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1. Introduction

In this paper, we consider a nonlinear and symmetric control system,{
ẋt = σ(xt)at =

∑m
i=1(ai)t σi(xt),

x0 = x ∈ Rn,
(1.1)

where σ : Rn → Mn,m(R) is continuous and matrix valued, the control function a· : R+ → B1 is
measurable, a = (ai)i=1,...,m, and B1 = {a ∈ Rm : |a| ≤ 1} is the control set. The columns σi of
σ = (σi)i=1,...,m are a family of smooth vector fields in Rn. We call xt a trajectory of the control system
(depending on the control and the initial condition). Given a smooth function u : Rn → R and a point
x̂ ∈ Rn such that ∇u(x̂) , 0 but ∇u σ(x̂) = 0, we are interested in the behaviour of the trajectories
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of (1.1) in the neighborhood of x̂ satisfying at their initial point u(x0) ≥ u(x̂), in particular the fact that
trajectories can nonetheless enter in small time the interior of the sublevel set

U = {x : u(x) ≤ u(x̂)}. (1.2)

This property is named “small time local attainability” (STLA) ofU at x̂ by the control system, and it
is more precisely stated by saying that the minimum time function to reachU is continuous (and null)
at x̂.

When we deal with a simple dynamical system

ẋt = f (xt), x0 = x,

the classical Lyapunov method, see e.g., Lyapunov [16], aims at finding a function u having at the origin
a strict minimum, with the additional property that u is strictly decreasing along the trajectory of the
system, in order to show that the trajectory reaches the origin (either in finite time or asymptotically).
The classical Lyapunov method requires that

H f u(x) := 〈 f (x),∇u(x)〉 < 0, x , 0

in a neighborhood of the origin. The operator H f : C1(Rn) → C(R) is called the Hamiltonian of the
system and H f u is also called the Lie derivative of u with respect to the vector field f . However, even
when H f u(x0) = 0, at some x0 , 0, one can still prove that after a short time t > 0, one has u(xt) < u(x0)
by using the second order Taylor expansion

u(xt) = u(x0) +
1
2

d2

dt2 u(xt)|t=0t2 + t2o(1)

provided
d2

dt2 u(xt)|t=0 = H f ◦ H f u(x0) =: H(2)
f u(x0) < 0.

The previous equation defines the second order Lie derivative of u at x0 and we name the operator
H(2)

f : C2(Rn) → C(R) a second order Hamiltonian, see e.g., [25, 27]. We may view the quantity
(1/2)H(2)

f u(x0) as a second order decrease rate of u at x0 along the trajectory of the system.
For control systems the situation is more varied. One can extend the Lyapunov idea to control

systems like (1.1), see e.g., Artstein [1] and Clarke et al. [8], even in much more general cases, by
imposing, in a suitable sense if u is nonsmooth,

H(x,∇u(x)) = |∇u σ(x)| = max
a∈B1
{−Hσ(x)au(x)} > 0, x , 0 (1.3)

in a neighborhood of the origin (u is a control Lyapunov function). If u is smooth at x, the negative
quantity

−H(x,∇u(x))

can still be seen as the optimal decrease rate of the trajectories of the control system at x, and the
control

ā =
t(∇u σ(x))
H(x,∇u(x))

∈ B1,
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where the maximum is attained in (1.3) as an optimal control in that sense. Control Lyapunov functions
will not be smooth in general but allowing the inequality (1.3) to be large, we may sometimes be able
to find better behaved functions, see e.g., Motta and Rampazzo [20], when we look for conditions also
of a different nature. When at some point x̂ ∈ Rn we have ∇u σ(x̂) = 0, i.e., all the vector fields of the
control system are tangent to the level set of u at x̂, it is well known that if there exists a Lie bracket
of the vector fields σi pointing inward the sublevel set in (1.2) at x̂, we can still reach the interior
of U in small time with the trajectories of the control system starting at x̂ or in its neighborhood,
although u is no longer strictly decreasing along the trajectories in general. The goal of this paper is
to determine, in this case, an optimal second order decrease rate for the trajectories of the system (1.1)
in some appropriate sense. We have not seen this optimality question treated before in the literature,
but we believe it is interesting in order to investigate the differences between local optimization and
global optimization when we want, for instance, to reach a target. We will restrict our investigation to
trajectories determined by piecewise constant control functions. Even if the system is nonlinear, the
problem will turn out to be purely algebraic for a symmetric system, and we will end up computing
the eigenvalues of a sequence of matrices and their asymptotic behaviour. Our method will mix some
classical tools of nonlinear control systems as the use of Lie algebra in the problem of small time
attainability, some newer Hamilton–Taylor expansions developed by one of the authors [24–27], and
linear algebra of matrices.

It is known that in order to have some negative second order decrease rate, it is necessary and
sufficient, see e.g., [3], that the system satisfies a second order attainability condition, namely in the
neighborhood of x̂ the minimum time function T to reachU satisfies an estimate of the form

T (x) ≤ C|x − x̂|1/2, (1.4)

where T (x) = inf{t ≥ 0 : xt ∈ U, a(·) ∈ L∞(0,+∞; B1)}. The function u we use in stating our problem
is generic, but it can well be, for instance, the smooth distance function d(x) = dist(x,T ) from a closed
set T ⊂ Rn either convex or with at least a C2 boundary, to give the problem a more metric significance.

In mathematical control theory, controllability to a point is well studied, has a long story, and has
a huge literature. Symmetric systems are studied for instance in Chow and Rashevski [7], where
the famous sufficient condition using the Lie algebra is derived. For general nonlinear systems
Petrov [21, 22] introduced the positive basis condition, and Liverowskii [17] extended that result
to second order sufficient and necessary conditions. For affine systems, some classical results are,
for instance, due to Sussmann [28, 29]. Frankowska [10] and Kawski [11] discussed higher order
conditions for affine systems at an equilibrium point. Other results can be found in Bianchini and
Stefani [4–6] and Krastanov [13] for dynamics on manifolds. A summary of the main classical
results for the point is contained in the chapter on controllability of control systems in the book
by Coron [9], where many additional references can be found. For attainability of sets, we recall
Bardi and Falcone [2] for necessary and sufficient first order conditions, and our paper with Bardi and
Feleqi [3] for necessary and sufficient second order conditions, see also [23]. For affine systems with
drift vanishing on the target, sufficient conditions with different generality can be found in Krastanov
and Quincampoix [12–14], Marigonda and coauthors [15, 18, 19].

As notations used in this paper, given a square matrix A, we denote its transposed as tA, and
respectively its symmetric part A∗ and its antisymmetric part Ae as

A∗ = (A + tA)/2, Ae = (A − tA)/2.
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We also indicate by Mn,m(R) the space of n×m matrices with elements in R, and also Mn(R) ≡ Mn,n(R).
We denote by I the identity matrix (of the appropriate dimension).

2. Preliminaries

In the following, we always assume that u : Rn → R is a C2 function, σ : Rn → Mn,m(RN) is C1,
x̂ ∈ Rn is given, and that ∇u σ(x̂) = 0. In this case a first order decay rate at x̂ for u relative to the
trajectories of the system (1.1) is not feasible. One therefore needs to look for higher order decay rates
that exploit the nonlinearity of the controlled vector field or that of the level set U. A very general
definition to express this is in a quantitative way is the following:

Definition 2.1. We say that a function u ∈ C2(Rn) has a second order decrease rate v < 0 for the
system (1.1) at x̂ if there are sequences (a[n](·))n≥1 of control functions and tn → 0+ such that if x[n](·)
are the corresponding trajectories in (1.1) with initial point x̂ then

u(x[n]tn) = u(x̂) + v t2
n + t2

no(1), as n→ +∞.

Sometimes in the literature one may find the terminology second order variation of u(xt) for v in
the definition.

Remark 2.2. It is important to stress the fact that in the previous definition we have a sequence of
trajectories and that we are checking each one at a specific time that will change with the parameter.
We are therefore building a fictitious discrete trajectory

(
x[n]tn

)
n along which we expect the function u

to decrease at a determined rate. Our following construction is more specific as the trajectory family
parameter is continuous and all trajectories in the family are constructed similarly and consistently.

There is a standard way in the literature where the idea of Definition 2.1 is implemented and applies
in the following way. Suppose that we fix a measurable control â(·) ∈ L∞([0, 1], B1). We define the
following family of control functions parametrized by t > 0 (as t → 0+)

a[t]s = as/t, s ∈ [0, t].

Computing the corresponding family of trajectories (x[t](·))t of (1.1) at the end time t, in order to check
Definition 2.1, we hope to find some second order rate v < 0 such that

u(xt) ≡ u(x[t]t) = u(x̂) + v t2 + t2o(1), as t → 0 + .

We will usually avoid showing explicitly the parameter of the family. In order to exploit the best
performance of the system relative to the function u, in this paper we will adopt the previous
construction, although we further limit ourselves to piecewise constant control functions in the
interval [0, 1] and compute the lowest possible decrease rate among them.

Example 2.3. In order to bridge our approach with the literature, the best known example of what we
just discussed is when for controls a1, a2 ∈ B1, we take a control function

as =


a1, s ∈ [0, 1/4[,
a2, s ∈ [1/4, 1/2[,
−a1, s ∈ [1/2, 3/4[,
−a2, s ∈ [3/4, 1],
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and consider the family of trajectories (x[t](·))t of (1.1) corresponding to the control functions a[t](·) ≡
a·/t with the same initial point x̂. It is then well known that

u(x[t]t) = u(x̂) +
1
16
〈[σa1, σa2](x̂),∇u(x̂)〉 t2 + t2o(1), as t → 0+, (2.1)

where [σa1, σa2] = D(σa2) σa1 − D(σa1) σa2 is the Lie bracket of the two vector fields. Therefore u
has a second order decrease rate 1

16〈[σa1, σa2](x̂),∇u(x̂)〉 when negative.

In order to make things more general, following one of the authors [24, 25, 27], we introduce the
matrix valued function

S : Rn → Mm(R), tS (x) = D(∇u σ)σ(x) =
(
Hσ j ◦ Hσiu(x)

)
i, j=1,...,m

,

which is the matrix of all second order Lie derivatives of u with respect to the vector fields (σi)i=1,...,m.

Remark 2.4. Notice that S (x) is not a symmetric matrix in general, as one easily gets that

2 S e(x) = S (x) − tS (x) =
(
〈[σi, σ j],∇u(x)〉

)
i, j=1,...,m

.

Example 2.5. Suppose that in R3,

σ =


1 0
0 1
0 0


and u(x, y, z) = z − x2 − y2. At the origin we have ∇u σ(0, 0, 0) = 0 and we compute

tS (0, 0, 0) = D(−2x,−2y) σ =

(
−2 0
0 −2

)
,

which is symmetric. Notice that in this case there is no sensible Lie bracket of the vector fields since
they are constant.

Example 2.6. Again, in R3, suppose that

σ(x, y, z) =


1 0
0 1
y −x


and u(x, y, z) = z, then at any point of the z-axis

tS (0, 0, z) = D((0, 0, 1) σ)σ =

(
0 1
−1 0

)
,

which is antisymmetric.

We will return to these examples to comment on the results in the next section. To see the role of
the matrix valued function S (x), notice that given two controls a1, a2 ∈ B1 and corresponding vector
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fields f (x) = σ(x)a1, g(x) = σ(x)a2, we can compute the second order Lie derivative of u with respect
to the vector fields f , g as

H f ◦ Hgu = 〈 f ,∇〈g,∇u〉〉 = 〈σa1,∇〈σa2,∇u〉〉 = 〈D(∇u σ)σ a1, a2〉 = 〈S a2, a1〉.

That is indeed a bilinear operator on the controls (a1, a2). Consider, for instance, a constant control
function at ≡ a, |a| ≤ 1 and 〈σ(x̂)a,∇u(x̂)〉 = 0, then the standard Taylor estimate gives

u(xt) = u(x̂) +
t2

2!
H(2)
σau(x̂) + t2o(1), as t → 0+,

where we used the notation H(2)
σa = Hσa ◦ Hσa. In particular, H(2)

σau(x̂) = 〈S (x̂)a, a〉 = 〈S ∗(x̂)a, a〉 and, if
negative, it is twice the second order decrease rate of u for the trajectory of the control system. Thus,
the minimum decrease rate among all constant controls |a| ≤ 1 is 1/2 the minimum eigenvalue of the
symmetric matrix S ∗(x̂).

As an example of a more general trajectory, consider the following family of control functions
parametrized by t > 0

a[t]s =

{
a1, if s ∈ [0, t/2[,
a2, if s ∈ [t/2, t],

(2.2)

then the trajectories corresponding to the control functions a[t](·), all starting at x̂ satisfy (see [25])

u(xt) ≡ u(x[t]t) = u(x̂) +
1
2!

( t
2

)2
(Hσa1 � Hσa2)

2u(x̂) + t2o(1), as t → 0+

where
(Hσa1 � Hσa2)

2u(x̂) := 〈S (x̂)a1, a1〉 + 〈S (x̂)a2, a2〉 + 2〈S (x̂)a2, a1〉

defines the square of the sum of two Hamiltonians, which is a helpful operator. Indeed, it has been
previously proved in [24] that (1.4) for the system (1.1) is equivalent to the following algebraic property
of S (x̂), see e.g., [3, 25], we can find a1, a2 ∈ B1 such that

(Hσa1 � Hσa2)
2u(x̂) < 0. (2.3)

Notice that the left hand side in (2.3) identifies a quadratic form in R2m as

(Hσa1 � Hσa2)
2u(x̂) = 〈K2(S (x̂))

(
a1

a2

)
,

(
a1

a2

)
〉, K2(S (x̂)) =

(
S ∗(x̂) S (x̂)
tS (x̂) S ∗(x̂)

)
.

Therefore, if (2.3) holds, u has a second order decrease rate at x̂ given by v = 1
8 (Hσa1 � Hσa2)

2u(x̂).

Remark 2.7. Note that, if f , g : Rn → Rn are vector fields, then (see [25])

(H f � Hg)2u = Tr(t( f + g) D2u ( f + g)) + 〈[ f , g],∇u〉.

Therefore (H f � Hg)2 is, as a differential operator, second order degenerate elliptic and has two parts:
the second order measures the curvature of u in the direction of the sum of the vector fields, and the
first order that compares the direction of the Lie bracket of the vector fields and the normal to the level
set of u.
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We can more generally consider piecewise constant control functions with an arbitrary number of
switches. Namely for any given t > 0, a family of k controls ai ∈ B1, i = 1, . . . , k and real numbers
αi ∈]0, 1],

∑k
i=1 αi = 1, we indicate ti = tαi and define the piecewise constant control function

a[t]s =


a1, if s ∈ [0, t1[,
a2, if s ∈ [t1, t1 + t2[,
. . .

ak, if s ∈ [t − tk, t].

(2.4)

From the system (1.1) with initial point x̂, we therefore obtain the corresponding family of trajectories
indexed by t, that we indicate as (x[t]s)s∈[0,t]. By the results of one of the authors, see [27] and also [17],
such a family of trajectories, satisfies the following Hamilton–Taylor expansion

u(xt) ≡ u(x[t]t) = u(x̂) +
t2

2!
(Hα1σa1 � · · · � Hαkσak)

2u(x̂) + t2o(1) as t → 0+, (2.5)

where for k ≥ 2 the coefficient v of the second order term above contains the square of the sum of the
k Hamiltonians which is defined as follows:

2! v = (Hα1σa1 � · · · � Hαkσak)
2u(x̂)

:=
(∑k

i=1 H(2)
αiσaiu(x̂) + 2

∑k
i< j=1 Hαiσai ◦ Hα jσa ju(x̂)

)
=

(∑k
i=1〈S (x̂)(αiai), (αiai)〉 + 2

∑k
i< j=1〈S (x̂)(α ja j), (αiai)〉

)
=

(∑k
i=1 α

2
i 〈S (x̂)ai, ai〉 + 2

∑k
i< j;i, j=1 αiα j〈S (x̂)a j, ai〉

)
.

Also, in this case, v is given by a quadratic form since

v =
1
2

Kk(S (x̂))


α1a1
...

αkak

 ·

α1a1
...

αkak

 , |a1|, . . . , |ak| ≤ 1,
k∑

i=1

αi = 1, (2.6)

where

Kk(S (x̂)) =


S ∗(x̂) S (x̂) · · · S (x̂)
tS (x̂) S ∗(x̂) S (x̂)

...

tS (x̂) tS (x̂) S ∗(x̂)
...

tS (x̂) · · · tS (x̂) S ∗(x̂)

 ∈ Mkm(R),

as it is easily seen by an induction argument. When negative, v is the decrease rate of u with
respect to the family of control functions in (2.4). We have therefore defined a sequence of matrices
(Kk(S (x̂)))k where the k−th element appears in the Hamilton–Taylor expansion of trajectories of the
system constructed as above and having k − 1 switches.

The main goal of the paper is now to compute by induction on k the (nonpositive, according to
the properties of the matrix S (x̂)) minimum of each quadratic form (2.6) in order to obtain the lowest
possible decrease rate of the trajectories of the system (1.1) among all piecewise constant controls
and the indicated construction. We also want to understand if the minimum is reached for a specific
number of switches among the vector fields or in the limit. We could not find this type of analysis
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in the literature, but we think it could also help identify time optimal trajectories for the system for
appropriate choices of the function u.

We now anticipate the main result of the paper. Its proof can be found in the next section at the end
of Subsection 3.2.

Theorem 2.8. Let u ∈ C2(Rn) and σ ∈ C1(Rn; Mn,m(R)). Assume that at x̂ ∈ Rn we have ∇u σ(x̂) = 0
and let S (x̂) =

(
Hσi ◦ Hσ ju(x̂)

)
i, j=1,...,r

. Then u has at x̂ a (negative) second order decrease rate for the
control system (1.1) if and only if S (x̂) is not symmetric and positive semidefinite. In this case, the
highest rate of decrease among all piecewise constant controls is

1
2

inf
k≥1

λ(k)
1

k

(
= inf

k,ai,αi
{
1
2

(Hα1σa1 � · · · � Hαkσak)
2u(x̂)}

)
, (2.7)

where λ(k)
1 is the minimal eigenvalue of Kk(S (x̂)).

The right hand side of Eq (2.7) shows how the highest decrease rate is computed from a fully
nonlinear elliptic operator that plays the role of the Hamilton-Jacobi-Bellman one in the case of higher
order conditions.

Notice that (2.6) also contains information about the controls and times that we can use in the system
to achieve the decay rates appearing in Theorem 2.8. In particular, if w is an eigenvector of Kk(tS (x̂))
with eigenvalue λ(k)

1 and |w| = 1/
√

k, then

v =
1
2
λ(k)

1

k
.

This is the case when w = (αiai)i=1,...,k with |ai| = 1, αi = 1/k for all i = 1, . . . , k; see Propositions 3.1
and 3.3 on how controls ai are choosen and the proof of the theorem.

As main examples of the applicability of Theorem 2.8, where calculations can be performed
explicitly, we can consider in the next section, three cases when S (x̂) is antisymmetric, symmetric or
the sum of an antisymmetric and a scalar matrix. This is done below in Theorems 3.14, 3.17, and 3.20,
also with examples of control systems where this happens. Furthermore, in addition to showing the
calculation of the optimal decreasing rate in practice, we also show how to easily construct the controls
that give the optimal rate λk/(2k) above for a given integer k. This is done in the Propositions 3.3
and 3.1.

3. Results

Let A be in Mr(R). Let us pose K1(A) = A∗, and

Kn(A) =


A∗ A · · · A
tA A∗ A

...

tA tA A∗
...

tA · · · tA A∗

 =


A

Kn−1(A)
...

A
tA · · · tA A∗

 ∈ Mnr(R)

if n ≥ 2. Let v = t (v1, . . . , vn) ∈ Rnr.

We now study the properties of the eigenvalues and the eigenvectors of Kn(A). We notice that when
we will discuss Theorem 2.8 we will choose A = tS (x̂).
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3.1. Properties of the eigenvectors of Kn(A)

Let λ be nonzero real. Since Ae is alternating, ±λ is not eigenvalue of Ae hence, both λI + Ae and
λI − Ae are invertible. We define Γλ = (λI + Ae)−1(λI − Ae). Note that in case Ae is non singular, then
we may drop the assumption λ , 0: in this case Γ0 = (Ae)−1(−Ae) = −I. We always have det Γλ = 1, if
λ , 0, see also Remark 3.5.

Proposition 3.1. Let v = t(v1, . . . , vn) ∈ Rnr be an eigenvector of Kn(A) with vi ∈ R
r for i = 1, . . . , n so

that
Kn(A)v = λv

for some λ ∈ R. Then the following holds true:
(i) Ae(vi + vi+1) = λ(vi − vi+1), i = 1, . . . , n − 1. Assume λ , 0 if Ae is singular.
(ii) Γλ is an isometry of Rr.
(iii) vi+1 = Γλvi, i = 1, . . . , n − 1.
(iv) |vi| = |v j| for each i, j.

Proof. Let us prove (i). Consider the i-th and i + 1-th equations of the linear system Kn(A)v = λv in
block form:

tAv1 + tAv2 + · · · + A∗vi + Avi+1 + · · · + Avn = λvi,
tAv1 + tAv2 + · · · + tAvi + A∗vi+1 + · · · + Avn = λvi+1.

Subtracting gives
Ae(vi + vi+1) = (A∗ − tA)vi + (A − A∗)vi+1 = λ(vi − vi+1). (3.1)

(ii) Since Γλ = (λI + Ae)−1(λI − Ae) and Ae is alternating, we get 〈Γλv,w〉 = 〈v,Γ−1
λ w〉 for each v,

w ∈ Rr, so Γλ is an isometry. Unless Ae is non singular and λ = 0 (in which case Γ0 = −I), −1 is not an
eigenvalue of Γλ.
(iii) From Ae(vi + vi+1) = λ(vi − vi+1) it follows (λI + Ae)vi+1 = (λI − Ae)vi, hence

vi+1 = (λI + Ae)−1(λI − Ae)vi = Γλvi.

Finally (iv) follows from (ii) and (iii). �

Remark 3.2. We note that from vi+1 = Γλvi it follows that vk = Γk−1
λ v1 and then

v =


v1

v2
...

vn

 =


v1

Γλv1
...

Γn−1
λ v1


is the form on an eigenvector of Kn(A). Moreover

1
2
〈Kn(A)v, v〉 =

n
2
|v1|

2λ.

The case A symmetric will be specifically treated in the next section. Otherwise the following
necessary condition for eigenvalues holds.
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Proposition 3.3. Suppose that the antisymmetric part Ae of A is not singular. Then, λ is an eigenvalue
of Kn(A) if and only if

det(AΓn
λ −

tA) = 0.

Moreover
v1 ∈ ker (AΓn

λ −
tA)(I − Γλ)−1,

if v = t(v1, . . . , vn) ∈ Rnr is an eigenvector of Kn(A).

Proof. We begin by observing that since Ae is not singular, 1 is not an eigenvalue of Γλ, and so I − Γλ
is invertible.

Let v = t(v1, . . . , vn) ∈ Rnr, λ ∈ R. By the previous proposition, the linear system Kn(A)v = λv is
equivalent to

A∗v1 + Av2 + · · · + Avn = λv1,

vi+1 = Γλvi, i = 1, . . . , n − 1.

Therefore v , 0 is an eigenvector of Kn(A) relative to λ if and only if

A∗v1 + AΓλv1 + · · · + AΓn−1
λ v1 = λv1,

A(v1 + Γλv1 + · · · + Γn−1
λ v1) = (λI + Ae)v1,

A(I − Γn
λ)(I − Γλ)−1v1 = (λI + Ae)v1 = (λI + Ae)(I − Γλ)(I − Γλ)−1v1.

Setting w = (I − Γλ)−1v1, we get

A(I − Γn
λ)w = (λI + Ae)w − (λI − Ae)w = 2Aew,

tAw − AΓn
λw = 0.

(3.2)

Since w , 0, λ is an eigenvalue of Kn(A) if and only if det(AΓn
λ −

tA) = 0. �

Remark 3.4. Observe that if Ae is non singular, the determinant condition of Proposition 3.3 allows us
to detect when λ = 0 is an eigenvalue of Kn(A). This happens if and only if det(A(−1)n − tA) = 0. If n
is even, λ = 0 is not eigenvalue of Kn(A), since we are assuming det Ae , 0. If instead n is odd, then
λ = 0 is an eigenvalue of Kn(A) if and only if det A∗ = 0. In this case

ker Kn(A) = {v = (v1,−v1, . . . , v1,−v1, v1) | A∗v1 = 0} � ker A∗ , {0}.

In general, one can easily show that for n even, λ = 0 is an eigenvalue of Kn(A) if and only if Ae is
singular, while for n odd, λ = 0 is an eigenvalue of Kn(A) either if Ae is non singular and A∗ is singular,
or if Ae is singular.

Remark 3.5. Let a , 0 and

B =

(
0 a
−a 0

)
∈ M2(R).

Then

Γλ = (λI + B)−1(λI − B) =

λ2−a2

λ2+a2 −
2aλ
λ2+a2

2aλ
λ2+a2

λ2−a2

λ2+a2

 =

(
cosϑ − sinϑ
sinϑ cosϑ

)
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is the rotation of angle ϑ, where λ
a = cot(ϑ/2), 0 < ϑ < 2π. Observe that posing (e1, e2) the canonical

basis of R2, we have B(e1 + ie2) = ia(e1 + ie2), B(e1 − ie2) = −ia(e1 − ie2). In addition, if λ , 0,

(I + Γλ)−1(I − Γλ) =
1
λ

B.

Let A ∈ Mr(R) be antisymmetric. Then there exists P orthogonal such that P−1AP = R,

R =


B1 0 · · · 0

0 B2 0
...

0 0 Bs
...

0 · · · 0 0k

 ∈ Mr(R) (3.3)

with

B j =

(
0 a j

−a j 0

)
∈ M2(R) (3.4)

a j > 0 for j = 1, . . . , s, and we can assume a1 ≥ a2 ≥ · · · ≥ as > 0. Then the eigenvalues of A are
0 with multiplicity k, k ≥ 0 and ia1,−ia1, . . . , ias,−ias. Let (v1,w1, v2,w2, . . . , vs,ws, z1, . . . , zk) be the
orthonormal basis of Rr given by the columns of P. If λ ∈ R, λ , 0, then

(λI + B j)−1(λI − B j) =

(
cosϑ j − sinϑ j

sinϑ j cosϑ j

)
is the rotation of angle ϑ j in the plane 〈vi,wi〉, where a j = λ tan(ϑ j/2), −π < ϑ j < π, ϑ j , 0. Then

(λI + R)−1(λI − R) =



cosϑ1 − sinϑ1

sinϑ1 cosϑ1
0 · · · 0

0
cosϑ2 − sinϑ2

sinϑ2 cosϑ2
0

...

0 0
cosϑs − sinϑs

sinϑs cosϑs

...

0 · · · 0 1k


the product of s rotations (this orthogonal matrix does not have -1 as its eigenvalue), in particular

det(λI + R)−1(λI − R) = 1.

The vectors v j, w j are also constructed from eigenvectors relative to ia j and −ia j, while the zk

constitutes an orthonormal basis of the core of R. Note that every isometry X of Rr of this form
can be achieved from an appropriate antisymmetrix matrix R: R = (I + X)−1(I − X). �

We can characterize the cases when the matrix K2(A) has a negative eigenvalue.

Lemma 3.6. Let A be in Mr(R). Then K2(A) is positive semidefinite if and only if A is symmetric and
positive semidefinite.
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Proof. If A is symmetric and positive semidefinite, then

〈K2(A)
(
v1

v2

)
,

(
v1

v2

)
〉 = 〈A(v1 + v2), (v1 + v2)〉 (3.5)

and therefore K2(A) is positive semidefinite as well. We next prove the converse. Notice that choosing
v1 = −v2 ∈ R

r also shows that K2(A) always has 0 as an eigenvalue.
Suppose first that A is symmetric. By (3.5), if K2(A) is positive semidefinite and we choose v1 =

v2 ∈ R
r, then we get 0 ≤ 4〈Av1, v1〉, for all v1 ∈ R

r and A is also positive semidefinite.
Suppose now that A is not symmetric and we show that K2(A) must have a negative eigenvalue. In

particular, A is not the null matrix. Consider thus the positive semidefinite matrix tAA; it will have at
least one positive eigenvalue λ2, with λ > 0, with corresponding unit eigenvector v2. Thus,

tAAv2 = λ2v2

and then
|Av2|

2 = 〈Av2, Av2〉 = 〈tAAv2, v2〉 = λ2〈v2, v2〉 = λ2,

so that λ = |Av2| > 0. Just notice that if v̄ is an eigenvector of tAA with null eigenvalue, then the same
argument shows that Av̄ = 0. Let

v1 = −
Av2

λ
,

so that |v1| = 1. We can now obtain
tAv1 = −λv2, 〈Av2, v1〉 = −λ, 〈Av1, v1〉 = −λ〈v1, v2〉 = 〈Av2, v2〉.

Thus we conclude that

〈K2(A)
(

v1

v2

)
,

(
v1

v2

)
〉 = −2λ(1 + 〈v1, v2〉)

and we reach our conclusion provided v1 , −v2. If instead v1 = −v2, it then follows

Av1 = λv1,
tAv1 = λv1.

If this happens for all eigenvectors of tAA with positive eigenvalues, and we consider an orthonormal
basis of eigenvectors of tAA, then this is also a family of eigenvectors for A which can then be
diagonalised by an orthogonal matrix, and it is thus symmetric, which was supposed not to be the
case. �

Corollary 3.7. Let A be in Mr(R). Then for all n ≥ 2, Kn(A) is positive semidefinite if and only if A is
symmetric and positive semidefinite.

Proof. If n = 2, then the result is the content of Lemma 3.6. Let us assume n ≥ 3. If Kn(A) is positive
semidefinite, then K2(A) is positive semidefinite, hence A is symmetric positive semidefinite. Assume
A symmetric positive semidefinite. Then

〈Kn(A)


v1

v2
...

vn

 ,

v1

v2
...

vn

〉 = 〈A(v1 + · · · + vn), (v1 + · · · + vn)〉 (3.6)

hence Kn(A) is positive semidefinite. �

AIMS Mathematics Volume 9, Issue 10, 28232–28255.



28244

Corollary 3.8. Let A be in Mr(R). Then, for all n ≥ 2, Kn(A) is never positive definite.

Proof. If Kn(A) is positive semidefinite, then A is symmetric. Hence Ae = 0 is singular, and therefore
ker Kn(A) is not zero. �

3.2. The minimum of the quadratic form

Given A ∈ Mr(R) and n ≥ 1, we consider the quadratic form Qn(A) : Rnr → R,

Qn(A) : v 7→ 〈Kn(A)v, v〉 = tv Kn(A) v, v ∈ Rnr. (3.7)

We want to compute the minimum of Qn(A) on different compact subsets D ⊂ Rnr.

Remark 3.9. It is well known that on Dn,2 = {v ∈ Rnr : |v| = 1}, then minD Qn(A) is the minimal
eigenvalue λ(n)

1 of Kn(A). If instead D = B1, then minB1 Qn(A) = 0 if Kn(A) is positive semidefinite,
while again minB1 Qn(A) = λ(n)

1 if Kn(A) is not positive semidefinite.

Remark 3.10. Suppose that we have a sequence of domains Dn ⊂ R
nr, n ≥ 2, with the property that if

v = (v1, . . . , vn−1) ∈ Dn−1 then v̂ = (v1, . . . , vn−1, 0) ∈ Dn so that we can identify Dn−1 with a subset of
Dn. Since 〈Kn−1(A)v, v〉 = 〈Kn(A)v̂, v̂〉, it is then clear that minDn Qn(A) ≤ minDn−1 Qn−1(A). Therefore
the sequence (minD Qn(A))n is nonincreasing and infn minDn Qn(A) is either attained at some n̄ if the
sequence is constant for n ≥ n̄, or it is attained asymptotically as n→ +∞.

From now on we will suppose that A is not symmetric and positive semidefinite so that λ(n)
1 , the

minimal eigenvalue of Kn(A), is negative for n ≥ 2, as we proved in the previous section. We turn to a
more interesting case for us, which is, n ≥ 1,

Dn,∞ = {v = (v1, . . . , vn) ∈ Rnr : max
i
|vi| = 1}.

The property of Remark 3.10 holds true for the sequence (Dn,∞)n. Notice that if v ∈ Dn,∞ then |v| ≤
√

n maxi |vi| =
√

n and that the equality is reached only if |vi| = 1, for all i = 1, . . . , n.

Lemma 3.11. If A is not symmetric and positive semidefinite, then

min
Dn,∞

Qn(A) = nλ(n)
1 .

Proof. If n = 1, the thesis is obvious since D1,2 = D1,∞. For n ≥ 2 and v ∈ Dn,∞, we also have that
v/|v| ∈ Dn,2. Therefore, as λ(n)

1 < 0,

Qn(A)(v) = |v|2Qn(A)
(

v
|v|

)
≥ |v|2λ(n)

1 ≥ nλ(n)
1

and by Proposition 3.1(i), the equalities are actually reached for v = (vi)i being an eigenvector for λ(n)
1

with |vi| = 1 for all i = 1, . . . , n. Thus minDn,∞ Qn(A) = nλ(n)
1 . �

We now consider

Dn,1 = {v = t(v1, . . . , vn) ∈ Rnr :
n∑

i=1

|vi| = 1}.

Remark 3.10 applies to this case as well, and D1,1 = D1,2.
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Proposition 3.12. Suppose that A is not symmetric and positive semidefinite, so that Kn(A) has a
negative eigenvalue, for n ≥ 2. Then

min
Dn,1

Qn(A) = min

λ(1)
1 ,

λ(2)
1

2
. . . ,

λ(n)
1

n

,
where λ(i)

1 is the minimal eigenvalue of Ki(A).

Proof. We proceed by an induction argument on n. If n = 1 then K1(A) = A∗ and D1,1 = ∂B1 = D1,2.
Therefore, minD1,1 Q1(A) = λ(1)

1 is the minimal eigenvalue of A∗.
For n ≥ 2, we use the Lagrange multipliers necessary condition. Let v = (v1, . . . , vn) ∈ Dn,1 be a

minimum point of Qn(A). If some vi = 0, then we can reduce the problem to that of the minimum
of Qm(A) with m < n (and v is at some corner of the domain), which we can assume is solved by the
inductive hypothesis. So we assume vi , 0 for all i in order to get necessary conditions genuinely for
the given n. The Lagrangian is

L(v, λ) =
1
2
〈Kn(A)v, v〉 − λ(

n∑
i=1

|vi| − 1),

so that the Lagrange necessary system is as follows:

Kn(A)


v1
...

vn

 = λ


v1/|v1|
...

vn/|vn|

 , v ∈ Dn,1. (3.8)

Notice that then

Qn(A)(v) = 〈Kn(A)v, v〉 = λ(
n∑

i=1

|vi|) = λ,

therefore, the Lagrange multiplier gives the possible minimum. If λ = 0, then

Qn(A)(v) = 〈Kn(A)v, v〉 = 0

which is the minimum only if Kn(A) is positive semidefinite, i.e., if A is symmetric and positive
semidefinite by Corollary 3.7, which is not the case by assumption. Hence λ , 0. Let us define
v̂i = vi

|vi |
, then vi = γiv̂i, with γi = |vi| > 0, γ1 + · · · + γn = 1. We will prove that all γi are equal (to 1/n),

or that we can find anyway

v′ =


v′1
...

v′n


with the v′i all having the same norm equal to 1/n, such that (3.8) is also satisfied by v′ with the same
λ. Consider the i-th and (i + 1)-th equations in (3.8), i = 1, . . . , n − 1,

tAv1 + tAv2 + · · · + A∗vi + Avi+1 + · · · + Avn = λv̂i,
tAv1 + tAv2 + · · · + tAvi + A∗vi+1 + · · · + Avn = λv̂i+1.
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Subtracting this gives
Ae(vi + vi+1) = λ(v̂i − v̂i+1).

But now Ae is alternating, so

〈vi + vi+1, λ(v̂i − v̂i+1)〉 = 〈vi + vi+1, Ae(vi + vi+1)〉 = 0

from which it follows
〈vi + vi+1, v̂i − v̂i+1〉 = 0

being λ , 0. Recall that vi = γiv̂i, vi+1 = γi+1v̂i+1, so

(γi − γi+1)(1 − 〈v̂i, v̂i+1〉) = 0.

We have two possible cases. Suppose first v̂i , v̂i+1. Then γi = γi+1 (and thus |vi| = |vi+1| = γi).
Suppose next v̂i = v̂i+1. The equation

Ae(vi + vi+1) = λ(v̂i − v̂i+1)

becomes (γi + γi+1)Aev̂i = 0 and therefore Aev̂i = 0. Rewrite for convenience

Kn(A) = Kn(A∗ + Ae) =


A∗ A∗ + Ae · · · A∗ + Ae

A∗ − Ae A∗ A∗ + Ae ...

A∗ − Ae A∗ − Ae A∗
...

A∗ − Ae · · · A∗ − Ae A∗

 ∈ Mnr(R).

It is possible that some other v̂i+2, v̂i+3, . . . , v̂ j is also equal to v̂i. We then consider the string

v̂i = v̂i+1 = v̂i+2 = v̂i+3 = . . . = v̂r

where 1 ≤ i < r ≤ n. Let us start supposing either i ≥ 2 or r ≤ n − 1, and therefore either v̂i−1 , v̂i or
v̂r , v̂r+1. Thus either γi−1 = γi or γr = γr+1 by the discussion above. Recall that vs = γsv̂s = γsv̂i and
hence Aevs = 0 for i ≤ s ≤ r. The j-th equation in (3.8) results in

A∗(v1 + · · · + vn) + Ae(v j+1 + · · · + vn) − Ae(v1 + · · · + v j−1) = λv̂ j.

Let δ1, . . . , δn in R, positive, with γi + · · · + γr = δi + · · · + δr and δ j = γ j if j < i or j > r. We
consider the vector

v′ =


v′1
...

v′n

 ∈ Mn(Rr)

where we put δsv̂s = v′s for 1 ≤ s ≤ n, respectively. Then

v1 + · · · + vn = v′1 + · · · + v′n

and
A∗(v1 + · · · + vn) = A∗(v′1 + · · · + v′n).
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But also if j < n
Ae(v j+1 + · · · + vn) = Ae(v′j+1 + · · · + v′n)

and if j > 1
Ae(v1 + · · · + v j−1) = Ae(v′1 + · · · + v′j−1),

since at places s where we varied the coefficient, we have Aevs = 0. We therefore have

Kn(A∗ + Ae)


v′1
...

v′n

 = λ


v1/|v1|
...

vn/|vn|

 = λ


v′1/|v

′
1|

...

v′n/|v
′
n|

 ,
〈Kn(A∗ + Ae)v′, v′〉 = 〈λ


v̂′1
...

v̂′n

 ,

δ1v̂′1
...

δnv̂′n

〉 = λ(δ1 + · · · + δn) = λ.

Since we can modify at will the δs, s = i or s = r, this contradicts one of the following two

γi−1 = γi, γr = γr+1,

unless we are really in the extreme case, i.e., i = 1, r = n, that is, all v̂i are equal.
Let us then put ourselves in this case. We then have

vi = γiv̂1, Aevi = 0

for every i = 1, . . . , n, and again, as above, we can modify all vi by choosing δs = 1/n for every
1 ≤ s ≤ n. Then

v′ =
1
n


v̂1
...

v̂1

 ∈ Rrn,

and this choice satisfied

Kn(A)v′ = nλv′, Qn(A)(v′) = 〈Kn(A)v′, v′〉 = λ

therefore, v′ is an eigenvector of Kn(A) with nλ as an eigenvalue and Qn(A)(v′) = λ. Thus the best
choice to reach a minimum of Qn(A) is for the v′ eigenvector of Kn(A) with λ(n)

1 = nλ as eigenvalue,

and finally Qn(A)(v′) =
λ(n)

1
n as we intended.

Then, by the induction assumption, the minimum is

min
Dn,1

Qn(A) = min{min
Dn,1

Qn−1(A),
λ(n)

1

n
} = min{

λ(1)
1

1
, . . . ,

λ(n)
1

n
} (3.9)

as we wanted. �

We are now in the position to prove Theorem 2.8.
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Proof of Theorem 2.8. As we saw in Section 2, (2.6) is the expression of the second order coefficient
for the family of trajectories corresponding to the family of controls defined in (2.4), where n is the
number of controls being used and α1, . . . , αn are the percentage of the time being spent on each control
respectively. We will use the above with A = tS (x̂). We need to compute for each n the minimum of
the quadratic form (1/2)Qn(A) on the following domain

D̂n = {v = t(α1v1, . . . , αnvn) ∈ Rnr : |vi| ≤ 1, αi ≥ 0,
∑

i

αi = 1}.

We will show that minD̂n
Qn(A) = minDn,1 Qn(A) reaching our thesis. This fact will be a consequence of

Proposition 3.12 and the proof that

D̂n = {v = t(v1, . . . , vn) ∈ Rnr :
n∑

i=1

|vi| ≤ 1}.

Indeed, on one hand, for v = t(α1v1, . . . , αnvn) ∈ D̂n we have that

n∑
i=1

|αivi| ≤

n∑
i=1

αi = 1. (3.10)

On the other hand let v = t(v1, . . . , vn) and
∑n

i=1 |vi| ≤ 1. We may clearly suppose v , 0 and thus
S =

∑n
i=1 |vi| > 0. Then we put

αi =
|vi|

S
, v̂i =

{ vi
αi
, if vi , 0,

vi, if vi = 0.

Therefore
∑n

i=1 αi = 1, αiv̂i = vi, and either v̂i = 0 or |v̂i| = S ≤ 1 so that v ∈ D̂n.
Also notice that by choosing t(v1, . . . , vn) an eigenvector of Kn(A) with eigenvalue λ(n)

1 , |vi| = 1 and
αi = 1/n for all i, so that t(α1v1, . . . , αnvn) ∈ D̂n, we obtain

Qn(A)(v) =
1
n2 Kn(A)


v1
...

vn

 ·

v1
...

vn

 =
1
n2λ

(n)
1

n∑
i=1

|vi|
2 =

λ(n)
1

n
.

�

3.3. Explicit examples for special classes of the matrix A and applications to control systems

The first example deals with the case when A is antisymmetric.

Proposition 3.13. Let A ∈ Mr(R) be antisymmetric, A , 0. Then the extremal eigenvalues of Kn(A),
n ≥ 2, are

±α1 cot
(
π

2n

)
where α1 is the biggest modulus of the eigenvalues of A.
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Proof. Let A be antisymmetric, n ≥ 2. Then

Kn(A) =


0 A · · · A

−A 0 A
...

−A −A 0
...

−A · · · −A 0

 ∈ Mnr(R).

We will compute all its eigenvalues. A convenient way to denote Kn(A) is obtained by introducing the
antisymmetric matrix

Tn =


0 1 · · · 1

−1 0 1
...

−1 −1 0
...

−1 · · · −1 0

 ∈ Mn(R).

Then
Kn(A) = Tn ⊗ A.

If λ1, . . . , λn are the eigenvalues of Tn and µ1, . . . µr are those of A, then the eigenvalues of Tn ⊗ A are
all the products λiµ j, i = 1, . . . , n, j = 1, . . . , r.

Since A is antisymmetric, there exists P orthogonal such that P−1AP = R, as in (3.3) and (3.4).
Then the eigenvalues of A are 0 with multiplicity k, k ≥ 0 and iα1,−iα1, . . . , iαs,−iαs, with αi > 0 for
i = 1, . . . , s, and we can assume α1 ≥ α2 ≥ · · · ≥ αs > 0.

We come to the matrix Tn. Let v = t(x1, . . . , xn) ∈ Rn be an eigenvector of Tn, so that Tnv = λv for
some λ ∈ iR. Consider the i-th and (i + 1)-th equations of Tnv = λv:

−x1 − x2 + · · · − xi−1 + xi+1 + · · · + xn = λxi,

−x1 − x2 + · · · − xi + xi+2 + · · · + xn = λxi+1.

Subtracting gives
xi + xi+1 = λ(xi − xi+1). (3.11)

Hence xi+1 = γλxi, where γλ = λ−1
λ+1 . It follows that xk = γk−1

λ x1 and then

v =


x1

x2
...

xn

 =


x1

γλx1
...

γn−1
λ x1


is the form on an eigenvector of Tn. Therefore, v , 0 is an eigenvector of Tn relative to λ if and only if

x2 + · · · + xn = λx1,

γλx1 + · · · + γn−1
λ x1 = λx1,

x1 + γλx1 + · · · + γn−1
λ x1 = x1 + λx1,

(1 + γλ + · · · + γn−1
λ )x1 = (1 + λ)x1.
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Note that γλ , 1, hence v , 0 is an eigenvector of Tn relative to λ if and only if

(γλ − 1)(1 + γλ + · · · + γn−1
λ )x1 = (γλ − 1)(1 + λ)x1,

(γn
λ − 1)x1 = −2x1,

(γn
λ + 1)x1 = 0.

It follows that λ is an eigenvalue of Tn if and only if γn
λ = −1, i.e., γλ = eiϑ, ϑ = π

n +k 2π
n , k = 0, . . . , n−1.

From γλ = λ−1
λ+1 , we get

λ =
1 + γλ
1 − γλ

=
1 + eiϑ

1 − eiϑ = i cot
ϑ

2
.

The eigenvalues of Tn are thus

λ = i cot
(
π

2n
+ k

π

n

)
, k = 0, . . . , n − 1.

The maximum is cot
(
π
2n

)
, the minimum is

cot
(
π

2n
+

(n − 1)π
n

)
= − cot

(
π

2n

)
.

Recalling that the biggest modulus of the eigenvalues of A is α1, α1 > 0, the maximum eigenvalue
of Kn(A) is then

α1 cot
(
π

2n

)
(∼ α1

2
π

n, as n→ +∞)

and the minimum is
−α1 cot

(
π

2n

)
.

�

The consequence for the control problem is as follows: This case happens when the level set of the
function u is flat.

Theorem 3.14. Let A = tS (x̂) ∈ Mr(R) be antisymmetric, A , 0. Then the highest decrease rate of u at
x̂ for the control system is −α1/π, where α1 is the biggest modulus of the eigenvalues of A. Moreover
as n→ +∞ the error for using the best rate with n controls is of the order |λ(n)

1 /n + α1/π| ∼ π/(12n2).

Proof. Since the sequence

an = −
1

2n
cot

(
π

2n

)
is strictly decreasing; by Theorem 2.8, we just need to compute limn→+∞ anα1 = −α1/π. The highest
rate is attained in the limit as n→ +∞. �

Example 3.15. An instance of a control system where an antisymmetric matrix appears is the well-
known system of the generators of the Heisenberg group. In this case (1.1) is in dimension 3 and has
the following data

σ(x, y, z) =


1 0
0 1
y −x

 .
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We choose u(x, y, z) = z and want to find a decrease rate of u with respect to the system at a point
(0, 0, z). Notice that ∇u σ(0, 0, z) = (0, 0) so we can expect a second order decrease rate. As in
Section 2, we define

A ≡ tS (0, 0, z) = D(∇u σ)σ(0, 0, z) =

(
0 1
−1 0

)
,

whose eigenvalues are ±i. Of course, K1(A) = A∗ = 0, so we look at

K2(A) =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 .
This matrix has λ(2)

1 = −1 and as an eigenvector v = (0, 1, 1, 0) (the space of eigenvectors has
dimension 2). Therefore if in an interval [0, t] with t small we use controls (0, 1) and (1, 0) in
consecutive subintervals of equal length we can expect a second order rate

1
2
λ(2)

2

2
= −

1
4
.

This is already significant since from the classical formula (2.1), the best rate from a Lie bracket is
easily computed to be −1/8. Therefore a Lie bracket never gives the best rate of decrease.

We could do better by exploiting Kn(A) with higher n and a control function with n − 1 switches
instead, because the expected optimal second order rate is −1/π as we proved above. Indeed computing
K3(A) we find the minimal eigenvalue −

√
3, which corresponds to a rate −1/(2

√
3), with an eigenvector

for instance (−1/2,
√

3/2, 1/2,
√

3/2, 1, 0), which gives us the three controls to use in order to achieve
that rate for sufficiently small time.

Next we consider the case when A ∈ Mr(R) is symmetric.

Proposition 3.16. Let A ∈ Mr(R) be symmetric, A , 0. Then 0 is always an eigenvalue of Kn(A) for
n ≥ 2, the maximum eigenvalue of Kn(A) is max{0, nα1} and the minimum is min{0, nαr}, where α1, αr

are the maximal and minimal eigenvalues of A, respectively.

Proof. Since A is symmetric,

Kn(A) =


A A · · · A

A A A
...

A A A
...

A · · · A A

 ∈ Mnr(R).

In this case, to denote Kn(A), we consider the symmetric matrix

Rn =


1 1 · · · 1

1 1 1
...

1 1 1
...

1 · · · 1 1

 ∈ Mn(R).
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Then
Kn(A) = Rn ⊗ A.

If λ1, . . . , λn are the eigenvalues of Rn and µ1, . . . µr are those of A, then the eigenvalues of Rn ⊗ A are
all the products λiµ j, i = 1, . . . , n, j = 1, . . . , r.

Let α1, . . . , αr be the eigenvalues of A, with α1 ≥ α2 ≥ · · · ≥ αr. The eigenvalues of Rn are 0, with
multiplicity n−1, and n. Therefore the maximum eigenvalue of Kn(A) is max{0, nα1} and the minimum
is min{0, nαr}. �

The consequence of the previous proposition on the control system (1.1) is the following: This case
happens when the optimal decrease rate is due to the curvature of the level set of u.

Theorem 3.17. Let A = tS (x̂) ∈ Mr(R) be symmetric. If A is not positive semidefinite, then u at x̂ has
a (negative) decrease rate for the control system; the highest decrease rate is (1/2)αr, where αr is the
minimal eigenvalue of A.

Proof. The sequence min{0, nαr}/2n = αr/2 is constant since αr < 0 by the assumption. �

Example 3.18. The case of a symmetric matrix for the control system comes from Example 2.5, where
we found

A = tS (0, 0, 0) =

(
−2 0
0 −2

)
.

Then the optimal second order rate among piecewise constant controls is −1, and it is constant on the
number of switches. Any control will lead to the optimal rate in this case.

Another special case that we can explicitly deal with, is when A = sI + Ae, Ae is antisymmetric. We
omit the details.

Proposition 3.19. Let A be such that A∗ = sI is scalar, s , 0, and Ae , 0. Let α1 be the biggest
modulus of the eigenvalues of Ae, θ ∈ (0, π/2) be such that cot θ = |s|

α1
. Then the extremal eigenvalues

of Kn(A), n ≥ 2 are

λmax = α1 cot
(
θ

n

)
> ns, λmin = α1 cot

(
θ

n
−
π

n

)
< 0, if s > 0,

λmax = −α1 cot
(
θ

n
−
π

n

)
> 0, λmin = −α1 cot

(
θ

n

)
< ns, if s < 0.

When we apply the previous proposition to control systems, if s < 0 then the curvature of the level
set helps u to decrease, while the opposite happens if s > 0.

Theorem 3.20. Let A = tS (x̂) ∈ Mr(R) be such that A∗ = sI is scalar, s , 0, and Ae , 0. Let α1 be
the biggest modulus of the eigenvalues of Ae, θ ∈ (0, π/2) be such that cot θ = |s|

α1
. Then the highest

decrease rate of u at x̂ for the control system is

α1

2(θ − π)
< 0, if s > 0,

−
α1

2θ
< s/2, if s < 0.
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Example 3.21. In R3 we consider the control system where

σ(x, y, z) =


1 0
0 1
y −x


and u(x, y, z) = 2z − x2 − y2. Here we can compute at the points of the z−axis ∇u σ(0, 0, z) = (0, 0),

A = tS (0, 0, z) =

(
−2 2
−2 −2

)
= −2I +

(
0 2
−2 0

)
.

Then α1 = 2, s = −2, θ = π
4 . We can also compute 1

2λ
(1)
1 = −1 and

λ(n)
1

2n
=
−2 cot

(
π
4n

)
2n

= −
cot

(
π
4n

)
n

,

which is negative and decreasing and whose limit is −4/π < −1. For n = 2 we have λ(2)
1 /4 =

− cot (π/8)/2 which is smaller in modulus but close to −4/π.

4. Conclusions

We considered the problem of optimising the second-order decay rate of a function at a point with
respect to the trajectories of a symmetric control system. We defined the second-order decrease rate by
fixing any piecewise constant control function in a reference interval. We have demonstrated a formula
for the minimum rate of decrease as the infimum of the rates when we allow at most k − 1 switches
in the control function. The k controls used are given by eigenvectors (of appropriate norm) of block
matrices constructed recursively from the matrix of the second order Lie derivatives of the function.
We have provided a way to explicitly calculate the corresponding optimal control functions through
linear algebra methods. We performed explicit full calculations in three cases.
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