Theory article

Chaotic performance and circuitry implement of piecewise logistic-like mapping

  • Received: 10 November 2024 Revised: 18 December 2024 Accepted: 03 January 2025 Published: 14 January 2025
  • Discrete chaotic systems are now a meaningful research area due to their intricate dynamical characteristics. This paper introduces a novel piecewise logistic-like mapping chaotic system and rigorously establishes its Devaney chaoticity through mathematical proofs. Experimental findings demonstrate that, compared to the traditional logistic mapping, the logistic-like mapping exhibits more complex dynamic behaviors, such as bifurcation diagram, Lyapunov exponents, permutation entropy, sensitivity, and distribution of function sequences. Furthermore, in order to implement the suggested new chaotic system, a simulation circuit is designed, and a PSIM simulation model is established to validate feasibility of the simulation circuit.

    Citation: Caiwen Chen, Tianxiu Lu, Ping Gao. Chaotic performance and circuitry implement of piecewise logistic-like mapping[J]. Electronic Research Archive, 2025, 33(1): 102-120. doi: 10.3934/era.2025006

    Related Papers:

  • Discrete chaotic systems are now a meaningful research area due to their intricate dynamical characteristics. This paper introduces a novel piecewise logistic-like mapping chaotic system and rigorously establishes its Devaney chaoticity through mathematical proofs. Experimental findings demonstrate that, compared to the traditional logistic mapping, the logistic-like mapping exhibits more complex dynamic behaviors, such as bifurcation diagram, Lyapunov exponents, permutation entropy, sensitivity, and distribution of function sequences. Furthermore, in order to implement the suggested new chaotic system, a simulation circuit is designed, and a PSIM simulation model is established to validate feasibility of the simulation circuit.



    加载中


    [1] R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459–467. https://doi.org/10.1038/261459a0 doi: 10.1038/261459a0
    [2] T. Buchner, J. J. Zebrowski, Logistic map with a delayed feedback: Stability of a discrete time-delay control of chaos, Phys. Rev. E, 61 (2000), 016210. https://doi.org/10.1103/PhysRevE.63.016210 doi: 10.1103/PhysRevE.63.016210
    [3] C. J. Tian, G. Chen, Stability for delayed generalized 2D discrete logistic systems, Adv. Differ. Equations, 4 (2004), 1–12. https://doi.org/10.1155/S1687183904308101 doi: 10.1155/S1687183904308101
    [4] M. Hénon, A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 50 (1976), 69–77. https://doi.org/10.1007/BF01608556 doi: 10.1007/BF01608556
    [5] J. C. Sprott, High-dimensional dynamics in the delayed Hénon map, Electron. J. Theor. Phys., 3 (2006), 19–35.
    [6] G. C. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2015), 1697–1703. https://doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3
    [7] Y. Wang, Z. L. Liu, J. B. Ma, H. He, A pseudorandom number generator based on piecewise logistic map, Nonlinear Dyn., 83 (2016), 2373–2391. https://doi.org/10.1007/s11071-015-2488-0 doi: 10.1007/s11071-015-2488-0
    [8] R. Rak, Route to chaos in generalized logistic map, Acta Phys. Pol. A, 127 (2015), 113–117. https://doi.org/10.12693/APhysPolA.127.A-113 doi: 10.12693/APhysPolA.127.A-113
    [9] W. S. Sayed, A. G. Radwan, H. A. H. Fahmy, Design of positive, negative, and alternating sign generalized logistic maps, Discrete Dyn. Nat. Soc., 2015 (2015), 586783. https://doi.org/10.1155/2015/586783 doi: 10.1155/2015/586783
    [10] G. C. Wu, D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dyn., 75 (2014), 283–287. https://doi.org/10.1007/s11071-013-1065-7 doi: 10.1007/s11071-013-1065-7
    [11] E. D. Leonel, E. D. Leonel, The Logistic-Like Map, in Scaling Laws in Dynamical Systems, Nonlinear Physical Science, Springer, Singapore, 2021. https://doi.org/10.1007/978-981-16-3544-1_4
    [12] N. K. Pareek, V. Patidar, K. K. Sud, Image encryption using chaotic logistic map, Image Vision Comput., 24 (2006), 926–934. https://doi.org/10.1016/j.imavis.2006.02.021 doi: 10.1016/j.imavis.2006.02.021
    [13] Y. Q. Luo, J. Yu, W. R. Lai, L. Liu, A novel chaotic image encryption algorithm based on improved baker map and logistic map, Multimedia Tools Appl., 78 (2019), 22023–22043. https://doi.org/10.1007/s11042-019-7453-3 doi: 10.1007/s11042-019-7453-3
    [14] Y. Wang, Z. Q. Zhang, G. D. Wang, D. Liu, A pseudorandom number generator based on a 4D piecewise logistic map with coupled parameters, Int. J. Bifurcation Chaos, 29 (2019), 1950124. https://doi.org/10.1142/S0218127419501244 doi: 10.1142/S0218127419501244
    [15] X. Y. Wang, X. Chen, M. C. Zhao, A new two-dimensional sine-coupled-logistic map and its application in image encryption, Multimedia Tools Appl., 82 (2023), 35719–35755. https://doi.org/10.1007/s11042-023-14674-w doi: 10.1007/s11042-023-14674-w
    [16] A. Kiani-B, K. Fallahi, N. Pariz, H. Leung, A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 863–879. https://doi.org/10.1016/j.cnsns.2007.11.011 doi: 10.1016/j.cnsns.2007.11.011
    [17] M. Halimi, K. Kemih, M. Ghanes, Circuit simulation of an analog secure communication based on synchronized chaotic Chua's system, Appl. Math. Inf. Sci., 8 (2014), 1509. https://doi.org/10.12785/amis/080404 doi: 10.12785/amis/080404
    [18] R. L. Filali, M. Benrejeb, P. Borne, On observer-based secure communication design using discrete-time hyperchaotic systems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1424–1432. https://doi.org/10.1016/j.cnsns.2013.09.005 doi: 10.1016/j.cnsns.2013.09.005
    [19] M. Zapateiro, Y. Vidal, L. Acho, A secure communication scheme based on chaotic Duffing oscillators and frequency estimation for the transmission of binary-coded messages, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 991-1003. https://doi.org/10.1016/j.cnsns.2013.07.029 doi: 10.1016/j.cnsns.2013.07.029
    [20] C. X. Pan, Q. H. Hong, X. P. Wang, A novel memristive chaotic neuron circuit and its application in chaotic neural networks for associative memory, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 40 (2020), 521–532. https://doi.org/10.1109/TCAD.2020.3002568 doi: 10.1109/TCAD.2020.3002568
    [21] A. V. Tutueva, D. Pesterev, A. Karimov, D. Butusov, V. Ostrovskii, Adaptive Chirikov map for pseudo-random number generation in chaos-based stream encryption, in 2019 25th Conference of Open Innovations Association (FRUCT), (2019), 333–338. https://doi.org/10.23919/FRUCT48121.2019.8981516
    [22] M. Alawida, A. Samsudin, J. S. Teh, Enhanced digital chaotic maps based on bit reversal with applications in random bit generators, Inf. Sci., 512 (2020), 1155–1169. https://doi.org/10.1016/j.ins.2019.10.055 doi: 10.1016/j.ins.2019.10.055
    [23] A. V. Tutueva, L. Moysis, V. G. Rybin, E. E. Kopets, C. Volos, D. N. Butusov, Fast synchronization of symmetric H¨¦non maps using adaptive symmetry control, Chaos, Solitons Fractals, 155 (2022), 111732. https://doi.org/10.1016/j.chaos.2021.111732 doi: 10.1016/j.chaos.2021.111732
    [24] L. Acho, A discrete-time chaotic oscillator based on the logistic map: A secure communication scheme and a simple experiment using Arduino, J. Franklin Inst., 352 (2015), 3113–3121. https://doi.org/10.1016/j.jfranklin.2015.03.028 doi: 10.1016/j.jfranklin.2015.03.028
    [25] R. Devaney, An Introduction to Chaotic Dynamical Systems, CRC press, 1989. https://doi.org/10.4324/9780429502309
    [26] G. Liu, T. X. Lu, X. F. Yang, W. Anwar, Further discussion about transitivity and mixing of continuous maps on compact metric spaces, J. Math. Phys., 61 (2020), 112701. https://doi.org/10.1063/5.0023553 doi: 10.1063/5.0023553
    [27] Y. Lin, C. H. Wang, H. Z. He, L. L. Zhou, A novel four-wing non-equilibrium chaotic system and its circuit implementation, Pramana, 86 (2016), 801–807. https://doi.org/10.1007/s12043-015-1118-1 doi: 10.1007/s12043-015-1118-1
    [28] K. H. Sun, S. B. He, Y. He, L. Z. Yin, Complexity analysis of chaotic pseudo-random sequences based on spectral entropy algorithm, Acta. Phys., 62 (2013), 010501. https://doi.org/10.7498/aps.62.010501 doi: 10.7498/aps.62.010501
    [29] C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure for time series, Phys. Rev. Lett., 88 (2002), 174102. https://doi.org/10.1103/PhysRevLett.88.174102 doi: 10.1103/PhysRevLett.88.174102
    [30] W. Y. Dai, X. L. Xu, X. M. Song, G. Li, Audio encryption algorithm based on chen memristor chaotic system, Symmetry, 14 (2021), 17. https://doi.org/10.3390/sym14010017 doi: 10.3390/sym14010017
    [31] X. L. Xu, G. D. Li, W. Y. Dai, X. M. Song, Multi-direction chain and grid chaotic system based on Julia fractal, Fractals, 29 (2021), 2150245. https://doi.org/10.1142/S0218348X21502455 doi: 10.1142/S0218348X21502455
    [32] J. L. Fan, X. F. Zhang, Piecewise logistic chaotic map and its performance analysis, ACTA Electronica Sinica, 37 (2009), 720–725, in Chinese. https://doi.org/10.3321/j.issn:0372-2112.2009.04.009 doi: 10.3321/j.issn:0372-2112.2009.04.009
    [33] G. D. Li, X. L. Xu, H. Y. Zhong, A image encryption algorithm based on coexisting multi-attractors in a spherical chaotic system, Multimedia Tools Appl., 81 (2022), 32005–32031. https://doi.org/10.1007/s11042-022-12853-9 doi: 10.1007/s11042-022-12853-9
    [34] T. X. Zhang, H. T. Xing, X. L. Xu, Z. Wang, Y. Zhao, Chaos-based coverage path planning framework for mobile robots and its digital signal processing implementation, Phys. Scr., 99 (2024), 125293. https://doi.org/10.1088/1402-4896/ad8f6e doi: 10.1088/1402-4896/ad8f6e
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(239) PDF downloads(21) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog