Research article Special Issues

Nonlinear differential equations with neutral term: Asymptotic behavior of solutions

  • Received: 18 September 2024 Revised: 26 October 2024 Accepted: 06 November 2024 Published: 27 November 2024
  • MSC : 34C10, 34K11

  • The aim of this work is to study some oscillation behavior of solutions of a class of third-order neutral differential equations with multi delays. We present new oscillation criteria that complete and simplify some previous results. We also provide an example to clarify the significance of our results.

    Citation: Maryam AlKandari. Nonlinear differential equations with neutral term: Asymptotic behavior of solutions[J]. AIMS Mathematics, 2024, 9(12): 33649-33661. doi: 10.3934/math.20241606

    Related Papers:

  • The aim of this work is to study some oscillation behavior of solutions of a class of third-order neutral differential equations with multi delays. We present new oscillation criteria that complete and simplify some previous results. We also provide an example to clarify the significance of our results.



    加载中


    [1] R. P. Agarwal, O. Bazighifan, M. A. Ragusa, Nonlinear neutral delay differential equations of fourth-order: Oscillation of solutions, Entropy, 23 (2021), 1–10. http://dx.doi.org/10.3390/e23020129 doi: 10.3390/e23020129
    [2] G. E. Chatzarakis, J. Dzurina, I. Jadlovska, Oscillatary properties of third-order neutral delay differential equations with noncannanical operators, Mathematics, 7 (2019), 1–12. http://dx.doi.org/10.3390/math7121177 doi: 10.3390/math7121177
    [3] T. Jin, F. Li, H. Peng, B. Li, D. Jiang, Uncertain barrier swaption pricing problem based on the fractional differential equation in Caputo sense, Soft Comput., 27 (2023). http://dx.doi.org/10.1007/s00500-023-08153-5
    [4] P. Cai, Y. Zhang, T. Jin, Y. Tod, S. Gao, Self-Adaptive Forensic-Based investigation algorithm with dynamic population for solving constraint optimization problems, Int. J. Comput. Intell. Syst., 17 (2024). http://dx.doi.org/10.1007/s44196-023-00396-2
    [5] B. Baculikova, J. Dzurina, Oscillation of third-order neutral differential equations, Math. Comput. Model., 52 (2010), 215–226. http://dx.doi.org/10.1016/j.mcm.2010.02.011 doi: 10.1016/j.mcm.2010.02.011
    [6] S. R. Grace, J. Dzurina, I. Jadlovska, T. Li, On the oscillation of fourth-order delay differential equations, Adv. Differnce Equ., 2019 (2019), 1–15. http://dx.doi.org/10.1186/s13662-019-2060-1 doi: 10.1186/s13662-019-2060-1
    [7] G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation theory of differential equations with deviating arguments, M. Dekker, 1987.
    [8] Z. Dosla, P. Liska, Comparison theorems for third-order neutral differential equations, Electron. J. Differential Equations, 13 (2016), 1–11.
    [9] Z. Dosla, P. Liska, Oscillation of third-order neutral differetial equation, Appl. Math. Lett., 56 (2016), 42–48. http://dx.doi.org/10.1016/j.aml.2015.12.010 doi: 10.1016/j.aml.2015.12.010
    [10] I. Gyori, G. Ladas, Oscillation theory for delay differential equations with applications, Oxford: Clarendon Press, 1991. http://dx.doi.org/10.1093/oso/9780198535829.001.0001
    [11] J. K. Hale, Theory of functional differential equations, New York: Springer, 1977.
    [12] N. Kilinc Gecer, P. Temtek, Oscillation criteria for fourth-order differential equations, Erciyes Üniv. Fen Biliml. Enstitüsü Fen Bilimleri Derg., 38 (2022), 109–116.
    [13] A. A. El-Gaber, M. M. A. El-sheikh, Oscillation of fourth-order neutral differential equations with distributed deviating arguments, J. Math. Computer Sci., 28 (2023), 60–71. http://dx.doi.org/10.22436/jmcs.028.01.06 doi: 10.22436/jmcs.028.01.06
    [14] J. R. Graef, E. Tunc, S. R. Grace, Oscillatary and asymptotic behaviour of a third-order nonlinear neutral differential equation, Opusc. Math., 37 (2017), 839–852.
    [15] G. Nithyakala, G. Ayyappan, J. Alzabut, E. Thandapani, Fourth-order nonlinear strongly non-canonical delay differential equations: New oscillation criteria via canonical transform, Math. Slovaca, 74 (2024), 115–126. http://dx.doi.org/10.1515/ms-2024-0008 doi: 10.1515/ms-2024-0008
    [16] A. Al-Jaser, B. Qaraad, O. Bazighifan, L. F. Iambor, Second-order neutral differential equations with distributed deviating arguments: Oscillatory behavior, AIMS Math., 11(2023), 2605. http://dx.doi.org/10.3390/math11122605 doi: 10.3390/math11122605
    [17] A. Almutairi, A. H. Ali, O. Bazighifan, L. F. Iambor, Oscillatory properties of Fourth-Order advanced differential equations, Mathematics, 11 (2023), 1–14. http://dx.doi.org/10.3390/math11061391 doi: 10.3390/math11061391
    [18] P. Gopalakrishnan, A. Murugesan, C. Jayakumar, Oscillation conditions of the second-order noncanonical difference equations, J. Math. Computer Sci., 25 (2022), 351–360. http://dx.doi.org/10.22436/jmcs.025.04.05 doi: 10.22436/jmcs.025.04.05
    [19] G. Purushothaman, K. Suresh, E. Tunc, E. Thandapani, Oscillation criteria of fourth-order nonlinear semi-canonical neutral differential equations via a canonical tranfsform, Elect. J. Differ. Equ., 2023 (2023), 1–12. http://dx.doi.org/10.58997/ejde.2023.70 doi: 10.58997/ejde.2023.70
    [20] J. Alzabut, S. R. Grace, G. N. Chhatria, New oscillation results for higher order nonlinear differential equations with a nonlinear neutral terms, J. Math. Computer Sci., 28 (2023), 294–305. http://dx.doi.org/10.22436/jmcs.028.03.07 doi: 10.22436/jmcs.028.03.07
    [21] S. K. Marappan, A. Almutairi, L. F. Iambor, O. Bazighifan, Oscillation of Emden-Fowler-Type differential equations with Non-Canonical operators and mixed neutral terms, Symmetry, 15 (2023), 553. http://dx.doi.org/10.3390/sym15020553 doi: 10.3390/sym15020553
    [22] J. Dzurina, E. Thandapani, S. Tamilvanan, Oscillation of soluations to third-order half-linear neutral differential equations, Electron. J. Differential Equations, 2012 (2012), 1–11.
    [23] C. Trusdell, Rational mechanics, New York: Academic Press, 1983.
    [24] G. E. Chatzarakis, S. R. Grace, I. Jadlovska, Oscillation criteria for third-order delay differential equations, Adv. Differ. Equ., 2017 (2017), 1–11. http://dx.doi.org/10.1186/s13662-017-1384-y doi: 10.1186/s13662-017-1384-y
    [25] T. Candan, Asymptotic properties of solutions of third-order nonlinear neutral dynamic equations, Adv. Differ. Equ., 2014 (2014), 1–10. http://dx.doi.org/10.1186/1687-1847-2014-35 doi: 10.1186/1687-1847-2014-35
    [26] T. X. Li, C. H. Zhang, G. J. Xing, Oscillation of third-order neutral delay differential equations, Abstr. Appl. Anal., 2012 (2012), 1–11. http://dx.doi.org/10.1155/2012/569201 doi: 10.1155/2012/569201
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(384) PDF downloads(104) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog