 -1 _ -2 L 2 -2 _ _L
CDqW(t) 3 mﬂSl(S2 5t lnS1 lnsz) +m1252(51 5t lnS2 lnS1
0+t = N ~
m21S*1‘ +I’I’L]2S§
a./ 85 S S Sz A, 5% S Sz S
2 1 L [n=2 L - 22 2 _ [p=L
~ m21Sl(S2 5t lns] lnsz) .\ leSz(s] ot lnS2 lnSl)
l’l’lmSlk +mle§ lesT +m12S§
Al S5 S S S a., 8% St S S
2 1 -1 _ -2 L 2 -2 _ _L
m21Sl(S2 5t lnS1 lnsz) .\ m12S2(S1 5t lnS2 lnS1
I’I’lz]Sl mle§
A A A A A A A A s
S» 8y S S S1 S S» Sy
=0.

Thus,

SDIW(t) <0,

(12)

13)

if Ry > 1. Hence, if Ry > 1, the epidemic equilibrium point P; is globally asymptotically stable,

according to LaSalle’s invariance principle.

5. Existence and uniqueness of solution

O

Here, it is important to investigate the existence of a dynamical system we are analyzing. Fixed
point theory provides insights into this necessity. Assume that

o=

B(s) x B(s)

with B(s) is the Banach space of continuous function R — R defined on s with the norm such that

IS1, Ev, 11, My, Ry, S, Eny Iy, Mo, Roll = WIS+ [EG I+ (2] + MG+ (IRl

where,

+ 1S 2l + | Eoll + 1] + [[M2]] + IRl

IS4l = sup{IS.1()] : t € [0, T]},

AIMS Mathematics

Volume 9, Issue 11, 32696-32733.
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E:ll = sup {|E\(D)] : 1 € [0,T]},
LIl = sup{lLi(®)] : 1€ [0,T]},
M|l = sup{IM\ ()] : 1 € [0, T},
IR\l = sup {IR, ()] : t € [0, TT},
IS2l = sup IS0l : 1 € [0, T1},
Ell = sup{lEx()] - 1 € [0, T},
Ll = sup {IL@®)] : 1 €[0,T]},
Mol = sup{IM>(©)] = 1 € [0, T},
IR>|| = sup {IR>()] : 1 € [0, T]}.

For simplicity, the model (1) can be expressed in the form of

SDIQ®) = G(t, O(t))
0(0) = Qq.

The solution of Eq (14) is

1 A
0) = Qo+ = fo (t - )'G(t, Q(1))dnr,

['(g)
where,
S1() S0 G
E (1) Epp G,
1i(1) Iip G;
M, (r) M G,
R (1) Rip Gs
1) = , = G, 00) = .
(1) $,(0) Qo S (t, Q1)) G
Ey(1) Esp Gy
L(1) by Gy
M(1) M, Go
Ry (1) Ryp Gio
Ly + o1 M)S
Gi(1,510) = A —ﬁ1+ — ST +mppS, —my Sy,
|
Iy + o M)S
Go(t, Ey(1)) = ,816% — (&1 + u)E1,
1
I + o, M)S ,
G3(t, [)(1) = g1 (1 - 5)(1]\,#)1 +e By +a My — (ry + by + g +u)l,
|

Gu(t, M (1)) = by I} — () + 1y +¢) +,U,1)M1,
Gs(t,Ri(0) = Iy + ciM| — iRy + mpRy, — my Ry,
(I + 02 M>)S»

Ge(t,52(2) = Ay _ﬁZT — Sy +my S| —mpaSy,
b

(14)

15)

AIMS Mathematics Volume 9, Issue 11, 32696-32733.
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L + oy M,)S
Gt Ext) = oo T2 o, 1y,
2

Gs(t. L(D) = (1 - 5)%

Go(t, Ma(t)) = bolo — (@2 + 2 + €2 + 113) M,
Gio(t, Ry(2)) = rady + coMy — Ry + mp Ry — myoRs.

+ & Ey +aaMy — (ry + by + 1y +,U,2)12,

Lemma 5.1. All kernels G; (i = 1,2,...,10) satisfy the Lipschitz condition in the Banach space B if
the inequalities 0 < Ly, Ly, L3, L4, Ls, Lg, L7, Lg, Lo, L1g < 1 hold.

Proof. Let Q(t), O(t) be two functions, O(t) € G, where

S1(2) S1(0)
E\ (1) E ()
1 (2) (1)
M () Affl(f)
R (1) - Ry (2)
o@) = S0 | @) = S0 |
E5(2) lzjz(t)
L(1) L(1)
M (1) M (1)
R,(1) Ry (1)

Li+0 M)S
Ay —ﬂl% — S 1+ mSy —myuS

(ILi+o 1 M)S G a
A+ BT ST = mpSy +mpy S

< |€1|||Sl —S1||.

G4, 8 (1) - Gi(1, 5,0 = ‘

Taking L = ey, then
|G 12, 81(1) = Gi(2, S 1) < 1Lt ||S1 = 4.

Thus, if 0 < L; < 1, the Lipschitz condition holds for G;. Using similar methodologies, we established
the Lipschitz condition for the remaining kernels as well

|Ga(t, Ev(0) = Ga(t, Ey (1)) || < Lol ||Ev - E|
G5t 11 (1) = G, T 0))|| < 1Ll |11 = 1]
|Gt My () = Gat, My ()| < Ll || My - M
|Gs(t, Ri(8)) = Gs(t, Ri(0))|| < ILs| |[Ry = Ry
|Go(t. S2()) = Go(t, S20))|| < L6l [|S2 = S|
|G (2, Ex(1) = G1(t, Ex(0))|| < Il ||E2 - E|
|Gs(t, () - Gs(t, LO))|| < ILs| ||l - 1),
|Go(t, Ma(0)) = Go(t, Mar(2))|| < ILo| || M2 — M,
|G 1ot Ra(1)) = Gro(t, Ra(0))|| < IL1ol ||R2 = R

b

)

b

b

)

b
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Next, we give the following recursive formula:

1 !
S1a(t) = S10() + =— (r—r)‘J‘ler,Sln_l(r))dr,

I'(q)
E (1) = Eo() + mf(f—T)q 'Gy(1, Ey i (7))dT,
I (1) = 1 o(0) + mf(f— )7 Gs(1, I et (7))dT,

M, (1) = Mio(0) + m f (t — D' Gu(r, My, (7))dr,

Ry ,(t) = Rio(t) + == f (t — )7 ' Gs(1, Ry o1 (1))d7,

Iﬂ( )
Soa(t) = 820() + T f (t — 1) Ge(1, S 2,,-1(7))dT,
E> (1) = Exo(?) + mf(t— )17 Gs(1, Ex 1 (T))d,
5L ,(1) = Lyp(r) + mf(f—T)q 'Gs(1, I,,-1 (7))dT,
M, (1) = Myo(1) + m f (t — ) 'Go(1, M, (7))dT,
Ry (1) = Ryo(1) + o) f (t =)' Gio(t, Ry o1 (7))d,

to obtain the difference between the successive terms in the equations as

1 !
Ay) =814 =S 110 = T f (t =) Gi(1, S 1,-1(7)) = G1(7, S 1 a(T)))dT

Bu() = E1,(t) — Ey 1 (1) = F( )f(f—T)q [Ga(T, E1 o1 (7)) — Ga(1, Ey 0(7))]d,
Co(®) = 11,(D) = 11 o1 (1) = = f (t — D) G3(1, 1 po1 (7)) — G3(1, 11 pa(T)))dT
I'(q) Jo

1 !
Du(t) = My, (1) — My ,—1 (1) = m f (t — )7 [Gy(r, My 1 (7)) = Ga(t, M, 2(7))]dT,

E.(t) = R1,(t) = Ry -1 (1) = f(f—T)q "Gs(1, R p-1 (7)) — Gs(1, Ry pa (1) 1d7,

F()

An() = So,(t) = Sapi(t) = @ fo (t — T [Go(T, S 201 (1)) — Go(T, S 2.2 (T))]dT
_ 1 4
Bou(t) = Esn(t) - Esn1(1) = m f (t = D7 [G(7, Eap1(D)) = Gl Eapa()d,

Co(0) = (1) = Ly (1) = f(l — )G (1, I o1 (7)) = Gy (1, L o(7)))dT

I(q)

D, (1) = My, (1) = My ,,-1(1) = T ‘[0 (t — D)7 [Go(t, My, 1 (7)) — Go(T, My ,,_o(T))1drT,

(16)

AIMS Mathematics Volume 9, Issue 11, 32696-32733.
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E,(f) = Rop(t) — Ry (1) = I )f(l— )G (1, Ryn-1(1)) = G19(7, Ry (7)) 1d.

