In this short note, we presented a number of alternative explicit necessary and sufficient conditions for diagonal stability along with a new proof of a well-known result in this regard.
Citation: Ali Algefary, Jianhong Xu. A note on explicit conditions for diagonal stability[J]. AIMS Mathematics, 2024, 9(9): 25253-25260. doi: 10.3934/math.20241232
In this short note, we presented a number of alternative explicit necessary and sufficient conditions for diagonal stability along with a new proof of a well-known result in this regard.
[1] | D. Hershkowitz, Recent directions in matrix stability, Linear Algebra Appl., 171 (1992), 161–186. https://doi.org/10.1016/0024-3795(92)90257-B doi: 10.1016/0024-3795(92)90257-B |
[2] | O. Kushel, Unifying matrix stability concepts with a view to applications, SIAM Review, 61 (2019), 643–729. https://doi.org/10.1137/18M119241X doi: 10.1137/18M119241X |
[3] | S. Mey, Control Techniques for Complex Networks, Cambridge: Cambridge University Press, 2008. https://doi.org/10.1017/CBO9780511804410 |
[4] | J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge: Cambridge University Press, 1998. https://doi.org/10.1017/CBO9781139173179 |
[5] | E. Kaszkurewicz, A. Bhaya, Matrix Diagonal Stability in Systems and Computation, Berlin: Springer Science and Business Media, 2012. https://doi.org/10.1007/978-1-4612-1346-8 |
[6] | G. Barker, P. Berman, R. Plemmons, Positive diagonal solutions to the Lyapunov equations, Linear Multil. Algebra, 5 (1978), 249–256. https://doi.org/10.1080/03081087808817203 doi: 10.1080/03081087808817203 |
[7] | J. Kraaijevanger, A characterization of Lyapunov diagonal stability using Hadamard products, Linear Algebra Appl., 151 (1991), 245–254. https://doi.org/10.1016/0024-3795(91)90366-5 doi: 10.1016/0024-3795(91)90366-5 |
[8] | G. Cross, Three types of matrix stability, Linear Algebra Appl., 20 (1978), 253–263. https://doi.org/10.1016/0024-3795(78)90021-6 doi: 10.1016/0024-3795(78)90021-6 |
[9] | R. Redheffer, Volterra multipliers Ⅱ, SIAM J. Algebr. Dis. Meth., 6 (1985), 592–611. https://doi.org/10.1137/0606059 doi: 10.1137/0606059 |
[10] | M. Gumus, J. Xu, On common diagonal Lyapunov solutions, Linear Algebra Appl., 507 (2016), 32–50. https://doi.org/10.1016/j.laa.2016.05.032 doi: 10.1016/j.laa.2016.05.032 |
[11] | R. Shorten, N. Kumpati, On a theorem of Redheffer concerning diagonal stability, Linear Algebra Appl., 431 (2009), 2317–2329. https://doi.org/10.1016/j.laa.2009.02.035 doi: 10.1016/j.laa.2009.02.035 |
[12] | A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, New York: Society for Industrial and Applied Mathematics, 1994. https://doi.org/10.1137/1.9781611971262 |
[13] | F. Zhang, The Schur Complement and its Applications, Berlin: Springer Science and Business Media, 2006. https://doi.org/10.1007/b105056 |
[14] | N. Oleng, K. Narendra, On the existence of diagonal solutions to the Lyapunov equation for a third order system, In: Proceedings of the 2003 American Control Conference, 4 (2003), 2761–2766. https://doi.org/10.1109/ACC.2003.1243497 |