Research article Special Issues

On the optimal second order decrease rate for nonlinear and symmetric control systems

  • Received: 12 August 2024 Revised: 14 September 2024 Accepted: 14 September 2024 Published: 29 September 2024
  • MSC : Primary 93B05; Secondary 35F21, 13P25, 34L15

  • When a control system has all its vector fields tangent to the level set of a given smooth function $ u $ at a point $ \hat x $, under appropriate assumptions that function can still have a negative rate of decrease with respect to the trajectories of the control system in an appropriate sense. In the case when the system is symmetric and $ u $ has a decrease rate of the second order, we characterise this fact and investigate the existence of a best possible rate in the class of piecewise constant controls. The problem turns out to be purely algebraic and depends on the eigenvalues of matrices constructed from a basis matrix whose elements are the second order Lie derivatives of $ u $ at $ \hat x $ with respect to the vector fields of the system.

    Citation: Mauro Costantini, Pierpaolo Soravia. On the optimal second order decrease rate for nonlinear and symmetric control systems[J]. AIMS Mathematics, 2024, 9(10): 28232-28255. doi: 10.3934/math.20241369

    Related Papers:

  • When a control system has all its vector fields tangent to the level set of a given smooth function $ u $ at a point $ \hat x $, under appropriate assumptions that function can still have a negative rate of decrease with respect to the trajectories of the control system in an appropriate sense. In the case when the system is symmetric and $ u $ has a decrease rate of the second order, we characterise this fact and investigate the existence of a best possible rate in the class of piecewise constant controls. The problem turns out to be purely algebraic and depends on the eigenvalues of matrices constructed from a basis matrix whose elements are the second order Lie derivatives of $ u $ at $ \hat x $ with respect to the vector fields of the system.



    加载中


    [1] Z. Artstein, Stabilization with relaxed controls, Nonlinear Anal., 7 (1983), 1163–1173. https://doi.org/10.1016/0362-546X(83)90049-4 doi: 10.1016/0362-546X(83)90049-4
    [2] M. Bardi, M. Falcone, An approximation scheme for the minimum time function, SIAM J. Control Optim., 28 (1990), 950–965. https://doi.org/10.1137/0328053 doi: 10.1137/0328053
    [3] M. Bardi, E. Feleqi, P. Soravia, Regularity of the minimum time and of viscosity solutions of degenerate eikonal equations via generalized Lie brackets, Set-Valued Var. Anal., 29 (2021), 83–108. https://doi.org/10.1007/s11228-020-00539-z doi: 10.1007/s11228-020-00539-z
    [4] R. M. Bianchini, G. Stefani, Local controllability for analytic families of vector fields, Rapporto No. 19, Istituto Matematico U. Dini, Firenze, Italy, 1981/82.
    [5] R. M. Bianchini, G. Stefani, Stati localmente controllabili, Rend. Sem. Mat. Univ. Pol. Torino, 42 (1984), 15–23.
    [6] R. M. Bianchini, G. Stefani, Time-optimal problem and time-optimal map, Rend. Sem. Mat. Univ. Pol. Torino, 48 (1990), 401–429.
    [7] W. L. Chow, Über systeme von linearen partiellen differentialgleichungen erster ordnung, Math. Ann., 117 (1940), 98–105. https://doi.org/10.1007/BF01450011 doi: 10.1007/BF01450011
    [8] F. H. Clarke, Y. S. Ledyaev, L. Rifford, R. J. Stern, Feedback stabilization and Lyapunov functions, SIAM J. Control Optim., 39 (2000), 25–48. https://doi.org/10.1137/S0363012999352297 doi: 10.1137/S0363012999352297
    [9] J. M. Coron, Control and nonlinearity, Mathematical Surveys and Monographs, Vol. 136, American Mathematical Society, 2007. https://doi.org/10.1090/surv/136
    [10] H. Frankowska, An open mapping principle for set-valued maps, J. Math. Anal. Appl., 127 (1987), 172–180. https://doi.org/10.1016/0022-247X(87)90149-1 doi: 10.1016/0022-247X(87)90149-1
    [11] M. Kawski, High-order small-time local controllability, In: H. J. Sussmann, Nonlinear controllability and optimal control, New York: Routledge, 133 (1990), 431–467.
    [12] M. Krastanov, M. Quincampoix, Local small time controllability and attainability of a set for nonlinear control system, ESAIM: Control Optim. Calc. Var., 6 (2001), 499–516. https://doi.org/10.1051/cocv:2001120 doi: 10.1051/cocv:2001120
    [13] M. Krastanov, A sufficient condition for small-time local controllability, SIAM J. Control Optim., 48 (2009), 2296–2322. https://doi.org/10.1137/070707117 doi: 10.1137/070707117
    [14] M. Krastanov, High-order variations and small-time local attainability, Control Cybern., 38 (2009), 1411–1427.
    [15] T. T. Le Thuy, A. Marigonda, Small-time local attainability for a class of control systems with state constraints, ESAIM: Control Optim. Calc. Var., 23 (2017), 1003–1021. https://doi.org/10.1051/cocv/2016022 doi: 10.1051/cocv/2016022
    [16] A. Lyapunov, Problème général de la stabilité du mouvement, Ann. Fac. Sci. Univ. Toulouse, 9 (1907), 203–474.
    [17] A. A. Liverovskii, A Hölder condition for Bellman's functions, Differ. Uravn., 13 (1977), 2180–2187.
    [18] A. Marigonda, Second order conditions for the controllability of nonlinear systems with drift, Commun. Pure Appl. Anal., 5 (2006), 861–885. https://doi.org/10.3934/cpaa.2006.5.861 doi: 10.3934/cpaa.2006.5.861
    [19] A. Marigonda, S. Rigo, Controllability of some nonlinear systems with drift via generalized curvature properties, SIAM J. Control Optim., 53 (2015), 434–474. https://doi.org/10.1137/130920691 doi: 10.1137/130920691
    [20] M. Motta, F. Rampazzo, Asymptotic controllability and Lyapunov-like functions determined by Lie brackets, SIAM J. Control Optim., 56 (2018), 1508–1534. https://doi.org/10.1137/16M1086947 doi: 10.1137/16M1086947
    [21] N. N. Petrov, Controllability of autonomous systems, Differ. Uravn., 4 (1968), 606–617.
    [22] N. N. Petrov, On the bellman function for the time-optimal process problem: PMM vol. 34, $n\overset{\circ}{ = }5$, 1970, pp. 820–826, J. Appl. Math. Mech., 34 (1970), 785–791. https://doi.org/10.1016/0021-8928(70)90060-2 doi: 10.1016/0021-8928(70)90060-2
    [23] P. Soravia, Hölder continuity of the minimum-time function for $C^1$-manifold targets, J. Optim. Theory Appl., 75 (1992), 401–421. https://doi.org/10.1007/BF00941476 doi: 10.1007/BF00941476
    [24] P. Soravia, Some results on second order controllability conditions, 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, 1468–1473. https://doi.org/10.1109/CDC40024.2019.9029843 doi: 10.1109/CDC40024.2019.9029843
    [25] P. Soravia, A degenerate elliptic equation for second order controllability of nonlinear systems, Minimax Theory Appl., 5 (2020), 413–437.
    [26] P. Soravia, The Aronsson equation, Lyapunov functions, and local Lipschitz regularity of the minimum time function, Abstr. Appl. Anal., 2019 (2019), 6417074. https://doi.org/10.1155/2019/6417074 doi: 10.1155/2019/6417074
    [27] P. Soravia, A Hamiltonian approach to small time local attainability of manifolds for nonlinear control systems, Appl. Math. Optim., 88 (2023), 1. https://doi.org/10.1007/s00245-023-09973-5 doi: 10.1007/s00245-023-09973-5
    [28] H. J. Sussmann, Lie brackets and local controllability: a sufficient condition for scalar-input systems, SIAM J. Control Optim., 21 (1983), 686–713. https://doi.org/10.1137/0321042 doi: 10.1137/0321042
    [29] H. J. Sussmann, A general theorem on local controllability, SIAM J. Control Optim., 25 (1987), 158–194. https://doi.org/10.1137/0325011 doi: 10.1137/0325011
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(90) PDF downloads(15) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog