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findings.

Keywords: discrete-time high-order BAM neural network; multiple time-varying delays; global
exponential synchronization; linear scalar inequalities; controller gains
Mathematics Subject Classification: 93D20

1. Introduction

In recent years, neural networks (NNs) have played an important role in fields such as addressable
memory, pattern recognition, and optimization control due to their nonlinear computing capabilities
and powerful parallel processing [1–4]. In 1986, Lee et al. [5] described a form of higher-order
correlation formalism tensor for NNs, proposed high-order NNs based on ordinary low-order NNs. The
model can simulate auto associative, heteroassociative, as well as multiassociative memory. In [6, 7],
several higher-order connection-weight models with different structures are proposed. Recently, an
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increasing number of scholars working on NN research have turned their attention from low-order
systems to high-order systems, trying to overcome the limitations of traditional NNs. These higher-
order models have higher fault tolerance, larger storage capacity, faster convergence speed, and
stronger approximation properties than first-order NNs.

As one of the interconnected NNs, bidirectional associative memory NNs (BAMNNs) [8,9] consist
of two-layers of heterogeneous associative circuits, which extend the functionality of single-layer
neural networks and have the functions of memory and information association. For quite some time,
most researchers have been focusing on low-order BAMNNs rather than high-order BAMNNs [10–15].
However, due to some shortcomings of low-order BAMNNs, it becomes very important to incorporate
high-order interactions into such BAMNNs. Therefore, Simpson [7] put forward a class of higher-
order delayed BAMNNs. In particular, second-order BAMNNs can enhance the storage capacity but
require more connections. Since then, different architectures with high-order connections have been
utilized to construct desirable BAMNNs [16–18].

It is widely known that synchronization is of utmost importance for BAMNNs. Identifying certain
conditions to ensure the achievement of synchronization in drive-response systems is a significant
research topic for BAMNNs. The term “synchronization” has a long history and denotes the state where
two or more systems display common dynamic behaviors. When we study the dynamic behaviors of
NNs, synchronization can play an extremely crucial role. In the past few years, the synchronization
problem of various types of BAMNNs has drawn extensive attention due to their broad applications
in multiple fields, including pattern recognition, associative memories, automatic control engineering,
combinatorial optimization, signal processing, and parallel computation.

Up to now, it has been revealed that the research on the synchronization problem for delayed drive-
response BAMNNs holds great significance for fundamental science. A large number of studies have
emerged regarding the study of different types of synchronization problems for delayed BAMNNs.
for example, long-time synchronization [19–22], finite-time synchronization [23–25] and fixed-time
synchronization [26–29]. References [19] and [21] respectively studied the synchronization problems
of single inertia BAMNN and delayed BAMNN by using matrix measure theory. They gave several
criteria for GES by using Halanay inequality methods and Lyapunov stability theory, respectively. The
proposed criteria are independent of delay parameters. Furthermore, valuable new insights into the
stability and synchronization of BAMNNs are put forward. In reference [20], the authors concentrate
impulsive synchronization of delayed memristive BAMNNs. By employing the so-called linear matrix
inequality (LMI) approach, which is based on the time-varying Lyapunov function, the time-dependent
impulsive results for the exponential stability of the error system are derived. In references [19–21],
the Lyapunov functional method, LMI method, and matrix measure method are mainly applied to
study synchronization problems. While reference [30] presents a new global synchronization research
method and gives a criterion for global asymptotic synchronization of BAMNNs by using the integral
inequality technique. This method and result extend the research on global synchronization of NNs. In
reference [31], the general decay synchronization problem of BAMNNs with T-VD and distributed
delay is studied by using Lyapunov method and useful inequality techniques. Sufficient criteria
for the GDS of BAMNNs are given. In [32], sufficient conditions for global robust exponential
synchronization of interval BAMNNs are given through a direct method based on the system solution.
This method avoids the difficulty of establishing the Lyapunov–Krasovskii functional. Moreover, the
derived global robust exponential synchronization criterion is simpler and easier to implement.
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Regarding the achievement of exponential synchronization between dynamical systems, previous
studies have employed various methods such as the matrix measure strategy and the method based
on the finite-time stability theorem [24], the Lyapunov function method [33–36], the analytical
method [37–39], the figure analysis method [40], and the integral inequality method [41–44]. However,
there are few other methods apart from those mentioned above for studying the synchronization
problem of delayed BAMNNs. This has motivated us to seek another method to investigate the GES
problem of BAMNNs.

Furthermore, in computer simulation practices, discrete-time networks have certain advantages
over continuous-time networks in transmitting digital information. Thus, researching the dynamic
characteristics of discrete-time high-order NNs holds significant importance. However, aside from the
aforementioned methods, there are very few other approaches for studying the synchronization problem
of discrete-time delayed high-order BAMNNs. This spurs us to seek another method to investigate
the GES problem of delayed discrete-time high-order BAMNNs. Based on the above discussion, we
propose a novel method for synchronizing the drive-response system.

The primary objective of this paper is to design a control law that can globally exponentially
synchronize the delayed discrete-time high-order BAMNNs. Additionally, it aims to obtain a time
convergence that is more precise and has a high level of accuracy. The contributions of this article are:

(1) The synchronization criteria deduced by this approach are merely equivalent to solving a few
straightforward linear scalar inequalities and are comparatively intuitive.

(2) The controller gains are in fact computed using the parameters of the discrete-time high-order
BAMNN itself, and this can significantly decrease the computational complexity.

(3) The synchronization criterion derived is relatively straightforward and can be readily solved by
utilizing YALMIP software.

The remaining portion is structured as follows: The elaboration and preparatory work of the
problem will be conducted in the next section. The major achievements of this research, a new standard
for GES, are presented in Section 3. Illustrative examples are provided in Section 4 to verify the validity
of the obtained results. Finally, in Section 5, we present our conclusions.

Notations: The real number and integer set are denoted by R and Z, respectively. For positive
integers l and s where l ≤ s, let [l, s]Z be the set that contains all the positive integers ranging from l
to s. The symbol Rl×s denotes the set consisting of l × s matrices. Rl×s

� and Rl×s
� are subsets of Rl×s,

with the former containing all nonnegative matrices and the latter containing all positive matrices. In
a similar vein, we also utilize R�, R�, among others. When s → ∞, the limit case of [l, s]Z is denoted
as [l,∞)Z. For S = [si j] ∈ Rl×s and K = [ki j] ∈ Rl×s, the matrix [si jki j], denoted by S ◦ K, refers to
the Hadamard product of S and K, and the notation S � K (or S � K) denotes si j ≥ ki j (or si j ≤ ki j).
If si j > ki j (or si j < ki j), we say S � K (or S ≺ K). Let |S | = [|si j|]. Then |S K| � |S ||K| for all
S ∈ Rp×q and K ∈ Rq×r. The notation ‖ · ‖2 represents the Euclidean norm, and the notation ⊗ denotes
the Kronecker product of matrices.
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2. Preliminaries

We consider the following discrete-time high-order BAMNNs with multiple T-VDs:

ζi(t + 1) = aiζi(t) +

m∑
j=1

[
bi j f j(ϑ j(t)) + ci j f j(ϑ j(t − δi j(t)))

]
+

m∑
j=1

m∑
l=1

di jlg j(ϑ j(t − δi jl(t)))gl(ϑl(t − δi jl(t)))

+Ii(t), i ∈ [1, n]Z, t ∈ [0,∞)Z, (2.1a)

ϑ j(t + 1) = â jϑ j(t) +

n∑
i=1

[
b̂ ji f̃i(ζi(t)) + ĉ ji f̃i(ζi(t − σ ji(t)))

]
+

n∑
i=1

n∑
r=1

d̂ jirg̃i(ζi(t − σ jir(t)))g̃r(ζr(t − σ jir(t)))

+Ĩ j(t), j ∈ [1,m]Z, t ∈ [0,∞)Z, (2.1b)

where ai, â j ∈ (−1, 1) ; Constants bi j, b̂ ji, ci j, ĉ ji, di jl and d̂ jir represent the connection weights; ζi(t) and
ϑ j(t) denote the ith and jth neuronal states of layer-X and layer-Y , respectively; f j : R → [−s(1)

j , s
(1)
j ],

g j : R → [−s(2)
j , s

(2)
j ], f̃i : R → [−s̃(1)

i , s̃(1)
i ] and g̃i : R → [−s̃(2)

i , s̃(2)
i ] denote the neuronal activation

functions; s(1)
j , s

(2)
j , s̃

(1)
i and s̃(2)

i are known positive constants; For the known positive integers δ̄i j, δ̄i jl,
σ̄ ji and σ̄ jir, the multiple T-VDs is represented as δi j : [0,∞)Z → [0, δ̄i j], δi jl : [0,∞)Z → [0, δ̄i jl],
σ ji : [0,∞)Z → [0, σ̄ ji] and σ jir : [0,∞)Z → [0, σ̄ jir]; and Ii(t) and Ĩ j(t) are variable external input.

Remark 2.1. The BAMNN extends the single-layer auto-associative Hebbian correlator to a two-
layer pattern matched hetero-associative circuits, and extracts the complete and clear patterns stored
in memory from incomplete or fuzzy patterns. The network, as in (2.1), can store pairs of patterns
or memories and search for them in both forward and backward directions. Therefore, the BAMNN
exhibits relatively excellent information–memory and information–association capabilities.

We require these assumptions.

Assumption 2.1. For any α1, α2 ∈ R subject to α1 , α2, there are β̃(1)
i , β(1)

j ∈ R� such that f̃i(0) = f j(0),

0 ≤ f̃i(α1)− f̃i(α2)
α1−α2

≤ β̃(1)
i and 0 ≤ f j(α1)− f j(α2)

α1−α2
≤ β(1)

j where ∀i ∈ [1, n]Z, ∀ j ∈ [1,m]Z.

Assumption 2.2. For any α1, α2 ∈ R subject to α1 , α2, there are β̃(2)
i , β(2)

j ∈ R� such that g̃i(0) =

g j(0) = 0, 0 ≤ g̃i(α1)−g̃i(α2)
α1−α2

≤ β̃(2)
i , and 0 ≤ g j(α1)−g j(α2)

α1−α2
≤ β(2)

j , ∀i ∈ [1, n]Z, ∀ j ∈ [1,m]Z .

We regard discrete-time high-order BAMNN (2.1) as a master drive system and consider the
following form of slave matching response system:

ζ̂i(t + 1) = aiζ̂i(t) +

m∑
j=1

[
bi j f j(ϑ̂ j(t)) + ci j f j(ϑ̂ j(t − δi j(t)))

]
AIMS Mathematics Volume 9, Issue 12, 33632–33648.



33636

+

m∑
j=1

m∑
l=1

di jlg j(ϑ̂ j(t − δi jl(t)))gl(ϑ̂l(t − δi jl(t)))

+Ii(t) + Ui(t), i ∈ [1, n]Z, t ∈ [0,∞)Z, (2.2a)

ϑ̂ j(t + 1) = â jϑ̂ j(t) +

n∑
i=1

[
b̂ ji f̃i(ζ̂i(t)) + ĉ ji f̃i(ζ̂i(t − σ ji(t)))

]
+

n∑
i=1

n∑
r=1

d̂ jirg̃i(ζ̂i(t − σ jir(t)))g̃r(ζ̂r(t − σ jir(t)))

+Ĩ j(t) + V j(t), j ∈ [1,m]Z, t ∈ [0,∞)Z, (2.2b)

where Ui(t) and V j(t) are the controllers to realize the GES.
Let ηi(t) = ζi(t) − ζ̂i(t), η̃ j(t) = ϑ j(t) − ϑ̂ j(t). Take ηi(t) and η̃ j(t) as the synchronization error

variables. Then, from Eqs (2.1) and (2.2), we can obtain that the error dynamical system:

ηi(t + 1) = aiηi(t) +

m∑
j=1

[
bi j f ∗j (η̃ j(t)) + ci j f ∗j (η̃ j(t − δi j(t)))

]
+

m∑
j=1

m∑
l=1

di jl

[
g j(ϑ j(t − δi jl(t)))g∗l (η̃l(t − δi jl(t)))

+g∗j(η̃ j(t − δi jl(t)))gl(ϑ̂l(t − δi jl(t)))
]

−Ui(t), i ∈ [1, n]Z, t ∈ [0,∞)Z, (2.3a)

η̃ j(t + 1) = â jη̃ j(t) +

n∑
i=1

[
b̂ ji f̃ ∗i (ηi(t)) + ĉ ji f̃ ∗i (ηi(t − σ ji(t)))

]
+

n∑
i=1

n∑
r=1

d̂ jir

[
g̃i(ζi(t − σ jir(t)))g̃∗r(ηr(t − σ jir(t)))

+g̃∗i (ηi(t − σ jir(t)))g̃r(ζ̂r(t − σ jir(t)))
]

−V j(t), j ∈ [1,m]Z, t ∈ [0,∞)Z, (2.3b)

where
f ∗j (η̃ j(·)) = f j(η̃ j(·) + ϑ̂ j(·)) − f j(ϑ̂ j(·)),

g∗j(η̃ j(·)) = g j(η̃ j(·) + ϑ̂ j(·)) − g j(ϑ̂ j(·)),

f̃ ∗i (ηi(·)) = f̃i(ηi(·) + ζ̂i(·)) − f̃i(ζ̂i(·)),

g̃∗i (ηi(·)) = g̃i(ηi(·) + ζ̂i(·)) − g̃i(ζ̂i(·)).

Due to Assumptions 2.1 and 2.2, we deduce that

| f ∗j (~)| ≤ β(1)
j |~|, |g

∗
j(~)| ≤ β

(2)
j |~|, | f̃

∗
i (~)| ≤ β̃(1)

i |~|,

|g̃∗i (~)| ≤ β̃(2)
i |~|, ~ ∈ R, i ∈ [1, n]Z, j ∈ [1,m]Z. (2.4)
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Let ν = max1≤i,r≤n,1≤ j,l≤m max
{
δ̄i j, σ̄ ji, δ̄i jl, σ̄ jir

}
. The symbol C([−ν, 0]Z,Rn) denotes the set that

consists of all functions ϕ : [−ν, 0]Z → Rn. Let there be a norm ‖ · ‖ on Rn × Rm. It is defined such
that for ‖(α, β)‖ = (‖α‖22 + ‖β‖22)1/2, α ∈ Rn, β ∈ Rm. Similarly, a norm ‖(·, ·)‖ν can be defined on
C([−ν, 0]Z,Rn) ×C([−ν, 0]Z,Rm) by

‖(φ, φ̃)‖ν = sup
s∈[−ν,0]Z

max
{
‖φ(s)‖2, ‖φ̃(s)‖2

}
,

∀φ ∈ C([−ν, 0]Z,Rn), ∀ φ̃ ∈ C([−ν, 0]Z,Rm).

Definition 2.1. [4] The response discrete-time high-order BAMNN (2.2) and the discrete-time high-
order BAMNN (2.1) are said to be GES with a decay rate λ if there exist β, λ ∈ R� and controllers Ui(t)
and V j(t) such that arbitrary solution (η(t), η̃(t)) of error dynamical system (2.3) satisfying

‖(η(t), η̃(t))‖ ≤ βe−λt
∥∥∥(φ, φ̃)

∥∥∥
ν
,∀t ∈ [ν,∞)Z,

where (φ, φ̃) ∈ C([−ν, 0]Z,Rn) × C([−ν, 0]Z,Rm) is the initial functions corresponding to the solution
(η(t), η̃(t)) ; η(t) = [η1(t) . . . ηn(t)]T and η̃(t) = [η̃1(t) . . . η̃m(t)]T .

The objective of this paper is to design a state feedback controller of the form:

Ui(t) = (ρi − ai)ηi(t), i ∈ [1, n]Z, t ∈ [0,∞)Z,
V j(t) = (ρ̂ j − â j)η̃ j(t), j ∈ [1,m]Z, t ∈ [0,∞)Z, (2.5)

which makes the discrete-time high-order BAMNNs (2.1) and (2.2) achieve GES, where ρi and ρ̂ j are
the controller gains to be determined.

Remark 2.2. Discrete-time high-order BAMNN is a typical recurrent neural network, which plays
an important role in pattern recognition and combinatorial optimization. At present, although many
scholars have studied the dynamic characteristics of high-order BAMNN with time delays, most of
them have focused on complex continuous-time network models, while the research on discrete-time
network models is relatively scarce. Therefore, this paper conducts a study on the synchronization
problem of a discrete-time high-order BAMNN model with multiple T-VDs. In addition, an important
role is also played by BAMNN in the fields of signal processing and artificial intelligence.

3. global exponential synchronization analysis

Set

Ξβ = eβδ̄ ◦ |C|Γ1 + |B|Γ1 + ℵ, eβδ̄ = [eβδ̄i j], B = [bi j], C = [ci j],

ℵ = GT (Eβ ◦ |D| + Êβ ◦ |D̂|)Γ2,G = Im ⊗ P, P = [s(2)
1 s(2)

2 . . . s(2)
m ]T ,

D = [DT
1 DT

2 . . .D
T
m], D̂ = [D1D2 . . .Dm],Di = [di jl],

Eβ = [ET
β,1ET

β,2 . . . E
T
β,m], Êβ = [Eβ,1Eβ,2 . . . Eβ,m], Eβ,i = [eβδ̄i jl],

Ξ̃β = eβσ̄ ◦ |C̃|Γ̃1 + |B̃|Γ̃1 + ℵ̃, eβσ̄ = [eβσ̄ ji], B̃ = [b̂ ji], C̃ = [ĉ ji],

ℵ̃ = HT (Fβ ◦ |D̃| + F̂β ◦ |
ˆ̃D|)Γ̃2,H = In ⊗ Q,Q = [s(2)

1 s(2)
2 . . . s(2)

n ]T ,
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D̃ = [D̃T
1 D̃T

2 . . . D̃
T
n ], ˆ̃D = [D̃1D̃2 . . . D̃n], D̃ j = [d̂ jil],

Fβ = [FT
β,1FT

β,2 . . . F
T
β,n], F̂β = [Fβ,1Fβ,2 . . . Fβ,n], Fβ, j = [eβσ̄ jil],

Θβ,k = −e−βIk,

Γ1 = diag(β(1)
1 , . . . , β(1)

m ), Γ̃1 = diag(β̃(1)
1 , . . . , β̃(1)

n ),

Γ2 = diag(β(2)
1 , . . . , β(2)

m ), Γ̃2 = diag(β̃(2)
1 , . . . , β̃(2)

n ).

Theorem 3.1. If there exists ϕ ∈ Rn
�, ψ ∈ R

m
� , ũ ∈ Rn

�, ṽ ∈ Rm
� and β ∈ R� such that

Θβ,nũ + Ξβṽ + ϕ � 0, (3.1)
Ξ̃βũ + Θβ,mṽ + ψ � 0, (3.2)

then the error system (2.3) is globally exponentially stable, that is, the drive system discrete-time high-
order BAMNN (2.1) and response system discrete-time high-order BAMNN (2.2) achieve GES via the
controllers in (2.5), where ρi = ±ϕiũ−1

i and ρ̂ j = ±ψ jṽ−1
j , where ũi, ṽ j, ϕi and ψ j are the ith and jth

components of ũ, ṽ, ϕ and ψ, respectively.

Proof. Choose Υ > 0 such that

Υũ � [1 · · · 1]T , Υṽ � [1 · · · 1]T .

For any fixed φ ∈ C([−ν, 0]Z,Rn) and φ̃ ∈ C([−ν, 0]Z,Rm), define

û(t) = Υ‖(φ, φ̃)‖νe−βtũ, t ∈ [−ν,∞)Z, (3.3)
v̂(t) = Υ‖(φ, φ̃)‖νe−βtṽ, t ∈ [−ν,∞)Z, (3.4)

where (φ, φ̃) serve as the initial functions.
Suppose (η(t), η̃(t)) is the solution of (2.3). Next, the following expression will be proved by using

the mathematical induction method

|η(t)| � û(t), |η̃(t)| � v̂(t), t ∈ [−ν,∞)Z. (3.5)

Obviously, in combination with the definition of ‖ · ‖ν and the selection of Υ, we have

|η(k)| � û(k), |η̃(k)| � v̂(k), ∀k ∈ [−ν, 0]Z.

Suppose that for any fixed k ≥ 0, when t ≤ k, the inequality (3.5) holds. For any i ∈ [1, n]Z, when
t = k + 1, using (2.3a), (2.5), (2.4), and Assumptions 2.1 and 2.2, we obtain

|ηi(k + 1)| ≤ |ρi||ηi(k)| +
m∑

j=1

[
|bi j|| f ∗j (η̃ j(k))| + |ci j|| f ∗j (η̃ j(k − δi j(k)))|

]
+

m∑
j=1

m∑
l=1

|di jl|
[
|g j(ϑ j(k − δi jl(k)))||g∗l (η̃l(k − δi jl(k)))|

+|g∗j(η̃ j(k − δi jl(k)))||gl(ϑ̂l(k − δi jl(k)))|
]
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≤ |ρi||ηi(k)| +
m∑

j=1

[
|bi j|β

(1)
j |η̃ j(k)| + |ci j|β

(1)
j |η̃ j(k − δi j(k))|

]
+

m∑
j=1

m∑
l=1

|di jl|
[
|g j(ϑ j(k − δi jl(k)))|β(2)

l |η̃l(k − δi jl(k))|

+β(2)
j |η̃ j(k − δi jl(k))||gl(ϑ̂l(k − δi jl(k)))|

]
≤ |ρi||ηi(k)| +

m∑
j=1

[
|bi j|β

(1)
j |η̃ j(k)| + |ci j|β

(1)
j |η̃ j(k − δi j(k))|

]
+

m∑
j=1

m∑
l=1

|di jl|
[
s(2)

j β
(2)
l |η̃l(k − δi jl(k))| + s(2)

l β(2)
j |η̃ j(k − δi jl(k))|

]
.

Utilizing the inductive hypothesis, we are able to obtain

|ηi(k + 1)| ≤ |ρi|ûi(k) +

m∑
j=1

[
|bi j|β

(1)
j v̂ j(k) + |ci j|β

(1)
j v̂ j(k − δi j(k))

]
+

m∑
j=1

m∑
l=1

|di jl|
[
s(2)

j β
(2)
l v̂l(k − δi jl(k)) + s(2)

l β(2)
j v̂ j(k − δi jl(k))

]
. (3.6)

By substituting Eqs (3.3) and (3.4) into (3.6), we obtain

|ηi(k + 1)| ≤ |ρi|Υ‖(φ, φ̃)‖νe−βkũi +

m∑
j=1

[
|bi j|β

(1)
j Υ‖(φ, φ̃)‖νe−βkṽ j

+|ci j|β
(1)
j Υ‖(φ, φ̃)‖νe−β(k−δi j(k))ṽ j

]
+

m∑
j=1

m∑
l=1

|di jl|
[
s(2)

j β
(2)
l Υ‖(φ, φ̃)‖νe−β(k−δi jl(k))ṽl

+s(2)
l β(2)

j Υ‖(φ, φ̃)‖νe−β(k−δi jl(k))ṽ j

]
≤ Υ‖(φ, φ̃)‖νe−βk ×

|ρi|ũi +

m∑
j=1

(|bi j|β
(1)
j + |ci j|β

(1)
j eβδ̄i j)ṽ j

+

m∑
j=1

m∑
l=1

|di jl|
[
s(2)

j β
(2)
l eβδ̄i jl ṽl + s(2)

l β(2)
j eβδ̄i jl ṽ j

]
= Υ‖(φ, φ̃)‖νe−βk ×

|ρi|ũi +

m∑
j=1

|bi j|β
(1)
j + |ci j|β

(1)
j eβδ̄i j +

m∑
l=1

|di jl|s
(2)
l β(2)

j eβδ̄i jl

 ṽ j

+

m∑
j=1

m∑
l=1

|di jl|s
(2)
j β

(2)
l eβδ̄i jl ṽl


= Υ‖(φ, φ̃)‖νe−βk ×

|ρi|ũi +

m∑
j=1

|bi j|β
(1)
j + |ci j|β

(1)
j eβδ̄i j +

m∑
l=1

|di jl|s
(2)
l β(2)

j eβδ̄i jl

 ṽ j

+

m∑
j=1

m∑
l=1

|dil j|s
(2)
l β(2)

j eβδ̄il j ṽ j


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= Υ‖(φ, φ̃)‖νe−βk ×

|ρi|ũi +

m∑
j=1

|bi j|β
(1)
j + |ci j|β

(1)
j eβδ̄i j +

m∑
l=1

|di jl|s
(2)
l β(2)

j eβδ̄i jl

+

m∑
l=1

|dil j|s
(2)
l β(2)

j eβδ̄il j

 ṽ j


≤ Υ‖(φ, φ̃)‖νe−βk ×

|ρi|ũi +

m∑
j=1

[
|bi j|β

(1)
j + |ci j|β

(1)
j eβδ̄i j

+

m∑
l=1

s(2)
l

(
|di jl|eβδ̄i jl + |dil j|eβδ̄il j

)
β(2)

j

 ṽ j

 . (3.7)

Note that ϕi = |ρi|ũi. Based on the arbitrariness of i ∈ [1, n]Z, we can conclude that (3.7) is equivalent
to

|η(k + 1)| � Υ‖(φ, φ̃)‖νe−βk(ϕ + Ξβṽ).

By making use of (3.1) and (3.3), we obtain

|η(k + 1)| � Υ‖(φ, φ̃)‖νe−β(k+1)ũ = û(k + 1). (3.8)

Similarly, through a procedure similar to the one used in deriving (3.8), it is straightforward to that

|η̃(k + 1)| � Υ‖(φ, φ̃)‖νe−β(k+1)ṽ = v̂(k + 1).

Therefore, (3.5) is true.
Then, in combination with Eqs (3.3)–(3.5), we obtain

‖(η(t), η̃(t))‖ = (‖η(t)‖22 + ‖η̃(t)‖22)
1
2

≤ (‖û(t)‖22 + ‖v̂(t)‖22)
1
2

= Υe−βt‖(φ, φ̃)‖ν(‖ũ‖22 + ‖ṽ‖22)
1
2 , ∀t ∈ [0,∞)Z.

Let µ = Υ(‖ũ‖22 + ‖ṽ‖22)
1
2 . Then

‖(η(t), η̃(t))‖ ≤ µe−βt
∥∥∥(φ, φ̃)

∥∥∥
ν
, ∀t ∈ [0,∞)Z.

The arbitrariness of φ ∈ C([−ν, 0]Z,Rn) and φ̃ ∈ C([−ν, 0]Z,Rm) guarantees GES of the error
system (2.3), that is, the discrete-time high-order BAMNN (2.1) and (2.2) achieve GES via the
controllers in (2.5). �

4. Numerical examples

Next, the effectiveness of the results given in this paper will be illustrated through a specific
numerical example.
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Example 4.1. For n = 2,m = 2, consider the drive discrete-time high-order BAMNNs (2.1) and the
response discrete-time high-order BAMNNs (2.2) with the controllers in (2.5), and the parameters are
as below: a1 = 0.3, a2 = 0.4, â1 = 0.5, â2 = 0.6, b11 = −1.6, b12 = 0.1, b21 = −4.1, b22 = 3.2,
b̂11 = 1.1, b̂12 = 0.5, b̂21 = −0.1, b̂22 = −2.1, c11 = −1.4, c12 = 0.1, c21 = 0.2, c22 = −2.3, ĉ11 = −3,
ĉ12 = −2.5, ĉ21 = 0.3, ĉ22 = −1.2, d111 = 5, d112 = 1, d121 = 0, d122 = 5, d211 = 2, d212 = 0, d221 = 0,
d222 = 2, d̂111 = 4, d̂112 = 0, d̂121 = 0, d̂122 = 5, d̂211 = 1, d̂212 = 1, d̂221 = 0, d̂222 = 0, and

f1(s) = f2(s) = f̃1(s) = f̃2(s) = 0.04tanh(s),
g1(s) = g2(s) = g̃1(s) = g̃2(s) = 0.4tanh(s), s ∈ R,
σ ji(t) = p ji + q ji cos(tπ), δi j(t) = ri j + si j sin(tπ/2), i, j ∈ [1, 2]Z, t ∈ [0,∞)Z,

where r11 = r12 = r21 = r22 = 10, s11 = s12 = s21 = s22 = 10, p11 = p12 = p21 = p22 = 10,
q11 = q21 = q12 = q22 = 10, δ111 = δ112 = δ121 = δ122 = δ211 = δ212 = δ221 = δ222 = 3, σ111 = σ112 =

σ121 = σ122 = σ211 = σ212 = σ221 = σ222 = 3.

Clearly, σ̄11 = σ̄12 = σ̄21 = σ̄22 = δ̄11 = δ̄12 = δ̄21 = δ̄22 = 20. Furthermore, when β(1)
1 = β(1)

2 =

0.04, β̃(1)
1 = β̃(1)

2 = 0.04, β(2)
1 = β(2)

2 = 0.4, and β̃(2)
1 = β̃(2)

2 = 0.4, Assumptions 2.1 and 2.2 are satisfied.

By solving the inequalities (3.1) and (3.2) in Theorem 3.1, the following feasible solutions are
obtained:

ũ = [7.6343, 5.6956]T , ṽ = [11.0709, 3.1479]T ,

ϕ = [5.9 × 103, 4.6 × 103]T , ψ = [5.3 × 103, 3.7 × 103]T .

Consequently, the controller gains of the desired state feedback controllers are as follows:

ρ1 = 0.7709 × 10−3, ρ2 = 0.8025 × 10−3,

ρ̂1 = 0.5 × 10−3, ρ̂2 = 1.2 × 10−3.

It can be readily verified that the conditions of Theorem 3.1 in our paper are met. Consequently,
based on Theorem 3.1 in our paper, the drive system given by (2.1) and the response system given
by (2.2) are GES under the controllers (2.5). We choose the initial values of the state variables as
ζ(s) = [0.6428 −0.1106]T , ϑ(s) = [0.2309 0.5839]T , ζ̂(s) = [1.6873 0.9528]T and ϑ̂(s) = [−1.2949 −
0.3772]T , s ∈ [−20, 0]Z. We also define the external input I1 = I2 = 0, J1 = J2 = 0. The error curves of
drive–responses system η1(t), η2(t), η̃1(t) and η̃2(t) are shown in Figures 5 and 6, the curves of variables
ζ1(t), ζ2(t), ϑ1(t), ϑ2(t), ζ̂1(t), ζ̂2(t), ϑ̂1(t), ϑ̂2(t), are shown in Figures 1–4. It is readily observable that
the error states are rapidly converging to the equilibrium point of zero. Therefore, it can be concluded
that, in accordance with Theorem 3.1, the considered discrete-time high-order BAMNNs model (2.1)
can achieve GES with system (2.2).

AIMS Mathematics Volume 9, Issue 12, 33632–33648.



33642

0 10 20 30 40 50
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 1. Synchronization curves of ζ1(t) and ζ̂1(t).
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Figure 2. Synchronization curves of ζ2(t) and ζ̂2(t).
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Figure 3. Synchronization curves of ϑ1(t) and ϑ̂1(t).
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Figure 4. Synchronization curves of ϑ2(t) and ϑ̂2(t).
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Figure 5. The error curves of η1(t) and η̃1(t).
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Figure 6. The error curves of η2(t) and η̃2(t).
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5. Conclusions

This paper addresses the issue of GES for discrete-time high-order BAMNNs of multiple T-
VD. Utilizing the definition of GES, we initially derive delay-dependent GES criteria for the error
dynamical system. Subsequently, a controller gain is provided. Finally, we present illustrative
examples to demonstrate the applicability of the conclusions. Compared with the previous research
results, the proposed method has the following advantages:

(1) The method directly employs the definition of GES and avoids the construction of any Lyapunov-
Krasovskii function;

(2) The obtained sufficient conditions are in the form of linear scalar inequalities, which are easy to
solve;

(3) With a small modification, the proposed method is applicable to more general NNs models.

The stability of the error system considered in this paper is the stability in the Lyapunov sense.
What is mainly considered is the long-term behavior of the neural network, and it cannot be directly
applied to the research on the synchronization in finite time. Therefore, it is necessary to propose more
effective analysis and design methods.
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