Research article

Global exponential synchronization of discrete-time high-order BAM neural networks with multiple time-varying delays

  • Received: 16 October 2024 Revised: 11 November 2024 Accepted: 22 November 2024 Published: 27 November 2024
  • MSC : 93D20

  • The global exponential synchronization (GES) problem of a class of discrete-time high-order bidirectional associative memory neural networks (BAMNNs) with multiple time-varying delays (T-VDs) is studied. We investigate novel delay-dependent global exponential stability criteria for the error system by proposing a mathematical induction method. The global exponential stability criteria that have been obtained are described through linear scalar inequalities. These exponential synchronization conditions are very simple and convenient for verification based on standard software tools (such as YALMIP). Lastly, an instance is presented to demonstrate the validity of the theoretical findings.

    Citation: Er-yong Cong, Li Zhu, Xian Zhang. Global exponential synchronization of discrete-time high-order BAM neural networks with multiple time-varying delays[J]. AIMS Mathematics, 2024, 9(12): 33632-33648. doi: 10.3934/math.20241605

    Related Papers:

  • The global exponential synchronization (GES) problem of a class of discrete-time high-order bidirectional associative memory neural networks (BAMNNs) with multiple time-varying delays (T-VDs) is studied. We investigate novel delay-dependent global exponential stability criteria for the error system by proposing a mathematical induction method. The global exponential stability criteria that have been obtained are described through linear scalar inequalities. These exponential synchronization conditions are very simple and convenient for verification based on standard software tools (such as YALMIP). Lastly, an instance is presented to demonstrate the validity of the theoretical findings.



    加载中


    [1] J. Townsend, T. Chaton, J. M. Monteiro, Extracting relational explanations from deep neural networks: A survey from a neural-symbolic, IEEE Trans. Neural Netw. Learn. Syst., 31 (2020), 3456–3470. http://dx.doi.org/10.1109/TNNLS.2019.2944672 doi: 10.1109/TNNLS.2019.2944672
    [2] Y. Chen, X. Zhang, Y. Xue, Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays, Math. Comput. Simul., 193 (2022), 173–189. http://dx.doi.org/10.1016/j.matcom.2021.10.012 doi: 10.1016/j.matcom.2021.10.012
    [3] S. K. Thangarajan, A. Chokkalingam, Integration of optimized neural network and convolutional neural network for automated brain tumor detection, Sensor Rev., 41 (2021), 16–34. http://dx.doi.org/10.1108/SR-02-2020-0039 doi: 10.1108/SR-02-2020-0039
    [4] Z. Dong, X. Wang, X. Zhang, M. Hu, T. N. Dinh, Global exponential synchronization of discrete-time high-order switched neural networks and its application to multi-channel audio encryption, Nonlinear Anal. Hybrid Syst., 47 (2023), 101291. http://dx.doi.org/10.1016/j.nahs.2022.101291 doi: 10.1016/j.nahs.2022.101291
    [5] Y. Lee, G. Doolen, H. H. Chen, G. Z. Sun, T. Maxwell, H. Y. Lee, et. al., Machine learning using a higher order correlation network, Phys. D, 22 (1986), 276–306. http://dx.doi.org/10.1016/0167-2789(86)90300-6 doi: 10.1016/0167-2789(86)90300-6
    [6] D. Psaltis, C. H. Park, J. Hong, Higher order associative memories and their optical implementations, Neural Netw., 1 (1988), 149–163. http://dx.doi.org/10.1016/0893-6080(88)90017-2 doi: 10.1016/0893-6080(88)90017-2
    [7] P. K. Simpson, Higher-ordered and intraconnected bidirectional associative memories, IEEE Trans. Syst. Man Cybernet Syst., 20 (1990), 637–653. http://dx.doi.org/10.1109/21.57276 doi: 10.1109/21.57276
    [8] B. Kosko, Adaptive bidirectional associative memories, Appl. Opt., 26 (1987), 4947–4960. http://dx.doi.org/10.1364/ao.26.004947 doi: 10.1364/ao.26.004947
    [9] B. Kosko, Bidirectional associative memories, IEEE Trans. Syst. Man Cybernet., 18 (1988), 49–60. http://dx.doi.org/10.1109/21.87054 doi: 10.1109/21.87054
    [10] X. Lou, B. Cui, On the global robust asymptotic stability of BAM neural networks with time-varying delays, Neurocomputing, 70 (2006), 273–279. http://dx.doi.org/10.1016/j.neucom.2006.02.020 doi: 10.1016/j.neucom.2006.02.020
    [11] X. Li, Exponential stability of Cohen–Grossberg-type BAM neural networks with time-varying delays via impulsive control, Neurocomputing, 73 (2009), 525–530. http://dx.doi.org/10.1016/j.neucom.2009.04.022 doi: 10.1016/j.neucom.2009.04.022
    [12] Z. Zhang, K. Liu, Y. Yang, New LMI-based condition on global asymptotic stability concerning BAM neural networks of neutral type, Neurocomputing, 81 (2012), 24–32. http://dx.doi.org/10.1016/j.neucom.2011.10.006 doi: 10.1016/j.neucom.2011.10.006
    [13] E. Y. Cong, X. Han, X. Zhang, Global exponential stability analysis of discrete-time BAM neural networks with delays: A mathematical induction approach, Neurocomputing, 379 (2020), 227–235. http://dx.doi.org/10.1016/j.neucom.2019.10.089 doi: 10.1016/j.neucom.2019.10.089
    [14] E. Y. Cong, X. Han, X. Zhang, New stabilization method for delayed discrete-time Cohen–Grossberg BAM neural networks, IEEE Access, 8 (2020), 99327–99336. http://dx.doi.org/10.1109/ACCESS.2020.2997905 doi: 10.1109/ACCESS.2020.2997905
    [15] L. Zhu, E. Y. Cong, X. Zhang, State estimation for a class of discrete-time BAM neural networks with multiple time-varying delays, IEEE Access, 11 (2023), 29314–29322. http://dx.doi.org/10.1109/ACCESS.2023.3260619 doi: 10.1109/ACCESS.2023.3260619
    [16] J. Cao, J. Liang, J. Lam, Exponential stability of high-order bidirectional associative memory neural networks with time delays, Phys. D, 199 (2004), 425–436. http://dx.doi.org/10.1016/j.physd.2004.09.012 doi: 10.1016/j.physd.2004.09.012