We noted that
Sialt) = D A0, Ery®) =) Bilo), L= ) Ci),
i=1 i=1 i=1

Miy(0) = ) Di), Rin(t) = Y Bi(®), Saa(t) = ) Ailo),
i=1 i=1 i=1

Exn() = ) Bi0), La®) =) Cilt), Man(®) = Dit), Ron(t) = ) Eilo).
i=1 i=1 i=1 i=1

Next, on applying the norm on both sides of the first equation in (16), we have

Al =

< % f =0 || 14m1(T) = S 142(7)|| a7,

t?naxLl ” ”
n—1

ql'(q)

In the same manner, one obtains the following results:

B, < s LB L IC ol < fa L ol Dol < L,

1“( ) ql'(q) lﬂ( )
max 5 maxLG maxL7
B, < 5 VB A0 < @ B,()| < i B,
maxLS maxL9 maxLIO
| "(t)” qr( ) ”(t)” ql'(q) | n= 1” | "(t)” ql"( ) |
Lemma 5.2. If
tq
<1 (=1,2,3,...,10),
g =0T :

then model (1) has a unique solution.

f (t =D GI(T, S 14-1(1) = Gi(T, S 1 ua(T))dT]|,
0

7)

(18)

(19)

Proof. It has been shown that all kernels satisfy the Lipschitz condition. Then, from (18) and (19), by

recursion, we can get

IA

oV B Y
IIA, @I < (qr(q)Ll) 1A, @I < (qr(q)Ll) A,z < - -

fhar '
(et Bl

AIMS Mathematics Volume 9, Issue 11, 32696-32733.
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Repeat the same steps,

q n
<[] oo,

B, < (l’i’g") )

B0 < ( ma;)Lm) IRs0] .

:]nax
n(t>||<( T ) |11,

q n
B, ()] < (l’fgx) )l 2,0 < (I’i’fx) )I

q n
| ”(t)”‘(rm ) (r<) )

Hence, Eq (17) exists and is smooth. Next, we make the assumption that

q
I1B,,(t)ll _( l’fg") ) |

S1(0) = S10 = S1..0) — A0,
E\(t) — E1p = E1,() — B8,(1),
L(0) — Lo = 11.,(0) — Cu(0),
My(2) = My = My .(2) — D,(2),
R (1) — Rip = Ry,(2) — E,(0),
S2(1) = 820 = S24(1) = AuD),
Ex(1) — Exg = Ep (1) — B,(1),
L(t) — Ly = L,(1) = Cu(0),
My(1) — Moy = My, (1) — D, (1),
Ro(1) = Ry = Ro,u(1) — E,(1).

So,

1 !
ﬂnmsHm f (=D '[Gi(1,51(1) = Gi(T, S 11 (7))ld7
< T )f(r—r)‘f HGi@. S 1) - Gi(x, S 151 (1)) dr,

< Bl s, — 1
Tt "

We repeat the process recursively to get

q L n+1
0 < (B s,

A ()] — 0 as n — oo. Similarly, we may establish that |8,()|| — O,||C.(H)Il — 0,]|D,®)| —
S — 0. Thus, the

0, 1S, @Il
model (1) has a unique solution if
tq
<1 (i=1,2,3,...,10).
ql'(q)

The proof is completed. O
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6. Ulam-Hyers stability

By proving Ulam-Hyers stability in this section, it is possible to ensure that the solution of the model
remains stable in the presence of small perturbations, which enhances the reliability and usefulness of
the model. Let us consider 7 > 0 and the inequality defined as:

50! 0 - G, Q|| <, 1€ (0,T], (20)
where, n = max{n;},i=1,2,...,10.
Remark 6.1. [33] Let a function f € B, with f(0) = 0 independent of Q, be denoted as:
() IfOl < n, forn > 0.
(ii) s D] Q1) = G(1, Q1)) + f(1),1 € [0, T].
Lemma 6.1. Let Q(t) € B be a solution of
50! - G, @) <. 1[0, 7]

satisfying the given relation

T’/
‘Q(t) ~ Q- m f (t - D"'G(r, Q(1)dr]| < an(q) = My,
where
T4
~ql(g)’

Proof. The proof method references the paper [44]. Since Q(¢) € B is a solution of Eq (20), under the
initial condition
0(0) = Qo,
the solution to
60101 = G(t, Q1) + f(1)
is

0() = 0 + % (t - DG, Q(T))dr + % (t - D fa)d.

By using Remark 6.1, we get

) Hr( ) f (&= fenr],

f( - If(Dlldr,

1
HQ(I)— O_Wf(’_ )" G(r, Q(1)dr|| =

F( )
Tq
< i = UMT
ql'(q)
where
T‘I
ql'(q)

O
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Theorem 6.1. The solution of model (1) is Ulam-Hyers stable if the following two conditions hold:
(i) G € B([0,T], W)

(ii) For all Q(1), O(t) € B, there exists p > 0, such that |G(t, Q1)) - G(t, 00))|| < p||Q(®) -
foreacht e [0,T].

Proof. Q(t) is the unique solution of model (1), from Lemma 5, if (i) and (ii) hold. Let O(f) € B be
any solution of model(1), then

o) - 0| = HQ(r) Qo—— f (t - D*'G(r, O(r))dr| ,
I'(q) Jo

() - Qo - % (t - D' G(r, O())dr

T f (t—-0""||G(r, 0(7)) - G(r, 0(1))|| dx.,

+ = f -7 - 0()|| dx,

— 00— = f (1 =17 'G(r, Q(1)dr

F( ) I'(g )
- — | ¢-10)"'G(r, Q())dr| +
@ T f ¢ o
< My + Mrp || Q) - 0()||.
This implies that
|0 - 0@)|| < nB,,
where
B = Mr
o 1 _pMT ’

So, the solution of model (1) is Ulam-Hyers stable. O

7. Numerical scheme for model (1) by Caputo

The model (1) is solved numerically using the two-step Lagrange interpolation method [45]. The
differential system is as follows:

SDIO() = G(t, Q(1)),
0(0) = Qy,

and its solution is

1 !
0) = Qo+ = f (t - )*'G(r, Q(1))dr,
I'(q) Jo

where Q(1), Qy, G(t, Q(t)) 1s consistent with Eq (15).
Let -
h= N t,=nh, n=0,1,2,...,N and f, = 0.
Computing at
t = tn+l,
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we obtain . .
Otw1) = Qo+ = (ti1 — D' G(1, Q(1))dT,
I'(q) Jo
which implies that
1 n tiv1
Q1) = Qo + o) ; ft (tyr1 — D' G(1, Q(1))dT. (2D

The function G(t, Q(7)) can be approximated over [#;,#;,1] and
tisi =t =h,

using two-step Lagrange interpolation method as

G, Q) = TG Q) + -G, Q1)
l_ f— l—_ . 1 (22)
= 56, 0 - SG (1, 00 ).

Now, substitute (22) into formula (21), and we get

lit1

1 < — Il — 1l
0tn) = Q0+ s ZO] G- r)‘f—l[TT"Gm, o) - %Gm_], Ot )ldr,

which can be rewritten as

1 n
Oltre1) = Qo+ 3 ;;W] - Wa), (23)
where
Wi =G, 0@ | (=t -0 de
G i i l
= —W[(ml = L) (et = L) = (& = 1) (tyer — )]
_ G(7;, O(17)

[(tps1 — ti+1)q+l — (tye1 — fi)qﬂ]’
q(g+1)
ti+1

W, = G(7i1, O(7i-1)) (T = t)(twer — 77 d7
_ _G(Ti—l,qQ(Ti—l)) (it = ) (ter — t0)T] = G(ti-1, Q(7i-1))

aa+ 1) [(tps1 — li+1)qul — (tys1 — fi)q+1]-

Substituting ¢, = nh into Wy, W:

) ) +1

W, = G(z;, Q(7:)h? [(n—i+D)in—i+2+q) —(n—in—i+2+2g)],
q(g+ 1) (24)
) ) +1

W2 _ G(Tt—la Q(Tl—l))hq [(I’L — i+ 1)‘1+1 - (n - l)q(n —i+1+ q)]

q(g+1)
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Bringing W, and W, from Eq (24) to Eq (23), thus, the approximate solution is

h4 &
F@+2)Z¥GQ“QWW«”—i+D%n—i+2+@

— (=)= i +2+29) ~ Gy, Q@) — i+ DT — (= iy(n—i + 1+ @),

O(tps1) = Qo +

(25)

Using the numerical scheme (25) for model (1), we get
q

I'(g+2)

— (=D —i+2+29) - G, S1 (@) =i+ D) = (n =) (n—i+1+q))],

S1(te1) =S10+ Z[G1(Ti,51(7',-))((n —i+DIn—-i+2+¢q)
i=0
E E m Y G E + 1)? [+ 2
1(tas1) = Ero + TG+2) ;[ 2zt E\(@))((n—i+ Din—i+2+q)
—(n=i)n-i+2+29) - Gt Ei(tii))(n— i+ DT = (n— )Y (n— i+ 1 + )],

Ii(t1) = Lo + % ;[Gﬂ?’i,ll(ﬁ))((” —i+DIn-i+2+¢q)

I(
— (=D n—i+2+2q) - Gy(tiy, (T ))(n— i+ DI = (n = iYi(n— i + 1 + @))],
o
Miltyer) = Mio + mo ;[Gm, M@))((n—i+ D) (n—i+2+q)
— (=) —i+2+2q)) — Ga(tior, My(ti))(n — i + 1) = (= i)Y (n— i+ 1 + )],
h4 =
Ri(tyet) = Rio + mo ;[Gsm,m(n))(m — i+ 1) (n—i+2+q)
—(n=D)Un—i+2+2g) - Gs(ti, Ri(ti))(n— i+ DI = (n = iYi(n — i + 1 + @))],
hd =
So(tye1) = S0 + Tg+2) ;[Gdﬁ, St )n—i+1D)I(n—-i+2+¢q)
— (=D n—i+2+2g)) - Ge(tit, So(Ti))(n — i + DT = (n = iYi(n— i + 1 + @),
h 2
Ex(tyen) = Exo+ [ ;[Gm, Ex(t))(n—i+ 1D)%(n—i+2+q)

= (= 1= i +2 +29)) = Gy, Ea(m (1 = i + 17! = (0= (1 = i + 1 + @),

I (¢t =5+ m Y G I  + 1)? |+ 2 +
2(tue) = oo mzol[ s(Ti, L)) — i + 1)4(n — i 9)

(
— (= (=i +2+29)) = Gy(rio, LT (=i + DI = (= )i —i + 1 + @),
Mo(ty1) = Mag + m,hi 5 ;[Gg(ri, My@))(n—i+ 1 —i+2+¢q)

— (=) n-i+2+29) - Go(tit, Ma(ri))(n—i+ D)™ —(n =i (n—i+1+q)],

Ry(tps1) = Rop +

hoo{
T(q +2) ;[GIO(TiaRz(Ti))((n —i+D)In—i+2+q)
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— (=) (n-i+2+29) -G, RaTi))(n—i+ DI —(m—iin—i+1+q)l

8. Numerical results and discussion

In this section, we use the numerical scheme to validate the fractional-order derivative epidemic
model (1). Given factors such as potential pathogen mutations and varying degrees of human immunity,
we assumed that § is variable. Since the majority of contacts between infected individuals and those
susceptible to the virus lead to the latter entering a latent state, the number of latent infections is
notably higher than the number of cases exhibiting direct symptoms. Consequently, we have assumed
a value of ¢ to be 0.6. Considering that patients with DR-TB are not sensitive to therapeutic drugs and
may experience a prolonged infectious cycle, thereby enhancing the chance of transmission, it can be
inferred that the intensity of infection among these patients is slightly higher compared to those with
DS-TB. Consequently, it is hypothesized that the value of o is 1.5. The values of all parameters are
noted in Table 2.

Table 2. Value of the parameters.

Parameters Patch 1 values /day™" Patch 2 values /day™" Source
& 0.25 0.245 [11]

Bi Variable Variable Assumed
0 0.6 0.6 Assumed
a; 0.075 0.074 Assumed
b; 0.05 0.05 [10]

ri 0.1299 0.1250 [12]

i 0.0493 0.0490 [12]

o 1.5 1.5 Assumed
i 0.0199 0.0198 [11]

; 0.05 0.05 [10]

8.1. Effect of different fractional order on disease dynamics

In this subsection, the numerical simulation results are presented by using a step size of & = 0.05.
We observe the impact of memory effects on disease transmission by plotting the population dynamics
of different state variables in a two-patch DR-TB model across different orders.

Figures 2 and 3 respectively illustrate the changes in the population of the state variables in two
patches under the influence of different fractional orders g. In all patches, we observe a significant
increase in the number of susceptible groups as the fractional order g increases. Meanwhile, the number
of infected individuals increases and the convergence speed of /; and M; decreases as the fractional
order decreases. As the fractional order g decreases, the time required for recovered individuals to
maintain stability increases in both patches. This implies that as the fractional order decreases, the
time required for all DR-TB patients to recover also increases. The above results indicate that DR-TB
does not disappear in the short term, further suggesting that the fractional order SEIMR model is more
realistic.
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Figure 2. Dynamics of the state variables of the model (1) in patch 1 for different orders q.
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Figure 3. Dynamics of the state variables of the model (1) in patch 2 for different orders q.
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8.2. Sensitivity analysis of parameters in R

Identifying the impact of key parameters in the model on the basic reproductive number R, we can
propose targeted measures to effectively control the spread of DR-TB. In this section, we conduct a
sensitivity analysis. The normalized index of forward sensitivity for Ry, influenced by the parameter k,

is defined as [46]

Accordingly,

bi(a; + c; + y; +,U;~)[(0'i’”i —¢)+ (o — D +,U;-)] i

OR, k
= I x —.
T ok R

AR

ri(a; + ¢+ i + ;) i

B [(ri + by + i + )@ + ¢ + i + 1) = bia)(bios + @i + ¢+ + 1) P

0

=}
|

T b+ )@+ ) — by

Eil;0

Ej

biai[(oir; = i) + (ui + p)(o — )]

(& + )& + i — i5)

bicila; + oi(r; + b + p; + 1))

T i+ b+ + (@ + ¢+ i+ 1) = bil(bioi + @i + ¢+ i + 1)

G + ) + ¢+ i + 1) — b )(bioi + @i + ¢ + i + 1)

i=1,2).

Tables 3 and 4 illustrate the sensitivity indices of Rf) (i=1,2) in relation to the parameters of the
proposed model. It can be seen that the parameters j3;, b;, €; have a positive impact on R},. Clearly, ; and
b; are the parameters more sensitive to Rg. Therefore, if parameters S; and b; increase, Rf) will increase;
if parameters 3; and b; decrease, R, will decrease accordingly. This indicates that the transmission of
DR-TB can be controlled by decreasing parameters §; and b;. Similarly, the parameters «;, c;, r; have
a negative impact on R{, and among these parameters, ¢; and r; have a greater negative impact on R}).
This means that as these two parameters increase, the value of R}, decreases. The sensitivity diagram is
shown in Figure 4. It is evident that parameters §; and r; are the most sensitive.

Table 3. Sensitivity index of Ry,

Parameters ﬂl b] (03] Cq &1 r
Values 0.11 0.05 0.075 0.0493 0.25 0.1299
1
Zz" 1 0.1457 -0.0715 -0.0920 0.0432 -0.5638
Table 4. Sensitivity index of R}.

Parameters B2 b, s o & )

Values 0.09 0.05 0.074 0.0490 0.245 0.1250

fo 1 0.1433 -0.0549 -0.0941 0.0435 -0.5540
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Figure 4. Sensitivity indices of R}, (i = 1, 2) against the parameters.

From the above analysis, we conclude that if transmission rate 3; can be reduced or cure rate r;
improved through certain control measures, the disease can be effectively managed. However,
controlling the transmission rate §; is often challenging, so we can focus on increasing the cure rate r;
to reduce the impact of the disease.

8.3. Disease control with different cure rates

In the Subsection 8.2, we obtained that the cure rate r; of humans can be increased to reduce the
impact of disease. So, in this section we quantitatively investigate the impact of different cure rates in
two patches on infected individuals.

Let

ﬁl = 065, ﬁz = 009, q = 095, mi, = 001, nmyp; = 002,

and suppose that r; continues to increase, while r, remains unchanged. Figure 5a,b indicates that with
the increase of r;, the number of DR-TB patients in patch 1 gradually decreases, while the number of
DR-TB patients in patch 2 increases. Due to population migration between the two patches, if only
the cure rate (r) of patch 1, without improving the cure rate (r,) of patch 2, the number of DR-TB
in patch 1 increases during the epidemic. This would control the spread of the disease in patch 1
while putting pressure on disease control in patch 2, resulting in a longer time required for DR-TB to
disappear in patch 2. Suppose that the cure rate of DS-TB is simultaneously increased in both patch 1
and patch 2. Figure 6a,b shows that with the continuous increase in r; and r,, the DR-TB in both
patches will be controlled and will lead to an earlier disappearance of the disease in patch 2.
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Figure S. Impact of M; at @ = 0.95 with r; in patch i (i = 1, 2).
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Figure 6. Impact of M; at @ = 0.95 with r; and r, in patch i (i = 1, 2).

9. Optimization of the DR-TB model

The sensitivity analysis of R} in Subsection 8.2 shows that the parameter r; has the largest negative
effect on the basic reproductive number. Thus, in this section, we consider the cure rates for TB of the
two patches, denoted by r| and r, as control variables u;(#) and u,(t), respectively, and derive optimality
conditions from the Hamiltonian function by using Pontryagin’s principle [26,28,47]. Meanwhile, we
compute the optimal function of control to determine the best measure of the treatment aspect in the
two patches in order to maximize the number of recovered individuals in each patch while minimizing
the number of infected individuals.
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9.1. Optimal control problem and optimality conditions

Our goal is to determine the optimal control u] and 3 by controlling the cure rates of two patches
to minimize the cost function J(Iy, I, uy, u,) of the control strategy. Let

g P B
ﬁl_Nl, ﬁZ_Nz-

Under the control measures, the proposed model (1) is modified as
oDiS1 = A =B + o M)S | = 1Sy + miaSs — my Sy,
GDIE, = 1oy + o1 M)S| — (&1 + u)E\,
SDILL = Bi(1 = 8)Iy + o M)S | + &1 Ey + a1 My — (ui(t) + by + py + plh,
thqu =bi —(a1+m + ¢ +,U,1)M1,
SDIR, = uy(O1) + c; My — Ry + mpRy — my Ry,

A (1"
6DISy = Ay = Boly + 02 My)S 2 — (1S 5 + mpy S | — misS,
§DIE, = Brd(lr + 0oM>)S > — (&2 + t2) En,
SDIL = Bo(1 = 8)(Iy + 0aM3)S 5 + £2Ea + aaMy — (ua(t) + by + py + o)1,
SDIMy = by, — (@) + pa + €2 + f15) My,
OCD;]RZ = I/tz(l‘)lz + C2M2 - ,leRz + I’I’lz]Rl - mlsz,
and with the nonnegative initial conditions
S0)>0, E0)>0, [(0)>0, M;(©0)>0, R(0)=0@(=1,2).
The control is completely effective when u; = 0,u, = 0. We can be done by considering the

following fractional optimal control problem to minimize the objective functional given by
T 1 1
Jy, by uy, up) = f [T\ + To 1 + 53114%(1) + EBzug(t)]dt,
0

where T is the fixed terminal time, the quantities 7'y and T, are the positive weight constants on
the advantage of the cost, and u,(f), u,(¢) are the control variable. %Bluf(t) and %Bzug(t) are the cost
functions of the control methods for the cure rate of patients with DS-TB in the considered patch 1 and
patch 2 in the following cases, respectively. The optimal control problem is then defined as

Jwi,uy) = min  J(up, u).
( 1 2) w1 (D (Deu ( 1 2)

The Hamiltonian of optimal problem is defined by

1 1
H = T.1, + To1, + EBM% + EBQM%

+ 4 [A =Bl + o M)S | — 1S +mpSsy —my S ]
+ L[Bi6(I; + oy My)S 1 — (&1 + w1)Ei]
+ [B1(1 =8I, + o\ M)S | + & Ey + ay My — (uy(£) + by + py + p)]
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+ Abi Ly = () + g + ey + 1))M]

+ Aslur (DI + ex My — Ry + miaRy — ma Ry ]

+ 5[ As = Bo(lr + 02 M)S 3 — 11282 + myyS | — mpS]

+ [Bad(ly + 2 M2)S 2 — (&2 + p2)En]

+ 30321 = 8)(Ir + 02 M2)S 2 + &2E + oMy — (ua(t) + by + 1o + 1) 1o
+ Dolboly — (@ + o + €2 + ) Ms]

+ diolua(O)r + coMs = 1oRy + ma Ry — mipRy ],

where Ay, Ay, ..., 4jo are the adjoint variables.
Theorem 9.1. Let S7,E},I;, M},R} and S, E3, I, M3, R, be optimal state solutions with associated
optimal control variables for the optimal control problems of model (1’). Then, there exist adjoint
variables u} and u; satisfying
0D A = (4 = B + o M) + (A3 = )B16) + 1 M) + (41 = Ae)may + iy,
OCD%./lz = (A — B)er + by,
oCD;f/b = =T+ (A = B)B1S1 + (A5 — W)B16S | + 3(u1 + 1) + (A3 = )by + (A3 — As)us (8),
OCD;/M = (4 = B)Bio1S | + (4 — L)B16T 1S | + (4 — L)y + (4 — As)ey + Ay + 1)),
OCD;f/ls = (A5 — Lyo)moy + Aspy,
quTf/la = (s — W)Ba(ly + TaMy) + (Ag — A7)Bad(Iy + o My) + (Ag — A)myy + Ashta,
6D7 A1 = (4 = A)er + g,
OCD%f/ls = Ty + (s — A)BaS 2 + (Ag — A7)B20S 2 + As(ta + ) + (Ag — Ag)by + (Ag — Ayo)ua(?),
607,49 = (A5 = A)B2072S 2 + (As = 47)B260728 5 + (A9 = Ag)aa + (Ao = dio)ez + As(a + 1),
(?D?,/ho = (Ao — As)myz + Ayopz,

with transversally conditions or boundary conditions
AW(Ty) = (Ty) = 23(Ty) = A4(Ty) = As(Ty) = A6(Ty) = 22(Ty) = A3(Ty) = A9(Ty) = A10(Ty) = 0.

Furthermore, the control functions u} and u; are given by

A3 — A
u’f(t):min{l,max{ 3 5Il(t),O}},
B
Ag— A4
uy(t) = min {l,max{ k 7 lOlz(t),O}}.
2

Proof. The adjoint system is obtained from the Hamiltonian H as

oH oH oH
C g _ C g — _ C 4 -
()DTf/ll(t) - aS] s ODTf/IZ(t) - aEl ’ ODTf/13(t) - 61] )

OH OH OH
C nd _ _ C 4 - _ Cn4 -
()DTf/14(t) - (?Ml s ()DTf/?'S(t) - aRl s ()DTf/l6(t) - 652’
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OH OH OH OH
Cnd _ Cna _ 9 g _ Ca _
§Dp A0 =~ (DG As() = = D7 Ao(t) = =g, G Aun(0) = 7o,

with zero final time conditions
A(Ty) = L(Ty) = 43(Ty) = A(Ty) = As(Ty) = A6(Ty) = 13(Ty) = A3(Ty) = Ao(Ty) = A10(Ty) = 0.

Using the first condition of Pontryagin’s principle, we obtain two equations for the control,

OH Az — As
=0= B — L +4As]; =0 = u(t) = L,
D) 1y — A3l + Asly ui (1) B
87'[ /18_/110
=0=>B~B - L+ Ai0lb =0=> H)y=—D.
(1) 2Up 82 1012 uy(1) B, 2

Thus, the optimal control characterization for u}(f) and u5 () with bounds are given as follows:

-4
u*;(t):min{l,max{ 3B 511(z),0}},
1

uy(t) = min {1, max {/18 1_3 /llolz(t), O}} .

2

This completes the proof. O

9.2. Numerical simulation with control measures

In this subsection, we undertake simulations of the fractional optimal control of the model and
examine the impact of the controls incorporated into the model on the dissemination of the epidemic.

Figure 7 compares the changes in the number of I, I, M|, M>, Ry, R, in two patches with control
and without control at different orders

g =1,0.95,0.90,0.85,

respectively. With the optimal cure rates implemented for different fractional orders, the optimized
curves for infected individuals exhibit a decline with an increasing fractional order g. The number of
DS-TB and DR-TB patients corresponding to each order decreases over time, while the number of
recoveries in both compartments increases. This demonstrates that, with effective treatment, infected
individuals are more likely to recover than those who do not receive any treatment. Even after
implementing the same controls, the fractional order still affects the dynamical behavior of the
disease, with smaller orders resulting in a longer duration of disease presence. Thus, the fractional
order model allows for a better determination of the optimal treatment rate for different orders
according to reality, which is not possible with the integer-order model.
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Figure 7. The respective state variables (/;, M;, R;) of the two patches with and without
control at different g-values.
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Finally, Figure 8a,b shows the trend plots of optimal control u] and u; over time for two patches. It
can be seen that in the early stage of the disease outbreak, for the treatment control rate in two patches to
be maintained at the maximum value, the treatment measures are effective and can effectively prevent
the further spread of the disease. As the value of fractional order g gradually decreases from 1, the
time to stay at the maximum level of controls u;(f) and u,(¢) increases in order to control the spread
of the disease. Consequently, the presence of the fractional derivative order g increases the control of
effective treatment in both patches.

the optimal control ux the optimal control u:

— ul(g=1) — u2(q=1)

—— u1(g=0.95) 1.0 u2(q=0.95)
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Figure 8. Time series of optimal control variable u; and u,.

10. Conclusions

In this study, we introduced the two-patch Caputo fractional-order derivative model for DR-TB to
investigate the disease dynamics for an optimal control analysis. To verify the effectiveness of the
proposed Caputo fractional-order model, the positivity and boundedness of the model (1) are proved
and the equilibrium point and the basic reproduction number R, are computed, and we prove the local
and global asymptotic stability of the DFE point and the epidemic equilibrium piont. The existence
and uniqueness of the solution were proved and investigated for the Ulam-Hyers stability of model (1).
Additionally, sensitivity analysis of Ry, was conducted using the normalized forward sensitivity index
method, identifying the sensitive parameters in Ry. The Caputo fractional-order model was numerically
solved using the two-step Lagrange interpolation technique. Numerical simulations were carried out
to investigate the effect of different fractional orders on disease transmission and to quantify the effect
of different cure rates on the number of infected persons in two patches. We discovered that in a two-
patch fractional-order model of DR-TB, increasing the disease cure rate in one patch alone leads to an
increase in the number of DR-TB patients in the other patch. Therefore, it is crucial to simultaneously
increase the treatment rates in both patches, strive for an even distribution of medical resources, and
avoid favoring a particular patch in the allocation of medical resources.

The main aim of this study is to control DR-TB by minimizing the number of infected people. We
considered the cure rates for diseases of the two patches as control variables and employed the
Pontryagin’s maximum principle to provide necessary conditions for the existence of the optimal
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solution to the optimal control problem. Simulation results show that the implementation of controls
can be effective in both patches to reduce the number of people infected with the disease in both
patches and make the number of people recovered increase, which verifies the effectiveness of our
proposed control measures. It is also concluded that reducing the fractional order g will lead to an
increase in the time required to implement effective controls.
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