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1. Introduction

Fractional calculus broadens the scope of traditional calculus by extending the concepts of
differentiation and integration to non-integer, arbitrary orders. This mathematical framework is
particularly valuable for describing systems that exhibit memory and hereditary properties,
transcending the limitations of classical differential and integral calculus. Fractional derivatives,
which form the cornerstone of fractional calculus, offer a nuanced approach to capturing the dynamics
of processes where the past influences the present, a feature not adequately addressed by integer-order
derivatives [1–3]. These derivatives are instrumental in formulating fractional differential equations
(FDEs), which effectively model complex phenomena across various domains, including engineering,
physics, biology, and finance [4, 5]. The adoption of FDEs allows for a more accurate representation
of behaviors such as viscoelastic material response, anomalous diffusion, and memory effects,
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underscoring the relevance of fractional calculus in complex system analysis [6–11].
This paper addresses two inverse source problems (ISPs) defined for the following space-time PDE:

CDξ0
0+,t

u(x, t) +
m−1∑
j=1

a j
CDξ j

0+,t
u(x, t) = −(−∆)η1/2u(x, t) + −(−∆)η2/2u(x, t) + F(x, t), (x, t) ∈ ΩT , (1.1)

subject to boundary conditions

u(−1, t) = 0 = u(1, t), t ∈ (0,T ), (1.2)

with non-homogeneous initial conditions

u(x, 0) = ρ(x), x ∈ (−1, 1), (1.3)
ut(x, 0) = ν(x), x ∈ (−1, 1), (1.4)

where CDξ j

0+,t
stands for the Caputo fractional derivatives in time variable of order ξ j, 1 < ξm−1 < ... <

ξ1 < ξ0 < 2, and is defined by

CDξ j

0+,t
h(t) := J2−ξ j

0+,t
d2

dt2 h(t) =
1

Γ(2 − ξ j)

tˆ

0

d2

dτ2 h(τ)

(t − τ)ξ j−1 dτ, t > 0,

where ΩT := Ω × (0,T ), Ω ∈ (−1, 1), and a j, j = 1, 2, ...,m − 1, m ∈ N are positive real constants.
The Riemann-Liouville fractional integral of order ξ j > 0 in time is considered here and is defined as:

Jξ j

0+,t
h(t) :=

1
Γ(ξ j)

ˆ t

0
(t − τ)ξ j−1h(τ) dτ ξ j > 0.

Here, (−∆)η1/2 and (−∆)η2/2 denote the fractional Laplacian operators of orders 1 < η1 ≤ η2 < 2 in
the spatial domain. These operators are defined through the spectral decomposition of the Laplacian.
Consider {λn, ψn} as the eigenvalues and eigenfunctions, respectively, associated with the Helmholtz
equation for the Laplacian operator in domain Ω, subject to Dirichlet boundary conditions on ∂Ω:−∆Xn = λ̄nψn, in Ω,

ψn = 0, on ∂Ω.
(1.5)

A straightforward calculation shows that λ̄n =
(

nπ
2

)2
. Consequently, it follows that

ψn(x) = sin
(nπ

2
(x + 1)

)
, ∀n ≥ 0.

Define the operator
Q
η1,η2
Ω

:= −(−∆)η1/2 − (−∆)η2/2, 1 < η1 ≤ η2 < 2,

on Ω for

h ∈ Dom(Qη1,η2
Ω

) =
{
h =

∞∑
n=1

cnψn ∈ L2(Ω) :
∞∑

n=1

c2
nλ

2
n < ∞

}
:= Ḣη1,η2 ,
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and

Q
η1,η2
D h(x) = −

∞∑
n=1

cnλnψn(x) with λn = λ̄n
η1/2 + λ̄n

η2/2
∀ n = 1, 2, .... (1.6)

Note that the set ψn(x)n = 1∞ constitutes an orthonormal basis for L2(Ω). It is evident that Ḣη1,η2 , a
Hilbert space, is a subset of L2(Ω). This Hilbert space is equipped with the inner product ⟨·, ·⟩, which
denotes the conventional inner product in L2(Ω):

⟨u, v⟩Ḣη1 ,η2 = ⟨Q
η1,η2
D u,Qη1,η2

D v⟩,

and induced norms

∥v∥Ḣη1 ,η2 = ∥Q
η1,η2
D v∥L2(Ω) =

( ∞∑
n=1

λ2
n⟨v, ψn(x)⟩2

)1/2

.

For instance, Ḣ0,0 = L2(Ω), Ḣ1,1 = H10(D), and Ḣ2,2 = H2(D)∩H10(D), all of which have equivalent
norms. The dual space of Ḣη1,η2 for η1, η2 > 0 is denoted as Ḣ−η1,−η2 , which corresponds to the dual
space (Ḣη1,η2)∗. The notation ⟨h, ψ⟩ represents the action of h on a bounded linear functional ψ within
Ḣη1,η2 . It is found that Ḣ−η1,−η2 is also a Hilbert space, characterized by the norm

∥ψ∥Ḣ−η1 ,−η2 =

( ∞∑
n=1

λ−2
n |⟨h, ψn(x)⟩∗|2

)1/2

.

Additionally, if h ∈ L2(Ω) and ψ ∈ Ḣη1,η2 , then ⟨h, ψ⟩∗ = ⟨h, ψ⟩, as illustrated in ( [12], Chap. V). Now,
we are going to discuss two ISPs for the given system (1.1)–(1.4).

1.1. Inverse Source Problem-I (ISP-I)

In this ISP-I, we focus on a source term defined as F(x, t) = f (x). To thoroughly analyze the space-
dependent source term f (x) alongside u(x, t), we require additional information commonly referred to
as an over-specified condition, presented as

u(x,T ) = Φ(x), x ∈ Ω. (1.7)

A classical solution to the ISP-I, namely a pair of functions {u(x, t), f (x)}, satisfies the conditions that
T ξ0+ξ j−1 f (x) ∈ C(Ω̄), Ω̄T := Ω̄ × [0,T ], Ω̄ ∈ [−1, 1], tξ0+ξ j−1u(x, t) ∈ C(Ω̄T ), Qη1,η2

Ω
u(·, t) ∈ C(Ω̄),

t2ξ0+ξ j−1CDξ0
0+,t

u(x, ·) ∈ C([0,T ]), and t2ξ0+ξ j−1CDξ j

0+,t
u(x, ·) ∈ C([0,T ]), j = 1, 2, ...,m − 1 m ∈ N. Our

investigation will cover the existence and uniqueness results for the solution of the ISP-I under specific
assumptions about the given data.

1.2. Inverse Source Problem-II (ISP-II)

In this ISP-II, we examine a source term defined as F(x, t) = q(t) f (x, t). To fully reconstruct the pair
of functions u(x, t), q(t), additional information, commonly referred to as an over-specified condition,
is required and is provided by

ˆ 1

−1
u(x, t)dx = E(t), t ∈ [0,T ]. (1.8)
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We define a classical solution for the ISP-II as the set {u(x, t), q(t)}, where

q(t) ∈ C[0,T ], tξ0+ξ j−1u(x, t) ∈ C(Ω̄T ),Qη1,η2
Ω

u(·, t) ∈ C(Ω̄), t2ξ0+ξ j−1CDξ0
0+,t

u(x, ·) ∈ C([0,T ])

and

t2ξ0+ξ j−1CDξ j

0+,t
u(x, ·) ∈ C([0,T ]), j = 1, 2, ...,m − 1, m ∈ N.

We aim to demonstrate that, under specific conditions applied to the given data, a unique classical
solution for the ISP-II exists.

The ISPs involving FDEs are a significant area of research in applied mathematics and physics.
These problems aim to determine unknown parameters or inputs in a system governed by fractional
derivatives, which generalize classical integer-order derivatives to non-integer orders. FDEs are
particularly useful in modeling processes with memory effects and anomalous diffusion. Solving ISPs
in this context involves techniques to reconstruct hidden information from observable data, often
leading to applications in fields such as engineering, finance, and biology. Huntul et al. [13, 14]
considered the IP of recovering the time-dependent source term for time fractional pseudoparabolic
equation. The two ISPs for the time FDEs are studied in [15, 16]. Direct and ISPs involving the
estimation of specific parameters using numerical techniques for a multi-term time FDE are examined
in [17]. Li et al. [18] investigated the well-posedness and long-term asymptotic behavior of
initial-boundary value problems for multi-term time FDEs. Lin et al. [19] studied the three
dimensional meshfree analysis for time-Caputo and space-Laplacian fractional diffusion equation.
The governing equation under consideration involves a linear combination of Caputo derivatives in
time with decreasing orders in the interval (0, 1) and includes positive constant coefficients. The
discussion focuses on ISPs involving the determination of a time-dependent source term for
higher-order multi-term FDEs that incorporate the Caputo-Fabrizio derivative [20]. The direct and
ISPs for integro-differential equations involving generalized fractional derivatives, along with
appropriate over-specified conditions, are discussed in [21–23]. The ISP for a class of multi-term time
FDEs with non-local boundary conditions is examined in [24]. Ilyas et al. [25] focused on examining
two ISPs related to a multi-term time-fractional evolution equation that includes an involution term,
bridging the characteristics of both the heat and wave equations. Suhaib et al. [26] examined an ISP to
identify a time-dependent source term in a multi-term FDE, incorporating a non-local dynamic
boundary condition and an integral-type overdetermination condition. The ISP of determining both
diffusion and source terms simultaneously in a multi-term FDE is studied in [27]. Ilyas et al. [28]
considered an ISP for a diffusion equation involving a fractional Laplacian operator in space and
Hilfer fractional derivatives in time with Dirichlet zero boundary conditions.

The rest of the paper is organized as follows: in this section, we provide the definition of the
multinomial Prabhakar and Mittag-Leffler functions and describe several of their properties. In
Section 3, we formulate the solution of ISP-I, investigate the existence and uniqueness results for
ISP-I, and present the ill-posedness of ISP-I. In Section refISPII, we present the solution of ISP-II,
discuss the existence and uniqueness results for ISP-II, and also discuss the ill-posedness of ISP-II.
We also provide some examples related to ISP-I and ISP-II. In the last section, we present the
conclusion.
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2. Prabhakar and Mittag-Leffler functions

In this section, we will define the multinomial Prabhakar and Mittag-Leffler functions and discuss
some of their important properties.

Definition 1. [29] For γ > 0, ηi > 0, zi ∈ C, i = 1, 2, ...,m, m ∈ N, the multinomial Prabhakar
function is defined as

Eδ
(η1,η2,...,ηm),γ(z1, z2, ..., zm) :=

∞∑
k=0

∑
l1+l2+...+lm=k
l1≥0,...,lm≥0

(δ)k

l1!...lm!

m∏
i=1

zli
i

Γ
(
γ +

m∑
i=1

ηili

) ,

where (δ)k denotes the Pochhammer symbol

(δ)k = δ(δ + 1)...(δ + k − 1), k ∈ N, δ0 = 1.

Theorem 1. [30] Let 1 ≥ η1 > η2 > ... > ηm > 0, 0 < η1δ ≤ γ ≤ 1, and zi > 0, i = 1, 2, ...,m. Then

Eδ
(η1,η2,...,ηm),γ(z1, z2, ..., zm) ∈ CMF ,

where CMF represents the complete monotone function.

In the special case δ = 1, the Pochhammer symbol yields (1)k = k! and Definition 1 is the
multinomial Mittag-Leffler function which is defined as follows:

Definition 2. [31] For γ > 0, ηi > 0, zi ∈ C, i = 1, 2, ...,m, m ∈ N, the multinomial Mittag-Leffler
function is defined as:

E(η1,η2,...,ηm),γ(z1, z2, ..., zm) :=
∞∑

k=0

∑
l1+l2+...+lm=k
l1≥0,...,lm≥0

(k; l1, ..., lm)

m∏
i=1

zli
i

Γ
(
γ +

m∑
i=1

ηili

) ,

where (k; l1, ..., lm) =
k!

l1! × ... × lm!
.

Moreover, note that

E(ξ1,ξ2,...,ξm),γ(z1, z2, ..., zm) = E(ξm,...,ξ2,ξ1),γ(zm, ..., z2, z1). (2.1)

Remark 1. For z1 , 0 and z2 = Z3 = ... = zm = 0, m ∈ N, the multinomial Mittag-Leffler function
reduces to

E(η1,η2,...,ηm),γ(z1, 0, ..., 0) =
∞∑

k=0

zk
1

Γ(γ + η1k)
:= Eη1,γ(z1). (2.2)
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Lemma 1. [18] Let 0 < γ < 2 and 0 < ηm < ... < η1 < 1 be given. Assume that η1π/2 < µ < η1π,
µ ≤ |arg(m2τ

η1)| ≤ π, and there exist K > 0 such that −K ≤ −m1τ
η1−η2 < 0 and −K ≤ −m2τ

η1 < 0.
Then there exists a constant C0 > 0 depending only on µ,K, ηi, i = 1, 2, ...,m, and γ such that

|E(η1−ηm,...,η1−η2,η1),γ(zm, ..., z2, z1)| ≤
C0

1 + |zm|
.

For convenience, we use the following notation:

E(η1,η2,...,ηm),γ(τ; µ1, µ2, ..., µm) := τγ−1E(η1,η2,...,ηm),γ(−µ1τ
η1 ,−µ2τ

η2 , ...,−µmτ
ηm), (2.3)

where µi > 0, i = 1, 2, ...,m, m ∈ N.

Lemma 2. [32] For ηi, γ, τ, µi > 0, i = 1, 2, ...,m, m ∈ N the Laplace transform of the multinomial
Mittag-Leffler function is given by

£{E(η1,η2,...,ηm),γ(τ; µ1, ..., µm)} =
s−γ

1 +
m∑

i=1

µis−ηi

, if
∣∣∣∣ m∑

i=1

µis−ηi

∣∣∣∣ < 1.

Lemma 3. [25] For ηi, β, γ, τ, µi > 0, i = 1, 2, ...,m, the Mittag-Leffler-type functions have the
following properties:

• cDγ
0+,τ

(
E(η1,η2,...,ηm),1(τ; µ1, µ2, ..., µm)

)
= τ−γE(η1,η2,...,ηm),1−γ(τ; µ1, µ2, ..., µm),

• cDγ
0+,τ

(
tγ−βE(η1,η2,...,ηm),γ−β+1(τ; µ1, µ2, ..., µm)

)
= τ−βE(η1,η2,...,ηm),1−β(τ; µ1, µ2, ..., µm),

• RLDγ
0+,τ

(
τγ−1E(η1,η2,...,ηm),γ(τ; µ1, µ2, ..., µm)

)
= τ−βE(η1,η2,...,ηm),1−β(τ; µ1, µ2, ..., µm),

• J1−γ
0+,τ

(
τγ−1E(η1,η2,...,ηm),γ(τ; µ1, µ2, ..., µm)

)
= E(η1,η2,...,ηm),1(τ; µ1, µ2, ..., µm).

Lemma 4. [32] For g ∈ C1([a, b]) and ηi, µi > 0, for i = 1, 2, ...,m, we have

|g(τ) ∗ E(η1,η2,...,ηm),η1(τ; µ1, µ2, ..., µm)| ≤
C
µ1
∥ g ∥C1([0,T ]),

where ∗ represents the Laplace convolution and ∥g∥C1[0,T ] = sup
t∈[0,T ]
|g(t)| + sup

t∈[0,T ]
|g′(t)|.

Lemma 5. [32] For ηi, γ, β, τ, µi > 0, i = 1, 2, ...,m, m ∈ N, we have the following relation:

τγ ∗ E(η1,η2,...,ηm),β(τ; µ1, µ2, ..., µm) = Γ(γ + 1)E(η1,η2,...,ηm),β+γ+1(τ; µ1, µ2, ..., µm).

Proposition 1. [32] The following identities hold for Mittag-Leffler functions:

• Eη1,3(τ; µ1) = τ2

Γ(3) − µ1Eη1,3+η1(τ; µ1),

• E(η1,η1−η2),3−η2(τ; µ1, µ2) + µ2E(η1,η1−η2),3+η1−2η2(τ; µ1, µ2) = τ2−η2

Γ(3−η2) − µ1E(η1,η1−η2),3+η1−η2(τ; µ1, µ2),
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3. Inverse Source Problem-I

3.1. Formal solution of the ISP-I

The solution of the ISP-I (1.1)–(1.4) and (1.7) can be written by using Fourier’s method:

u(t, x) =
∞∑

n=1

Tn(t)ψn(x), f (x) =
∞∑

n=1

fnψn(x),

where Tn(t) and fn are the unknowns and satisfy the following fractional differential equation:

CDξ1
0+,t

Tn(t) +
m−1∑
j=1

a j
CDξ j

0+,t
Tn(t) = −λnTn(t) + ⟨ f (x), ψn(x)⟩, (3.1)

where λn = (λ̄n)η1/2 + (λ̄n)η2/2. Applying the Laplace transform and incorporating the initial
conditions (1.3) and (1.4), we obtain

L{Tn(t); s} =
s(ξ0−1)

〈
ρ(x), ψn(x)

〉
sξ0 +

m−1∑
j=1

a jsξ j − λn

+

m−1∑
j=1

a js(ξ j−1)
〈
ρ(x), ψn(x)

〉
sξ0 +

m−1∑
j=1

a jsξ j − λn

+
s(ξ0−1)

〈
ν(x), ψn(x)

〉
sξ0 +

m−1∑
j=1

µ jsξ j − λn

+

m−1∑
j=1

a js(ξ j−1)
〈
ν(x), ψn(x)

〉
sξ0 +

m−1∑
j=1

µ jsξ j − λn

+
fn

s

sξ0 +

m−1∑
j=1

µ jsξ j − λn


.

Due to Lemma 2, we obtain

Tn(t) = Eξ,1(..r..)⟨ρ(x), ψn(x)⟩ +
m−1∑
j=1

a jEξ,ξ0−ξ j+1(..r..)⟨ρ(x), ψn(x)⟩ + Eξ,2(..r..)⟨ν(x), ψn(x)⟩

+

m−1∑
j=1

a jEξ,ξ0−ξ j+2(..r..)⟨ν(x), ψn(x)⟩ + Eξ,ξ0+1(..r..)⟨ f (x), ψn(x)⟩, (3.2)

where ξ and (..r..) are defined as

ξ = (ξ0, ξ0 − ξ2, ..., ξ0 − ξm−1) and (..r..) = (t; λn, a1, a2, ..., am−1),

where fn = ⟨ f (x), ψn(x)⟩. To calculate the space-dependent source term fn, we will employ the over-
specified condition (1.7), which leads to the following expression:

fn =
1

Eξ,ξ0+1(..r..)|t=T

{
⟨Φ(x), ψn(x)⟩ −

(
Eξ,1(..r..)|t=T ⟨ρ(x), ψn(x)⟩
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+

m−1∑
j=1

a jEξ,ξ0−ξ j+1(..r..)|t=T ⟨ρ(x), ψn(x)⟩ + Eξ,2(..r..)|t=T ⟨ν(x), ψn(x)⟩

+

m−1∑
j=1

a jEξ,ξ0−ξ j+2(..r..)|t=T ⟨ν(x), ψn(x)⟩
)}
. (3.3)

Consequently, the solution to the ISP-I, specifically {u(x, t), f (x)}, is provided by

u(x, t) =
∞∑

n=1

(
Eξ,1(..r..)⟨ρ(x), ψn(x)⟩ +

m−1∑
j=1

a jEξ,ξ0−ξ j+1(..r..)⟨ρ(x), ψn(x)⟩ + Eξ,2(..r..)⟨ν(x), ψn(x)⟩

+

m−1∑
j=1

a jEξ,ξ0−ξ j+2(..r..)⟨ν(x), ψn(x)⟩ + Eξ,ξ0+1(..r..)⟨ f (x), ψn(x)⟩
)
ψn(x), (3.4)

and

f (x) =
∞∑

n=1

1
Eξ,ξ0+1(..r..)|t=T

{
⟨Φ(x), ψn(x)⟩ −

(
Eξ,1(..r..)|t=T ⟨ρ(x), ψn(x)⟩

+

m−1∑
j=1

a jEξ,ξ0−ξ j+1(..r..)|t=T ⟨ρ(x), ψn(x)⟩ + Eξ,2(..r..)|t=T ⟨ν(x), ψn(x)⟩

+

m−1∑
j=1

a jEξ,ξ0−ξ j+2(..r..)|t=T ⟨ν(x), ψn(x)⟩
)}
ψn(x). (3.5)

Lemma 6. For g(., t) ∈ C2([−1, 1) satisfying g(−1, t) = 0 = g(1, t), we have

|gn(t)| ≤
D1

|λn|
2 ∥g

(ii)(x, t)∥,

where

gn(t) =
〈
g(x, t), Xn(x)

〉
. (3.6)

Proof. From the expression of gn(t) given by (3.6) and integration by parts, we obtain

gn =
1
|λn|

2

〈
g(ii)(x, t), Xn(x)

〉
.

Using the Cauchy-Schwarz inequality, we have

|gn| ≤
1
|λn|

2 ∥g
(ii)(x, t)∥∥Xn(x)∥,

which implies

|gn| ≤
D1

|λn|
2 ∥g

(ii)(x, t)∥,

where ∥Xn(x)∥ ≤ D1. □
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3.2. Existence of the solution of the ISP-I

In this subsection, we will describe the classical solution of the ISP-I under the given data. Before
proceeding further, we present the following lemma, which will be used to determine the continuity of
the series obtained by taking the Caputo fractional derivative of the series solution.

Lemma 7. (Lemma 15.2 [33], page 278) Let the fractional derivative CDη
0+,x

gn(x) exist for all n ∈ N

and for every ϵ > 0, the series
∞∑

n=1

gn(x) and
∞∑

n=1

CDη
0+,x

gn(x) are uniformly convergent on the subinterval

[ϵ, b]. Then
CDη

0+,x

( ∞∑
n=1

gn(x)
)
=

∞∑
n=1

CDη
0+,x

gn(x), η > 0, 0 < x < 1.

Theorem 2. Let ρ(x), ν(x), and Φ(x) satisfy the following conditions:

(1) ρ ∈ C2(Ω) such that ρ(−1) = 0 = ρ(1).
(2) ν ∈ C2(Ω) such that ν(−1) = 0 = ν(1).
(3) Φ ∈ C2(Ω) such that Φ(−1) = 0 = Φ(1).

Then, there exists a classical solution of the ISP-I.

Proof. To establish the existence of a solution for the ISP-I, it is necessary to demonstrate the uniform
convergence of the infinite series related to the functions f (x), u(x, t), CDξ0

0+,t
u(x, t), and

CDξ j

0+,t
u(x, t), j = 1, 2, ...,m − 1, m ∈ N. Initially, we demonstrate that T ξ0+ξ j−1| f (x)| denotes a

continuous function. By utilizing Lemma 1 and Eq (3.5), we derive

| f (x)| ≤
∞∑

n=1

|λn|

C0

{
|Φn| −

C0

|λn|

(
|ρn|T−ξ0 +

m−1∑
j=1

a j|ρn|T−ξ j + |νn|T 1−ξ0 +

m−1∑
j=1

a j|νn|T 1−ξ j

)}
.

By Lemma 6, we obtain

T ξ0+ξ j−1| f (x)| ≤
∞∑

n=1

D0

|λn|

{
|λn|

C0
∥Φ′′∥T ξ0+ξi−1 −

(
∥ρ′′∥T ξ j−1 +

m−1∑
j=1

a j∥ρ
′′∥T ξ0−1 + ∥ν′′∥T ξ j

+

m−1∑
j=1

a j∥ν
′′∥T ξ0

)}
. (3.7)

Since, λn =
(nπ

2

)η1 +
( nπ

2

)η2 and 1 < η1 ≤ η2 < 2, by (3.7), we can conclude that the series T ξ0+ξ j−1| f (x)|
converges uniformly for x ∈ ΩT . Consequently, by the Weierstrass M-test, the series T ξ0+ξ j−1| f (x)|
represents a continuous function. Subsequently, we demonstrate that tξ0+ξ j−1|u(x, t)| denotes a
continuous function. Utilizing Lemma 1 and Eq (3.4), we derive the ensuing inequality:

|u(x, t)| ≤
∞∑

n=1

C0

|λn|

(
|ρn|t−ξ0 +

m−1∑
j=1

a j|ρn|t−ξ j + |νn|t1−ξ0 +

m−1∑
j=1

a j|νn|t1−ξ j + | fn|

)
.

Due to Lemma 6, we obtain

tξ0+ξ j−1|u(x, t)| ≤
∞∑

n=1

C0

|λn|
3

(
∥ρ′′∥tξ j−1 +

m−1∑
j=1

a j∥ρ
′′∥tξ0−1 + ∥ν′′∥tξ j +

m−1∑
j=1

a j∥ν
′′∥tξ0 + ∥ f ′′∥tξ0+ξ j−1

)
. (3.8)
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Based on (3.8), the uniform convergence of the tξ0+ξ j−1|u(x, t)| is guaranteed due to the Weierstrass
M-test. Hence, we can say that the series tξ0+ξ j−1|u(x, t)| represents a continuous function.

Next, we will discuss the convergence of Qη1,η2
Ω

u(x, t). Due to (1.6), we have

Q
η1,η2
Ω

u(x, t) = −
∞∑

n=1

λn
ρ/2

Tn(t)Xn(x), λn = λn + λ̄n
η2/2. (3.9)

From (3.8) and under the assumption of Theorem 4, we can concluded that the uniform convergence of
Q
η1,η2
Ω

u(x, t) is ensured. Next, we will investigate the uniform convergence of the corresponding infinite
series t2ξ0+ξ j−1|CDξ0

0+,t
u(x, t)| and t2ξ0+ξ j−1|CDξ j

0+,t
u(x, t)|. Due to Lemma 7, we have

CDξ0
0+,t

u(x, t) =
∞∑

n=1

CDξ0
0+,t

Tn(t)ψn(x).

In order to prove the uniform convergence of t2ξ0+ξ j−1|CDξ0
0+,t

u(x, t)|, we need to show that
t2ξ0+ξ j−1 |CDξ0

0+,t
Tn(t)| is uniformly convergent. By Lemma 3 and Eq (3.2), we obtain the following

expression:

CDξ0
0+,t

Tn(t) = Eξ,1−ξ0(..r..)
〈
ρ(x), ψn(x)

〉
+

m−1∑
j=1

a jEξ,1−ξ j(..r..)
〈
ρ(x), ψn(x)

〉
+ Eξ,2−ξ0(..r..)

〈
ν(x), ψn(x)

〉
+

m−1∑
j=1

a jEξ,2−ξ j(..r..)
〈
ν(x), ψn(x)

〉
+ Eξ,1(..r..)

〈
f (x), ψn(x)

〉
.

By using Lemmas 1 and 6, we obtain

t2ξ0+ξ j−1|CDξ0
0+,t

Tn(t)| ≤
∞∑

n=1

C0

|λn|
3

(
∥ρ′′(x)∥tξ j−1 +

m−1∑
j=1

a j∥ρ
′′(x)∥tξ0−1 + ∥ν′′(x)∥tξ j

+

m−1∑
j=1

a j∥ν
′′(x)∥tξ0 + ∥ f ′′(x)∥t2ξ0+ξ j−1

)
.

The series t2ξ0+ξ j−1|CDξ0
0+,t

Tn(t)| is bounded above. Hence, t2ξ0+ξ j−1|CDξ0
0+,t

u(x, t)| is uniformly continuous
by the Weierstrass M-test. In a similar way, we can find that the series corresponding to
t2ξ0+ξ j−1|CDξ j

0+,t
u(x, t)|, j = 1, 2, 3, ...,m − 1, represents a continuous function. □

3.3. Uniqueness of the solution of the ISP-I

In this subsection, the uniqueness of the solution of the ISP-I is discussed.

Theorem 3. Let {u(x, t), f (x)} and {ũ(x, t), f̃ (x)} be two regular solution sets of the ISP-I. If u(x0, t) =
ũ(x0, t) for some x0 ∈ (−π, π), then

u(x, t) = ũ(x, t) ⇒ f (x) = f̃ (x), x ∈ (−π, π) and (x, t) ∈ ΩT .
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Proof. Consider the following functions:

Tn(t) =
ˆ 1

−1
u(x, t)ψn(x)dx, and T̃n(t) =

ˆ 1

−1
ũ(x, t)ψn(x)dx. (3.10)

Applying CDξ j

0+,t
, j = 0, 1, 2, ...,m − 1, to both sides of the second equation in (3.10), we obtain

CDξi
0+,t

T̃n(t) =
ˆ 1

−1

CDξi
0+,t

ũ(x, t)ψn(x)dx.

From (1.1), we obtain the following fractional differential equations:
CDξi

0+,t
T̃n(t) = − λnT̃n(t) + f̃n. (3.11)

Using the Laplace transform and initial conditions (1.3) and (1.4), we have

T̃n(t) = T̃n(0)
(
Eξ,1(..r..) +

m−1∑
j=1

a jEξ,ξ0−ξ j+1(..r..)
)
+ T̃ ′n(0)

(
Eξ,2(..r..) +

m−1∑
j=1

a jEξ,ξ0−ξ j+2(..r..)
)

+ f̃nEξ,ξ0+1(..r..).

Similarly, the following expressions of Tn(t) from the first equations in (3.10) is obtained:

Tn(t) = Tn(0)
(
Eξ,1(..r..) +

m−1∑
j=1

a jEξ,ξ0−ξ j+1(..r..)
)
+ T ′n(0)

(
Eξ,2(..r..) +

m−1∑
j=1

a jEξ,ξ0−ξ j+2(..r..)
)

+ fnEξ,ξ0+1(..r..).

By using the assumption u(x, t) = ũ(x, t), we have Tn(t) = T̃n(t) and hence

fnEξ,ξ0+1(..r..) = f̃nEξ,ξ0+1(..r..), ⇒
(

fn − f̃n

)
Eξ,ξ0+1(..r..) = 0.

Taking the Laplace transform, we get(
fn − f̃n

)
sξ0 +

m−1∑
j=1

µisαi − λn

= 0, Re s > 0, ⇒
fn − f̃n

ω + λn
= 0, (3.12)

where sα0 +

m∑
i=1

µisαi = ω. By taking a suitable disk D1 which includes only λ1,1 and using the Cauchy

integral theorem, integrating (3.12) along the disk, we have

fk,1 = f̃k,1, for k = 0.

In a similar way, by taking different disks, we can find that

fk,1 = f̃k,1, for all k ∈ N.

Similarly, we can find that
fk,2 = f̃k,2, for all k ∈ N.

Hence, we have f (x) = f̃ (x). □
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3.4. Ill-posedness of the ISP-I

In this subsection, we present an example to demonstrate the ill-posedness of ISP-I. Before delving
into the example, it is important to summarize a few pertinent observations.

Lemma 8. For λn > 0, the following result holds:

d
dt
Eξ,1(..r..) = −λntξ0−1Eξ,ξ0(..r..). (3.13)

Moreover, for T > 0 the following estimate holds true:
ˆ T

0
tξ0−1Eξ,ξ0(..r..)|r=τdτ ≤

C1

λn
, (3.14)

where C1 is a positive constant.

Proof. From Lemma 2, Eq (3.13) can be proved. To obtain the estimate of (3.14), we consider
ˆ T

0
Eξ,ξ0(..r..)|r=τdτ = −

1
λn

´ T
0

d
dτEξ,1(..r..)|r=τdτ

= 1
λn

(1 − Eξ,1(..r..)|r=T ).

This implies ˆ T

0
Eξ,ξ0(..r..)|r=τdτ =

1
λn

(1 − λntξ0Eξ,ξ0+1(..r..)|r=T ).

Due to Lemma 1, we obtain ˆ T

0
Eξ,ξ0(..r..)|r=τdτ ≤

C1

λn
.

The above inequality can be written as

Eξ,ξ0+1(..r..)|t=T ≤
C1

λn
.

□

The following example addresses the result concerning the ill-posedness of ISP-I. Considering the
initial conditions to be ρ̃(x) = 0 and ν̃(x) = 0, and the final condition as

Φ̃(x) =
1
√
λk

sin
(kπ

2
(x + 1)

)
,

where k ∈ N, the following expression for f̃ (x) is obtained:

f̃ (x) =
1

√
λkEξ,ξ0+1(..r..)|t=T

sin
(kπ

2
(x + 1)

)
.

By considering another final data Φ(x) = 0 and fixing the initial conditions as ρ̃(x) = 0 and ν̃(x) = 0,
we obtain f (x) = 0. The two input final data have the following error in the L2-norm:

∥Φ̃ −Φ∥L2((−1,1)) =

∥∥∥∥∥ 1
√
λk

sin
(kπ

2
(x + 1)

)∥∥∥∥∥
L2((−1,1))

=
1
√
λk
.

AIMS Mathematics Volume 9, Issue 11, 32734–32756.



32746

Hence,

lim
k→+∞

∥Φ̃ −Φ∥L2((−1,1)) = lim
k→+∞

1
√
λk
= 0. (3.15)

Additionally, the difference between corresponding source terms in the L2-norm is

∥ f̃ − f ∥L2((−1,1)) =

∥∥∥∥∥ 1
√
λkEξ,ξ0+1(..r..)|t=T

sin
(kπ

2
(x + 1)

)∥∥∥∥∥
L2((−1,1))

=
1

√
λkEξ,ξ0+1(..r..)|t=T

.

Using estimate (3.14), we obtain

∥ f̃ − f ∥L2((−1,1)) ≥

√
λk

C1
,

which leads us to

lim
k→+∞

∥ f̃ − f ∥L2((−1,1)) > lim
k→+∞

√
λk

C1
= +∞. (3.16)

Hence, based on Eqs (3.15) and (3.16), we conclude that ISP-I is ill-posed.

4. Inverse Source Problem-II

The solution of the inverse problems (1.1)–(1.4) and (1.8) can be written by using Fourier’s method:

u(t, x) =
∞∑

n=1

Tn(t)ψn(x),

where Tn(t) are the unknowns and satisfy the following fractional differential equation:

CDξ1
0+,t

Tn(t) +
m−1∑
j=1

a j
CDξ j

0+,t
Tn(t) = −λnTn(t) + ⟨q(t) f (x, t), ψn(x)⟩. (4.1)

By using the Laplace transform and the initial conditions (1.3) and (1.4), we get

L{Tn(t); s} =
s(ξ0−1)

〈
ρ(x), ψn(x)

〉
sξ0 +

m−1∑
j=1

a jsξ j + λn

+

m−1∑
j=1

a js(ξ j−1)
〈
ρ(x), ψn(x)

〉
sξ0 +

m−1∑
j=1

a jsξ j + λn

+
s(ξ0−1)

〈
ν(x), ψn(x)

〉
sξ0 +

m−1∑
j=1

µ jsξ j + λn

+

m−1∑
j=1

a js(ξ j−1)
〈
ν(x), ψn(x)

〉
sξ0 +

m−1∑
j=1

µ jsξ j + λn

+
L

{〈
q(t) f (x, t), ψn(x)

〉
; s

}
sξ0 +

m−1∑
j=1

µ jsξ j + λn

.

Due to Lemma 2, we obtain

Tn(t) = Eξ,1(..r..)
〈
ρ(x), ψn(x)

〉
+

m−1∑
j=1

a jEξ,ξ0−ξ j+1(..r..)
〈
ρ(x), ψn(x)

〉
+ Eξ,2(..r..)

〈
ν(x), ψn(x)

〉
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+

m−1∑
j=1

a jEξ,ξ0−ξ j+2(..r..)
〈
ν(x), ψn(x)

〉
+ Eξ,ξ0(..r..) ∗

〈
q(t) f (x, t), ψn(x)

〉
. (4.2)

Hence, the solution u(x, t) is given by

u(x, t) =
∞∑

n=1

(
Eξ,1(..r..)

〈
ρ(x), ψn(x)

〉
+

m−1∑
j=1

a jEξ,ξ0−ξ j+1(..r..)
〈
ρ(x), ψn(x)

〉
+ Eξ,2(..r..)

〈
ν(x), ψn(x)

〉
+

m−1∑
j=1

a jEξ,ξ0−ξ j+2(..r..)
〈
ν(x), ψn(x)

〉
+ Eξ,ξ0(..r..) ∗

〈
q(t) f (x, t), ψn(x)

〉)
ψn(x), (4.3)

where q(t) is still to be determined.

5. The main results of the ISP-II

In this section, we will discuss the main results for the solution of the ISP-II.

5.1. Existence of the solution of the ISP-II

In this subsection, we will present the existence of the solution of the ISP-II under certain
assumptions of the following theorem.

Theorem 4. Let the following conditions hold:

(1) ρ ∈ C2)(Ω) such that ρ(−1) = 0 = ρ(1).
(2) ν ∈ C2(Ω) such that ν(−1) = 0 = ν(1).

(3) f (·, t) ∈ C2(Ω) such that f (−1, t) = 0 = f (1, t). Furthermore
ˆ 1

−1
f (x, t)dx , 0, and

(ˆ 1

−1
f (x, t)dx

)−1

≤ M1,

for some positive constant M1,
(4) E ∈ AC([0,T ]) and E(t) satisfies the following consistency condition:

ˆ 1

−1
ρ(x)dx = E(t).

Then, there exists a unique regular solution of the ISP-II.

Proof. To prove the unique existence of the time-dependent source term q(t), we will use the over-
specified condition (1.8), and then we have the following relation:

ˆ 1

−1

CDξ1
0+,t

u(x, t) +
m−1∑
j=1

a j
CDξ j

0+,t
u(x, t)

 dx =

CDξ1
0+,t
+

m−1∑
j=1

a j
CDξ j

0+,t

 E(t).
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From (1.1), we have
ˆ 1

−1

(
−(−∆)η1/2u(x, t) + −(−∆)η2/2u(x, t) + q(t) f (x, t)

)
dx = CDξ1

0+,t
E(t) +

m−1∑
j=1

a j
CDξ j

0+,t
E(t),

which yields the following expression:

q(t) =
[ˆ 1

−1
f (x, t)dx

]−1 [
CDξ1

0+,t
E(t) +

m−1∑
j=1

a j
CDξ j

0+,t
E(t) +

∞∑
n=1

nπ
{
Eξ,1(..r..)

〈
ρ(x), ψn(x)

〉
+

m−1∑
j=1

a jEξ,ξ0−ξ j+1(..r..)
〈
ρ(x), ψn(x)

〉
+ Eξ,2(..r..)

〈
ν(x), ψn(x)

〉
+

m−1∑
j=1

a jEξ,ξ0−ξ j+2(..r..)

〈
ν(x), ψn(x)

〉
+

ˆ t

0
(t − τ)ξ1−1Eξ,ξ1(..r..)|t=t−τ

〈
q(τ) f (x, τ), ψn(x)

〉
dτ

}
(cos(nπ) − 1)

]
. (5.1)

We let

T (t) =
∞∑

n=1

nπ
{
Eξ,1(..r..)

〈
ρ(x), ψn(x)

〉
+

m−1∑
j=1

a jEξ,ξ0−ξ j+1(..r..)
〈
ρ(x), ψn(x)

〉
+ Eξ,2(..r..)

〈
ν(x), ψn(x)

〉
+

m−1∑
j=1

a jEξ,ξ0−ξ j+2(..r..)
〈
ν(x), ψn(x)

〉}
(cos(nπ) − 1), (5.2)

and

K(t, τ) =
∞∑

n=1

nπEξ,ξ1(..r..)|t=t−τ

〈
f (x, τ), ψn(x)

〉
(cos(nπ) − 1). (5.3)

Hence, (5.1) becomes

q(t) =
[ˆ 1

−1
f (x, t)dx

]−1 [
CDξ0

0+,t
E(t) +

m−1∑
j=1

a j
CDξ j

0+,t
E(t) + T (t) +

ˆ t

0
q(τ)K(t, τ)dτ

]
. (5.4)

Define the mapping S : C([0,T ])→ C([0,T ]) by

S(q(t)) := q(t), (5.5)

where q(t) is given by (5.1). First, we will show that for q(t) ∈ C([0,T ]), the mapping S(q(t)) is
well-defined and then, second, we will show that the mapping is a contraction.

Due to Lemmas 1 and 6, and Eqs (5.2) and (5.3), we have

tξ0+ξ j−1|T (t)| ≤
∞∑

n=1

C0

|λn|
3

(
∥ρ′′(x)∥tξ j−1 +

m−1∑
j=1

a j∥ρ
′′(x)∥tξ0−1 + ∥ν′′(x)∥tξ j +

m−1∑
j=1

a j∥ν
′′(x)∥tξ0

)
, (5.6)

(t − τ)|K(t, τ)| ≤
∞∑

n=1

C0

|λn|
3 ∥ f

′′(τ)∥. (5.7)
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From Eqs (5.6) and (5.7), we conclude that the series tξ0+ξ j−1|T (t)| and (t − τ)|K(t, τ)| are bounded
above. Hence, by virtue of the Weierstrass M-test, tξ0+ξ j−1|T (t)| and (t − τ)K(t, τ) represent continuous
functions. Furthermore, we can have M2 > 0 such that

|K(t, τ)| ≤ M2.

Hence, the mapping defined by (5.5) is well-defined.
Next, we will show that the mapping S(q(t)) is a contraction. By virtue of Eq (5.4), we have

|q1(τ) − q2(τ)| =
[ˆ 1

−1
(x, t)dx

]−1 {ˆ t

0
K(t, τ)|q1(τ) − q2(τ)|dτ

}
. (5.8)

By the assumptions of Theorem 4, we obtain

max
0≤t≤T
|S(q1(t)) − S(q2(t))| ≤ M1M2T max

0≤t≤T
|q1(τ) − q2(τ)|.

For T <
1

M1M2
, where M1 and M2 are positive constant independent of n,

max
0≤t≤T
∥S(q1(t)) − S(q2(t))∥C([0,T ]) ≤ M1M2T max

0≤t≤T
∥q1 − q2∥C([0,T ]),

which implies that the mapping S(.) is a contraction. Hence, the unique existence is guarenteed by
using the Banach fixed point theorem.

Next, we will prove that the regular solution u(x, t) given by (4.3), Qη1,η2
Ω

u(x, t), t2ξ0+ξ j−1|CDξ0
0+,t

u(x, t)|,
and t2ξ0+ξ j−1|CDξ j

0+,t
u(x, t)|, j = 1, 2, ...,m − 1, m ∈ N, represent continuous functions. From Eq (4.3),

we have

|u(x, t)| ≤
∞∑

n=1

(∣∣∣∣Eξ,1(..r..)
〈
ρ(x), ψn(x)

〉∣∣∣∣ + ∣∣∣∣ m−1∑
j=1

a jEξ,ξ0−ξ j+1(..r..)
〈
ρ(x), ψn(x)

〉∣∣∣∣
+

∣∣∣∣Eξ,2(..r..)
〈
ν(x), ψn(x)

〉∣∣∣∣ + ∣∣∣∣ m−1∑
j=1

a jEξ,ξ0−ξ j+2(..r..)
〈
ν(x), ψn(x)

〉∣∣∣∣
+

∣∣∣∣Eξ,ξ0(..r..) ∗
〈
q(t) f (x, t), ψn(x)

〉∣∣∣∣)|ψn(x)|.

By Lemmas 1 and 4, we have

|u(x, t)| ≤
∞∑

n=1

C0

|λn|

(
∥ρ′′(x)∥t−ξ0 +

m−1∑
j=1

a j∥ρ
′′(x)∥t−ξ j + ∥ν′′(x)∥t1−ξ0

+

m−1∑
j=1

a j∥ν
′′(x)∥t1−ξ j + ∥q f ∥

)
,

which yields to

tξ0+ξ j−1|u(x, t)| ≤
∞∑

n=1

C0

|λn|

(
∥ρ′′(x)∥tξ j−1 +

m−1∑
j=1

a j∥ρ
′′(x)∥tξ0−1 + ∥ν′′(x)∥tξ j
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+

m−1∑
j=1

a j∥ρ
′′(x)∥tξ0 + M3∥ f ∥tξ0+ξ j−1

)
. (5.9)

The uniform convergence of the series involved in (5.9) is ensured by using the Weierstrass M-test.
Hence, we deduce that the series tξ0+ξ j−1|u(x, t) represents a continuous function.

Next, due to (1.6), (3.8), and under the assumption of Theorem 4, we can show the uniform
convergence of Qη1,η2

Ω
u(x, t).

Similarly, we will show that the convergence of t2ξ0+ξ j−1|CDξ0
0+,t

u(x, t)| and t2ξ0+ξ j−1|CDξ j

0+,t
u(x, t)|, j =

1, 2, ...,m − 1, m ∈ N, represent continuous functions. □

5.2. Uniqueness of the solution

In this subsection, we will discuss the uniqueness of the solution of the ISP-II (1.1)–(1.4) and (1.8).

Theorem 5. The regular solution of the ISP-II is unique by satisfying the assumptions of Theorem 4.

Proof. We have already proved the uniqueness of the time-dependent source term q(t) by using the
Banach fixed point theorem. It remains to prove the uniqueness of u(x, t). Let ū(x, t) = u1(x, t)−u2(x, t),
where u1(x, t) and u2(x, t) are two solution sets of the ISP-II (1.1)–(1.4) and (1.8). Then, we have the
following relation:

CDξ0
0+,t

ũ(x, t) +
m−1∑
j=1

a j
CDξ j

0+,t
ũ(x, t) = −(−∆)η1/2ũ(x, t) + −(−∆)η2/2ũ(x, t), x ∈ ΩT ,

with boundary conditions (1.2) and initial conditions:

ũ(x, 0) =0, ũt(x, 0) = 0, x ∈ (−1, 1). (5.10)

Consider the following function:

T̃n(t) =
ˆ 1

−1
ũ(x, t)ψn(x)dx. (5.11)

Taking the Caputo fractional derivatives CDξ
0+,t

(.), we obtain the following fractional differential
equation:

CDξ0
0+,t

T̃n(t) +
m−1∑
j=1

a j
CDξ j

0+,t
T̃n(t) = −λnT̃n(t) + q̄(t) fn(t).

By using the Laplace transform technique, we obtain

T̃n(t) = T̃n(0)
(
Eξ,1(..r..) +

m−1∑
j=1

a jEξ,ξ0−ξ j+1(..r..)
)
+ T̃ ′n(0)

(
Eξ,2(..r..) +

m−1∑
j=1

a jEξ,ξ0−ξ j+2(..r..)
)

+ Eξ,ξ0(..r..) ∗
〈
q̃(t) f (x, t), ψn(x)

〉
.

By using the uniqueness of q(t) and the initial conditions (5.10), we get

T̃n(t) = 0, t ∈ [0,T ].

Hence, we have
u1(x, t) = u2(x, t).

□
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5.3. Ill-posedness of the ISP-II

In this subsection, we will demonstrate the ill-posedness of the ISP-II. We present the following
example to illustrate the ill-posedness of ISP-II. In Equation (1.1), we consider two fractional
derivatives, that is, ai = 0, i = 2, 3, ...,m − 1, and

f̃ (x, t) = λk

(
Γ(3 − ξ1)
Γ(3 − ξ0 − ξ1)

+ a1
Γ(3 − ξ1)
Γ(3 − 2ξ1)

tξ0−ξ1 +
((
π/2

)η1 +
(
π/2

)η2)tξ0

)
sin

(π
2

(x + 1)
)
.

The initial conditions (1.3) and (1.4) are taken to be zero and the over-specified condition is given by
ˆ 1

−1
ũ(x, t)dx =

4λkt2−ξ1

π
.

Using Lemma 5 and Proposition 1, we obtain

ũ(x, t) = λkt2−ξ1 sin
(π
2

(x + 1)
)
.

The implicit expression for q(t) has the following form:

q(t) =
[ˆ 1

−1
f (x, t)dx

]−1 [
CDξ0

0+,t
E(t) + a1

CDξ1
0+,t

E(t) + T (t) +
ˆ t

0
q(τ)K(t, τ)dτ

]
,

where ˆ 1

0
f (x, t)dx =

4λk

π

(
Γ(3 − ξ1)
Γ(3 − ξ0 − ξ1)

+ a1
Γ(3 − ξ1)
Γ(3 − 2ξ1)

tξ0−ξ1 +
((
π/2

)η1 +
(
π/2

)η2)tξ0

)
,

CDξ0
0+,t

E(t) =
4λkΓ(3 − ξ1)
Γ(3 − ξ0 − ξ1)

t2−ξ0−ξ1 , CDξ1
0+,t

E(t) =
4λkΓ(3 − ξ1)
πΓ(3 − 2ξ1)

t2−2ξ1 , T (t) = 0,

K(t, τ) =
4λk

π

(
Γ(3 − ξ1)
Γ(3 − ξ0 − ξ1)

+ a1
Γ(3 − ξ1)
Γ(3 − 2ξ1)

tξ0−ξ1 +
((
π/2

)η1 +
(
π/2

)η2)tξ0

)
Eξ,ξ1(..r..)|t=t−τ.

Consequently, we get
q(t) = t3−ξ0−ξ1 .

Now, assume that we have another source term, i.e., f (x, t). Hence, the solution related to f (x, t) is
u(x, t).

An error in L2(ΩT ) between two corresponding solutions is:

∥ũ − u∥L2(ΩT ) =

ˆ T

0
∥ũ − u∥L2(−1,1)dt ≤

4λk

π

ˆ T

0
t2−ξ1 dt.

This yields

∥ũ − u∥L2(ΩT ) =
4λkT 3−ξ1

π(3 − ξ1)
.

Taking the limit as k → ∞, one gets the ill-posedness of the ISP-II:

lim
k→∞
∥ũ − u∥L2(ΩT ) =

4T 3−ξ1

π(3 − ξ1)
lim
k→∞

λk = +∞.
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6. Examples

In this section, we will present some examples for the ISPs.

Example 1. As a specific example of ISP-I, we consider

ρ(x) = cos
( x
2
)
, ν(x) =

tξ0

Γ(5 + ξ0)
cos

(πx
2

)
, and Φ(x) = T ξ0 sin

(π
2

(x + 1)
)
.

The coefficients of the series expansion of ρ(x), ν(x), and Φ(x) for n = 1 are given by

ρ1 =
4π cos

( x
2

)
π2 − 1

, ν1 =
tξ0

Γ(5 + ξ0)
, and Φ1 = T ξ0 .

By plugging ai = 0 for i = 1, 2, 3, ...,m − 1 and using (3.3), we obtain

f1 =
1

Eξ0,ξ0+1(T ; λ1)

(
T ξ0 −

4π cos
( x

2

)
π2 − 1

Eξ0,1(T ; λ1) −
tξ0

Γ(5 + ξ0)
Eξ0,2(T ; λ1)

)
. (6.1)

Equation (3.2) yields the following expressions:

T1(t) =
4π cos

( x
2

)
π2 − 1

Eξ0,1(T ; λ1) +
tξ0

Γ(5 + ξ0)
Eξ0,2(T ; λ1) + f1Eξ0,ξ0+1(T ; λ1), (6.2)

where f1 is given in Eq (6.1). By substituting the previously derived expressions for f1 and T1(t), we
obtain the solution to the inverse source problem, namely f (x) and u(x, t), as follows:

f (x) =
sin

(
π
2 (x + 1)

)
Eξ0,ξ0+1(T ; λ1)

(
T ξ0 −

4π cos
( x

2

)
π2 − 1

Eξ0,1(T ; λ1) −
tξ0

Γ(5 + ξ0)
Eξ0,2(T ; λ1)

)
,

u(x, t) =
(
4π cos

( x
2

)
π2 − 1

Eξ0,1(T ; λ1) +
tξ0

Γ(5 + ξ0)
Eξ0,2(T ; λ1) + f1Eξ0,ξ0+1(T ; λ1)

)
sin

(π
2

(x + 1)
)
.

Example 2. In this second example, the solution set u(x, t) and f (x) of the ISP-I is obtained by setting
a1 = 1 and ai = 0, i = 2, 3, ...,m − 1:

f (x) =
sin

(
π
2 (x + 1)

)
E(ξ0,ξ0−ξ1),ξ0+1(T ; λ1)

(
T ξ0 −

4π cos
( x

2

)
π2 − 1

E(ξ0,ξ0−ξ1),1(T ; λ1) −
tξ0

Γ(5 + ξ0)
E(ξ0,ξ0−ξ1),2(T ; λ1)

)
,

u(x, t) =
(
4π cos

( x
2

)
π2 − 1

E(ξ0,ξ0−ξ1),1(T ; λ1) +
tξ0

Γ(5 + ξ0)
E(ξ0,ξ0−ξ1),2(T ; λ1)

+ f1E(ξ0,ξ0−ξ1),ξ0+1(T ; λ1)
)

sin
(π
2

(x + 1)
)
.
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Example 3. For the specific case of ISP-II, we consider only one fractional derivative in Eq (1.1),
where ai = 0 for i = 1, 2, ...,m − 1. The function f (x, t) is given by

f (x, t) =
( Γ(3)
Γ(3 − ξ0)

+
((
π/2

)η1 +
(
π/2

)η2)tξ0
)

sin
(π
2

(x + 1)
)
, n = 1,

and the initial conditions in (1.3) and (1.4) are set to zero. The over-specified condition is´ 1
−1 u(x, t)dx = 4t2

π
. Using Lemma 5 and Proposition 1, we obtain

u(x, t) = t2 sin
(π
2

(x + 1)
)
.

The expression for q(t) given by (5.1) takes the form

q(t) =
[ˆ 1

−1
f (x, t)dx

]−1 [
CDξ0

0+,t
E(t) + T (t) +

ˆ t

0
q(τ)K(t, τ)dτ

]
,

where
ˆ 1

−1
f (x, t)dx =

4
π

( Γ(3)
Γ(3 − ξ0)

+
((
π/2

)η1 +
(
π/2

)η2)tξ0
)
,

CDξ0
0+,t

E(t) =
4Γ(3)

πΓ(3 − ξ0)
t2−ξ0 , T (t) = 0,

K(t, τ) =
( Γ(3)
Γ(3 − ξ0)

+
((
π/2

)η1 +
(
π/2

)η2)τξ0
)
Eξ0,ξ0(t − τ; λ1).

In this case, we can find an explicit expression for q(t) given by

q(t) = t2−ξ0 .

Example 4. In this example of ISP-II, we take two fractional derivatives in Eq (1.1), where ai = 0,
i = 2, 3, ...,m − 1. Consider

f (x, t) =
(
Γ(3 − ξ1)
Γ(3 − ξ0 − ξ1)

+ a1
Γ(3 − ξ1)
Γ(3 − 2ξ1)

tξ0−ξ1 +
((
π/2

)η1 +
(
π/2

)η2)tξ0

)
sin

(π
2

(x + 1)
)
.

The initial conditions (1.3) and (1.4) are taken to be zero and the over-specified condition is´ 1
−1 u(x, t)dx = 4t2−ξ1

π
. Due to Lemma 5 and Proposition 1, we obtain

u(x, t) = t2−ξ1 sin
(π
2

(x + 1)
)
.

The implicit expression for q(t) has the following form:

q(t) =
[ˆ 1

−1
f (x, t)dx

]−1 [
CDξ0

0+,t
E(t) + a1

CDξ1
0+,t

E(t) + T (t) +
ˆ t

0
q(τ)K(t, τ)dτ

]
,

where
ˆ 1

0
f (x, t)dx =

4
π

(
Γ(3 − ξ1)
Γ(3 − ξ0 − ξ1)

+ a1
Γ(3 − ξ1)
Γ(3 − 2ξ1)

tξ0−ξ1 +
((
π/2

)η1 +
(
π/2

)η2)tξ0

)
,
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CDξ0
0+,t

E(t) =
4Γ(3 − ξ1)
Γ(3 − ξ0 − ξ1)

t2−ξ0−ξ1 , CDξ1
0+,t

E(t) =
4Γ(3 − ξ1)
πΓ(3 − 2ξ1)

t2−2ξ1 , T (t) = 0,

K(t, τ) =
4
π

(
Γ(3 − ξ1)
Γ(3 − ξ0 − ξ1)

+ a1
Γ(3 − ξ1)
Γ(3 − 2ξ1)

tξ0−ξ1 +
((
π/2

)η1 +
(
π/2

)η2)tξ0

)
Eξ,ξ1(..r..)|t=t−τ.

Consequently, we get
q(t) = t3−ξ0−ξ1 .

7. Conclusions

In this article, two ISPs for a multi-term space-time fractional differential equation (FDE)
incorporating Caputo fractional derivatives with respect to time and a bi-fractional Laplacian operator
with respect to space are considered. The series solution for the ISPs is constructed by using the
eigenfunction expansion method. First, ISP-I is addressed, which determines a space-varying source
term from the over-specified condition, i.e., the given data at a specific time T , along with the
solution. The series solutions, obtained through the eigenfunction expansion method using an
orthonormal set of eigenfunctions of the associated spectral problem, involve multinomial
Mittag-Leffler functions. The regularity of the solution is ensured under certain assumptions about the
given data and by utilizing results related to multinomial Mittag-Leffler functions. Additionally, the
uniqueness and stability of the solution concerning the given data are guaranteed in a similar manner.
These ISPs are shown to be ill-posed in the sense of Hadamard. The ISP-II is focused on recovering a
time-dependent source term from the over-determined condition of integral type, along with the
solution. The unique existence of a continuous source term in ISP-II is established using the Banach
fixed point theorem. Furthermore, the uniqueness of the solution is demonstrated using the
completeness of the eigenfunctions.
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