The oscillation property of third-order differential equations with non-positive neutral coefficients is discussed. New sufficient conditions are provided to guarantee that every solution of the considered equation is almost oscillatory. Both the canonical and non-canonical cases are considered. Illustrative examples are introduced to support the obtained results.
Citation: A. A. El-Gaber, M. M. A. El-Sheikh, M. Zakarya, Amirah Ayidh I Al-Thaqfan, H. M. Rezk. On the oscillation of solutions of third-order differential equations with non-positive neutral coefficients[J]. AIMS Mathematics, 2024, 9(11): 32257-32271. doi: 10.3934/math.20241548
The oscillation property of third-order differential equations with non-positive neutral coefficients is discussed. New sufficient conditions are provided to guarantee that every solution of the considered equation is almost oscillatory. Both the canonical and non-canonical cases are considered. Illustrative examples are introduced to support the obtained results.
[1] | A. Columbu, S. Frassu, G. Viglialoro, Refined criteria toward boundedness in an attraction-repulsion chemotaxis system with nonlinear productions, Appl. Anal., 103 (2023), 415–431. https://doi.org/10.1080/00036811.2023.2187789 doi: 10.1080/00036811.2023.2187789 |
[2] | T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 109. https://doi.org/10.1007/s00033-023-01976-0 doi: 10.1007/s00033-023-01976-0 |
[3] | T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 86. https://doi.org/10.1007/s00033-019-1130-2 doi: 10.1007/s00033-019-1130-2 |
[4] | T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differ. Integral Equ., 34 (2021), 315–336. https://doi.org/10.57262/die034-0506-315 doi: 10.57262/die034-0506-315 |
[5] | R. P. Agarwal, C. Zhang, T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput., 274 (2016), 178–181. https://doi.org/10.1016/j.amc.2015.10.089 doi: 10.1016/j.amc.2015.10.089 |
[6] | J. Džurina, S. R. Grace, I. Jadlovská, T. Li, Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922. https://doi.org/10.1002/mana.201800196 doi: 10.1002/mana.201800196 |
[7] | M. M. A. El-Sheikh, Oscillation and nonoscillation criteria for second order nonlinear differential equations, I, J. Math. Anal. Appl., 179 (1993), 14–27. https://doi.org/10.1006/jmaa.1993.1332 doi: 10.1006/jmaa.1993.1332 |
[8] | A. A. El-Gaber, M. M. A. El-Sheikh, E. I. El-Saedy, Oscillation of super-linear fourth-order differential equations with several sub-linear neutral terms, Bound. Value Probl., 2022 (2022), 41. https://doi.org/10.1186/s13661-022-01620-2 doi: 10.1186/s13661-022-01620-2 |
[9] | A. A. El-Gaber, M. M. A. El-Sheikh, Oscillation of fourth-order neutral differential equations with distributed deviating arguments, J. Math. Comput. Sci., 28 (2023), 60–71. https://doi.org/10.22436/jmcs.028.01.06 doi: 10.22436/jmcs.028.01.06 |
[10] | C. Dharuman, N. Prabaharan, E. Thandapani, E. Tunç, Oscillatory behavior of even-order functional differential equations with a superlinear neutral term, Palest. J. Math., 12 (2023), 722–731. |
[11] | A. A. El-Gaber, Oscillatory criteria of noncanonical even-order differential equations with a superlinear neutral term, Bound. Value Probl., 2024 (2024), 67. https://doi.org/10.1186/s13661-024-01873-z doi: 10.1186/s13661-024-01873-z |
[12] | C. Zhang, R. P. Agarwal, M. Bohner, T. Li, New results for oscillatory behavior of even-order half-linear delay differential equations, Appl. Math. Lett., 26 (2013), 179–183. https://doi.org/10.1016/j.aml.2012.08.004 doi: 10.1016/j.aml.2012.08.004 |
[13] | B. Qaraad, O. Bazighifan, T. A. Nofal, A. H. Ali, Neutral differential equations with distribution deviating arguments: oscillation conditions, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.06.032 |
[14] | A. A. El-Gaber, M. M. A. El-Sheikh, S. A. A. El-Marouf, New oscillation and non-oscillation criteria for third order neutral differential equations with distributed deviating arguments, J. Math. Comput. Sci., 32 (2024), 283–294. https://doi.org/10.22436/jmcs.032.04.01 doi: 10.22436/jmcs.032.04.01 |
[15] | T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to aclass of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 1–7. https://doi.org/10.1016/j.aml.2020.106293 doi: 10.1016/j.aml.2020.106293 |
[16] | Q. Liu, S. R. Grace, I. Jadlovská, E. Tunč, T. Li, On the asymptotic behavior of noncanonical third-order Emden-Fowler delay differential equations with a superlinear neutral term, Mathematics, 10 (2022), 2902. https://doi.org/10.3390/math10162902 doi: 10.3390/math10162902 |
[17] | B. Baculková, J. Džurina, Oscillation of third-order neutral differential equations, Math. Comput. Model., 52 (2010), 215–226. https://doi.org/10.1016/j.mcm.2010.02.011 doi: 10.1016/j.mcm.2010.02.011 |
[18] | S. R. Grace, J. R. Graef, E. Tunç, Oscillatory behaviour of third order nonlinear differential equations with a nonlinear nonpositive neutral term, J. Taibah Univ. Sci., 13 (2019), 704–710. https://doi.org/10.1080/16583655.2019.1622847 doi: 10.1080/16583655.2019.1622847 |
[19] | C. Jiang, Y. Jiang, T. Li, Asymptotic behavior of third-order differential equations with nonpositive neutral coefficients and distributed deviating arguments, Adv. Differ. Equ., 2016 (2016), 105. https://doi.org/10.1186/s13662-016-0833-3 doi: 10.1186/s13662-016-0833-3 |
[20] | Y. C. Qiu, Oscillation criteria of third-order nonlinear dynamic equations with nonpositive neutral coefficients on time scales, Adv. Differ. Equ., 2015 (2015), 229. https://doi.org/10.1186/s13662-015-0636-y doi: 10.1186/s13662-015-0636-y |
[21] | T. Li, C. Zhang, G. Xing, Oscillation of third-order neutral delay differential equations, Abstr. Appl. Anal., 2012 (2012), 569201. https://doi.org/10.1155/2012/569201 doi: 10.1155/2012/569201 |
[22] | S. R. Grace, Oscillation criteria for third order nonlinear differential equations with a nonpositive neutral terms, Adv. Anal., 4 (2019), 1–7. https://doi.org/10.22606/aan.2019.41001 doi: 10.22606/aan.2019.41001 |