    [17] F. Wang, M. Liu, Global exponential stability of high-order bidirectional associative memory (BAM) neural networks with time delays in leakage terms, Neurocomputing, 177 (2016), 515–528. http://dx.doi.org/10.1016/j.neucom.2015.11.052 doi: 10.1016/j.neucom.2015.11.052
    [18] C. Aouiti, X. Li, F. Miaadi, A new LMI approach to finite and fixed time stabilization of high-order class of BAM neural networks with time-varying delays, Neural Process. Lett., 50 (2019), 815–838. http://dx.doi.org/10.1007/s11063-018-9939-9 doi: 10.1007/s11063-018-9939-9
    [19] J. D. Cao, Y. Wan, Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays, Neural Netw., 53 (2014), 165–172. http://dx.doi.org/10.1016/j.neunet.2014.02.003 doi: 10.1016/j.neunet.2014.02.003
    [20] K. Mathiyalagan, J. H. Park, R. Sakthivel, Synchronization for delayed memristive BAM neural networks using impulsive control with random nonlinearities, Appl. Math. Comput., 259 (2015), 967–979. http://dx.doi.org/10.1016/j.amc.2015.03.022 doi: 10.1016/j.amc.2015.03.022
    [21] Y. Li, C. Li, Matrix measure strategies for stabilization and synchronization of delayed BAM neural networks, Nonlinear Dyn., 84 (2016), 1759–1770. http://dx.doi.org/10.1007/s11071-016-2603-x doi: 10.1007/s11071-016-2603-x
    [22] H. Shen, Z. Huang, Z. Wu, J. Cao, J. H. Park, Nonfragile ${H}_{\infty}$ synchronization of BAM inertial neural networks subject to persistent dwell-time switching regularity, IEEE Trans. Cybernet., 52 (2021), 6591–6602. http://dx.doi.org/10.1109/TCYB.2021.3119199 doi: 10.1109/TCYB.2021.3119199
    [23] D. Chen, Z. Zhang, Finite-time synchronization for delayed BAM neural networks by the approach of the same structural functions, Chaos Soliton. Fract., 164 (2022), 112655. http://dx.doi.org/10.1016/j.chaos.2022.112655 doi: 10.1016/j.chaos.2022.112655
    [24] Y. Zhang, L. Li, H. Peng, J. Xiao, Y. Yang, M. Zheng, et al., Finite-time synchronization for memristor-based BAM neural networks with stochastic perturbations and time-varying delays, Internat. J. Robust Nonlinear Control, 28 (2018), 5118–5139. http://dx.doi.org/10.1002/rnc.4302 doi: 10.1002/rnc.4302
    [25] Z. Yang, Z. Zhang, Finite-time synchronization analysis for BAM neural networks with time-varying delays by applying the maximum-value approach with new inequalities, Mathematics, 10 (2022), 835. http://dx.doi.org/10.3390/math10050835 doi: 10.3390/math10050835
    [26] C. Chen, L. Li, H. Peng, Y. Yang, Fixed-time synchronization of memristor-based BAM neural networks with time-varying discrete delay, Neural Netw., 96 (2017), 47–54. http://dx.doi.org/10.1016/j.neunet.2017.08.012 doi: 10.1016/j.neunet.2017.08.012
    [27] H. Yan, Y. Qiao, J. Miao, Z. Ren, L. Duan, Fixed-time synchronization of delayed BAM neural networks via new fixed-time stability results and non-chattering quantized controls, J. Franklin Inst., 360 (2023), 10251–10274. http://dx.doi.org/10.1016/j.jfranklin.2023.07.044 doi: 10.1016/j.jfranklin.2023.07.044
    [28] J. Yang, G. Chen, S. Zhu, S. Wen, J. Hu, Fixed/prescribed-time synchronization of BAM memristive neural networks with time-varying delays via convex analysis, Neural Netw., 163 (2023), 53–63. http://dx.doi.org/10.1016/j.neunet.2023.03.031 doi: 10.1016/j.neunet.2023.03.031
    [29] Y. Cheng, H. Zhang, I. Stamova, J. Cao, Estimate scheme for fractional order-dependent fixed-time synchronization on caputo quaternion-valued BAM network systems with time-varying delays, J. Franklin Inst., 360 (2023), 2379–2403. http://dx.doi.org/10.1016/j.jfranklin.2022.10.055 doi: 10.1016/j.jfranklin.2022.10.055
    [30] F. Lin, Z. Zhang, Global asymptotic synchronization of a class of BAM neural networks with time delays via integrating inequality techniques, J. Syst. Sci. Complex., 33 (2020), 366–382. http://dx.doi.org/10.1007/s11424-019-8121-4 doi: 10.1007/s11424-019-8121-4
    [31] A. Muhammadhaji, Z. Teng, Synchronization stability on the BAM neural networks with mixed time delays, Int. J. Nonlinear Sci. Numer. Simul., 22 (2021), 99–109. http://dx.doi.org/10.1515/ijnsns-2019-0308 doi: 10.1515/ijnsns-2019-0308
    [32] J. Lan, X. Wang, X. Zhang, Global robust exponential synchronization of interval BAM neural networks with multiple time-varying delays, Circuits Syst. Signal Process., 43 (2024), 2147–2170. http://dx.doi.org/10.1007/s00034-023-02584-z doi: 10.1007/s00034-023-02584-z
    [33] L. Li, R. Xu, Q. Gan, J. Lin, A switching control for finite-time synchronization of memristor-based BAM neural networks with stochastic disturbances, Nonlinear Anal. Model. Control, 25 (2020), 958–979. http://dx.doi.org/10.15388/namc.2020.25.20557 doi: 10.15388/namc.2020.25.20557
    [34] R. Tang, X. Yang, X. Wan, Y. Zou, Z. Cheng, H. M. Fardoun, Finite-time synchronization of nonidentical BAM discontinuous fuzzy neural networks with delays and impulsive effects via non-chattering quantized control, Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104893. http://dx.doi.org/10.1016/j.cnsns.2019.104893 doi: 10.1016/j.cnsns.2019.104893
    [35] Z. Wang, X. Zhang, J. Qiao, H. Wu, T. Huang, Fuzzy fault-tolerant boundary control for nonlinear DPSs with multiple delays and stochastic actuator failures, IEEE Trans. Fuzzy Syst., 32 (2024), 3121–3131. https://doi.org/10.1109/TFUZZ.2024.3367870 doi: 10.1109/TFUZZ.2024.3367870
    [36] Z. Wang, B. Chen, J. Qiao, H. Wu, T. Huang, Fuzzy boundary sampled-data control for nonlinear DPSs with random time-varying delays, IEEE Trans. Fuzzy Syst., 32 (2024), 5872–5885. http://dx.doi.org/10.1109/TFUZZ.2024.3432795 doi: 10.1109/TFUZZ.2024.3432795
    [37] L. Zhang, Y. Yang, Finite time impulsive synchronization of fractional order memristive BAM neural networks, Neurocomputing, 384 (2020), 213–224. http://dx.doi.org/10.1016/j.neucom.2019.12.056 doi: 10.1016/j.neucom.2019.12.056
    [38] H. Li, J. Cao, C. Hua, L. Zhang, H. Jiang, Adaptive control-based synchronization of discrete-time fractional-order fuzzy neural networks with time-varying delays, Neural Netw., 168 (2023), 59–73. http://dx.doi.org/10.1016/j.neunet.2023.09.019 doi: 10.1016/j.neunet.2023.09.019
    [39] H. Li, J. Cao, C. Hu, H. Jiang, F. E. Alsaadi, Synchronization analysis of discrete-time fractional-order quaternion-valued uncertain neural networks, IEEE Trans. Neural Netw. Learn. Syst., 35 (2024), 14178–14189. http://dx.doi.org/10.1109/TNNLS.2023.3274959 doi: 10.1109/TNNLS.2023.3274959
    [40] Z. Zhou, Z. Zhang, M. Chen, Finite-time synchronization for fuzzy delayed neutral-type inertial BAM neural networks via the figure analysis approach, Int. J. Fuzzy Syst., 24 (2022), 229–246. http://dx.doi.org/10.1007/s40815-021-01132-8 doi: 10.1007/s40815-021-01132-8
    [41] M. Sader, A. Abdurahman, H. Jiang, General decay synchronization of delayed BAM neural networks via nonlinear feedback control, Appl. Math. Comput., 337 (2018), 302–314. http://dx.doi.org/10.1016/j.amc.2018.05.046 doi: 10.1016/j.amc.2018.05.046
    [42] Z. Zhang, J. Cao, Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method, IEEE Trans. Neural Netw. Learn. Syst., 30 (2018), 1476–1485. http://dx.doi.org/10.1109/TNNLS.2018.2868800 doi: 10.1109/TNNLS.2018.2868800
    [43] Z. Zhang, M. Chen, A. Li, Further study on finite-time synchronization for delayed inertial neural networks via inequality skills, Neurocomputing, 373 (2020), 15–23. http://dx.doi.org/10.1016/j.neucom.2019.09.034 doi: 10.1016/j.neucom.2019.09.034
    [44] Z. Zhang, A. Li, S. Yu, Finite-time synchronization for delayed complex-valued neural networks via integrating inequality method, Neurocomputing, 318 (2018), 248–260. http://dx.doi.org/10.1016/j.neucom.2018.08.063 doi: 10.1016/j.neucom.2018.08.063
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(254) PDF downloads(65) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog