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Abstract: Discrete chaotic systems are now a meaningful research area due to their intricate dy-
namical characteristics. This paper introduces a novel piecewise logistic-like mapping chaotic system
and rigorously establishes its Devaney chaoticity through mathematical proofs. Experimental findings
demonstrate that, compared to the traditional logistic mapping, the logistic-like mapping exhibits more
complex dynamic behaviors, such as bifurcation diagram, Lyapunov exponents, permutation entropy,
sensitivity, and distribution of function sequences. Furthermore, in order to implement the suggested
new chaotic system, a simulation circuit is designed, and a PSIM simulation model is established to
validate feasibility of the simulation circuit.
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1. Introduction

In 1976, May introduced several chaotic mappings based on simple mathematical models [1].
Among these, the logistic mappings (LMS ) are notable examples. The logistic mappings are a sim-
ple discrete-time dynamic system characterized by its straightforward expression, yet it exhibits a rich
array of dynamic behaviors. It has garnered widespread attention in communication systems, pseudo-
random sequence generation, neural networks, switching systems, and cryptography. For instance,
Buchner et al. [2] proposed a logistic mapping model with delayed feedback. So far, on the basis of
one-dimensional logistic mapping, the system of high-dimensional logistic mapping has also attracted
wide attention. Tian et al. [3] presented a two-dimensional logistic mapping. Henon et al. [4] pro-
posed a new discrete chaotic system capable of producing curved shapes. Sprott et al. [5] proposed
a high-dimensional logistic mapping. Furthermore, Wu et al. [6] proposed a logistic mapping model
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with fractional delayed feedback. Wang et al. [7] proposed a piecewise logistic mapping and studied
its chaotic properties. Rak et al. [8] introduced a generalized logistic mapping. Sayed et al. [9] studied
a collection of four generalized logistic mappings, in which the conventional logistic mapping is a par-
ticular instance. Wu et al. [10] introduced a discrete fractional-order logistic mapping in the context
of the left Caputo discrete delta calculus. Leonel et al. [11] discussed the dynamical properties of a
logistic-like mapping.

Due to the rich dynamic behavior of logistic mappings and logistic-like mappings, there are many
applications of them. For example, Pareek et al. [12] proposed a new approach to image encryption
based on 80-bit external key and two chaotic logisitc mappings. Luo et al. [13] proposed an image
encryption algorithm based on double chaotic systems, that is, using two-dimensional Baker chaos
graphs to control the system parameters and state variables of logistic chaos graphs. Based on the
improved chaotic mapping, a new image encryption algorithm is proposed to improve the security of
image encryption. Wang et al. [14] presented a piecewise logistic mapping in four dimensions to the
design of a pseudorandom number generator, which is conducive to improving operational efficiency.
Wang et al. [15] proposed a new two-dimensional sinusoidal coupled logistic mapping (2D-SCLM),
which exhibits superior pseudo-random properties, unpredictability, and a larger chaotic range.

In addition, the chaotic behavior of chaotic systems has important implications for circuit design
and optimization, and its unpredictability and sensitivity to initial conditions can be used to enhance
circuit functionality in nonlinear systems, offering potential innovations for a variety of electronics
applications. The discrete chaotic system is especially suitable for the realization of digital circuits.
And, the circuit implementation of chaotic systems has been applied in numerous engineering devel-
opments. One of the major applications of chaotic circuits is in the formation of various chaotic secure
communication circuits. [16–19] and its application in neural networks [20]. Therefore, the circuit
implementation of chaotic mapping is necessary.

In recent years, many new chaotic mappings have been proposed based on traditional chaotic map-
pings, specifically designed for practical applications, thus expanding the traditional chaotic theory.
For example, Tutueva et al. [21] proposed a new method to increase the period length by changing
the symmetry coefficients of the adaptive Chirikov mapping, and demonstrated the effectiveness of the
proposed method, which can be applied to cryptographic applications and the design of secure com-
munication systems. Alawida et al. [22] introduces a bit reversal approach to enhance digital chaotic
mappings by improving their chaoticity, complexity, and statistical properties, demonstrating its ef-
fectiveness in a pseudorandom bit generator with strong randomness, uniform distribution, and high
key sensitivity. Tutueva et al. [23] achieved the synchronization of the adaptive Hémon mapping by
controlling the symmetry coefficients, and applied this method to a communication system based on
chaos system switching parameter modulation.

Despite the extensive research and broad applications of the logistic mapping, there remain some
limitations, particularly regarding its chaotic characteristics, such as sensitivity to initial conditions,
bifurcation behavior, and the range of chaotic states. These constraints hinder its potential in high-
performance applications, such as encryption algorithm design, control theory, and pseudorandom
number generation. Although previous studies have proposed various modifications to the logistic
mapping, such as incorporating fractional-order terms, delayed feedback, and extending the system to
higher dimensions, these models either fail to prove their chaotic nature through formal mathematical
definitions or focus on specific applications.
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The innovation of the piece lies in the introduction of a new mapping form, the piecewise logistic-
like mapping (PLLM), which overcomes the limitations of related research on logistic mappings and
enhances chaotic characteristics. Most importantly, it rigorously proves that PLLM satisfies the math-
ematical definition of Devaney chaos. This makes PLLM particularly suitable for applications that re-
quire high unpredictability and secure data generation. Furthermore, the simulation of PLLM through
circuit design enables its practical application in secure communication circuits.

The arrangement of this article is as follows. In Section 2, a new piecewise logistic-like model
is proposed, and its Devaney chaoticity is proved. In Section 3, the basic dynamic properties of the
PLLM are studied theoretically and numerically. In Section 4, the PLLM is implemented by analog
circuit. Finally, in Section 5, the conclusions and outlook are presented.

2. Piecewise logistic-like mapping

May introduces LMS , defined as
xn+1 = µxn(1 − xn), (2.1)

where µ ∈ (0, 4) and the initial value x ∈ (0, 1). Acho et al. [24] presented a one-dimensional logistic-
like mapping (LLM) as follow:

xn+1 = −µsgn(xn)(1 − xn), (2.2)

where sgn( ) denotes the signum function and µ ∈ (1, 1.4].
By improving Eq (2.2), a new definition of PLLM is proposed as follow:

xn+1 =

µ(xn −
1
4 )sgn(xn −

1
4 ), 0 ≤ xn <

1
2 ;

µ(xn −
3
4 )sgn(xn −

3
4 ), 1

2 ≤ xn ≤ 1,
(2.3)

where µ ∈ (0, 4], the initial value x ∈ (0, 1), and sgn( ) represents the signum function. In this section,
the proof of chaos for this PLLM is proved based on the Devaney definition reviewed below.

Definition 1. (Devaney chaos) ([25]) Let (X, d) be a metric space. A function f : X → X is called
chaotic in the sense of Devaney if it adheres to the three conditions listed below.

(D1) f is topological transitive. That is, there exists a x∗ ∈ X such that Orb f (x∗) = X.
(D2) The periodic points of the function f are dense in the space X, where a point x is defined as

periodic if there exists a positive integer k for which f k(x) = x.
(D3) f is sensitive to initial conditions (briefly sensitive). That is, there exists a δ > 0, for any point

x ∈ X, and for a neighborhood U of x, one can find a point y ∈ U such that d( f k(x), f k(y)) > δ
for some k.

For convenience, when µ = 4, Eq (2.3) is rewritten as function (2.4) below.

f (x) =


1 − 4x, 0 ≤ x ≤ 1

4 ;
4x − 1, 1

4 < x < 2
4 ;

3 − 4x, 2
4 ≤ x < 3

4 ;
4x − 3, 3

4 ≤ x ≤ 1.

(2.4)
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Lemma 1. The rewritten PLLM (2.4) has the following characteristics in binary. For any x ∈ [0, 1],
represented as a binary pure decimal x = 0.a1a2a3 · · · am · · · , where ai ∈ {0, 1},

1) If a2 = 0, then f (x) = 0.a3a4 · · · am · · · ;
2) If a2 = 1, then f (x) = 0.a3a4 · · · am · · · ,

where

am = 1 − am =

0, am = 1
1, am = 0

(∀m ∈ N).

Proof. Since x = 0.a1a2a3 · · · am · · · is binary notation, then the decimalism of x is a1
2 +

a2
22 +

a3
23 + · · · +

am
2m + · · · =

∑∞
m=1

am
2m , and according to (2.4), there are four cases:

(i) If x ∈ [0, 1
4 ), then a1 = 0, a2 = 0. So, x is expressed as a series: x = a3

23 +
a4
24 + · · ·+

am
2m + · · · . Thus,

f (x) = 1 − 4x = 1 − 4(
a3

23 +
a4

24 + · · · +
am

2m + · · · ) = 1 − (
a3

2
+

a4

22 + · · · +
am

2m−2 + · · · )

=
1 − a3

2
+

1 − a4

22 + · · · +
1 − am

2m−2 = 0.a3a4 · · · am · · · .

(ii) If x ∈ [ 1
4 ,

2
4 ), then a1 = 0, a2 = 1. That is, x is expressed as a series: x = 1

22 +
a3
23 +

a4
24 +· · ·+

am
2m +· · · .

So,

f (x) = 4x − 1 = 4(
1
22 +

a3

23 +
a4

24 + · · · +
am

2m + · · · ) − 1 =
a3

2
+

a4

22 + · · · +
am

2m−2 + · · ·

= 0.a3a4 · · · am · · · .

(iii) If x ∈ [ 2
4 ,

3
4 ), then a1 = 1, a2 = 0, i.e., x is expressed as a series: x = 1

2 +
a3
23 +

a4
24 + · · · +

am
2m + · · · .

So,

f (x) = 3 − 4x = 3 − 4(
1
2
+

a3

23 +
a4

24 + · · · +
an

2n + · · · ) = 1 − (
a3

2
+

a4

22 + · · · +
am

2m−2 + · · · )

= 0.a3a4 · · · am · · · .

(iv) If x ∈ [ 3
4 , 1], then a1 = 1, a2 = 1. So, x is expressed as a series: x = 1

2+
1
22 +

a3
23 +

a4
24 + · · ·+

am
2m + · · · .

Thus,

f (x) = 4x − 3 = 4(
1
2
+

1
22 +

a4

23 +
a4

24 + · · · +
am

2m + · · · ) − 3 =
a3

2
+

a4

22 + · · · +
am

2m + · · ·

= 0.a3a4 · · · am · · · .
By (i) and (ii), if a2 = 0, then f (x) = 0.a3a4 · · · am. By (ii) and (iv), if a2 = 1, then f (x) =

0.a3a4 · · · am · · · . This completes the proof of Lemma 1. □

Lemma 2. Let σ be the Bernouli shift mapping. For the mapping f (x), and any n ∈ N, f n= f · σ2(n−1),
where σ0 is the identity mapping.

Proof. It can be obtained by mathematical induction.
If n = 1, then f · σ2(1−1) = f 1. That is, f n = f · σ2(n−1) is true.
If n = 2, for any x ∈ [0.1], let the binary representation of x be x = 0.a1a2 · · · am · · · , where

ai ∈ {0, 1}. Then,

f · σ2(x) = f (0.a3a4 · · · am · · · ) =

0.a5a6 · · · am · · · , a4 = 0;
0.a5a6 · · · am · · · , a4 = 1.

(2.5)

Since

f (x) = f (0.a1a2a3 · · · am · · · ) =

0.a3a4 · · · am · · · , a2 = 0;
0.a3a4 · · · am · · · , a2 = 1,
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then

f 2(x) =


0.a5a6 · · · am · · · , a2 = 0, a4 = 0;
0.a5a6 · · · am · · · , a2 = 0, a4 = 1;
0.a5a6 · · · am · · · , a2 = 1, a4 = 0;
0.a5a6 · · · am · · · , a2 = 1, a4 = 1,

i.e.,

f 2(x) =

0.a5a6 · · · am · · · , a4 = 0;
0.a5a6 · · · am · · · , a4 = 1.

(2.6)

According to (2.5) and (2.6), f 2 = f · σ2.
Hypothesis f n−1= f · σ2(n−2) is true. The following proves f n= f · σ2(n−1).
In fact,

f · σ2(n−1) = [ f · σ2(n−2)] · σ2 = f n−1 · σ2 = f n−2( f · σ2) = f n−2 · f 2 = f n.

Thus, f n= f · σ2(n−1) for any n ∈ N.
□

Lemma 3. ([26]) If a dynamical system is transitive, and it has density of periodic points, then it is
sensitive to the initial conditions.

Lemma 4. ([25]) There exists an x∗ ∈ (0, 1) such that arbitrarily given finite sequence “b1b2 · · · bm”
consisting of 0 and 1 occurred infinitely many times in binary representation of x∗.

In the following, proceed to verify whether Eq (2.3) satisfies the definition of Devaney chaos. Ac-
cording to Lemma 3, the sensitive dependence on initial conditions in a system defined on a metric
space can be deduced from the presence of topological transitivity and density of periodic points.
Therefore, it suffices to establish the topological transitivity and the density of periodic points for the
PLLM f (x).

Theorem 1. The periodic points of f (x) are dense in (0, 1). That is, Per( f ) = [0, 1] (i.e., for any
x ∈ [0, 1] and any ε > 0, B(x, ε)

⋂
Per( f ) , ∅), where Per( f ) is the set of all periodic points.

Proof. For any x ∈ [0, 1] and any ε > 0, if x is a periodic point of f , then x ∈ B(x, ε) ∩ Per( f ) , ∅.
Suppose x < Per( f ). Let x = 0.a1a2 · · · am · · · , and choose n ∈ N such that 1

2m−1 < ε. Assume x∗ is a
binary decimal with a1a2 · · · am−10 as its repeating cycle, i.e., x∗ = 0.ȧ1a2 · · · am−10̇ ∈ Per( f ). Therefore,

|x∗ − x| =
∣∣∣(0.ȧ1a2 · · · am−10̇) − (0.a1a2 · · · am · · · )

∣∣∣ ⩽ 1
2m +

1
2m+1 + · · · =

1
2m−1 < ε.

Hence, x∗ ∈ B(x, ε) ∩ Per( f ). This implies Per( f ) = [0, 1]. □

Theorem 2. The mapping f (x) is transitive, i.e., there exists a x∗ ∈ (0, 1) such that Orb f (x∗) = [0, 1].

Proof. For any x ∈ [0, 1], let x be represented as x = 0.b1b2 · · · bm · · · (bi ∈ {0, 1}). For any ε > 0, select
a large enough natural number m to ensure that 1

2m < ε. By Lemma 4, one can select a x∗ ∈ (0, 1) whose
binary representation can contain “b1b2 · · · bm” infinitely many times.
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So, one can construct

x∗ = 0.a∗1a∗2 · · · a
∗
2(n−1)01b1b2 · · · bma∗2(n−1)+m+1 · · · .

And,

| f n(x∗) − x| =
∣∣∣ f · σ2(n−1)(x∗) − x

∣∣∣ = ∣∣∣(0.b1b2 · · · bma∗2(n−1)+m+1 · · · ) − (0.b1b2 · · · bm · · · )
∣∣∣

=

∣∣∣∣∣∣(b1

2
+

b2

22 + · · ·
bm

2m +
a∗2(n−1)+m+1

2m+1 + · · · ) − (
b1

2
+

b2

22 + · · · +
bm

2m + · · · )

∣∣∣∣∣∣
=

∣∣∣∣∣∣a∗2(n−1)+m+1

2m+1 + · · · · · ·

∣∣∣∣∣∣ ≤ 1
2m+1 +

1
2m+2 + · · · =

1
2m < ε.

Thus, for any x ∈ [0, 1] and any ε > 0, there exists an m ∈ N such that f m(x) ∈ B(x, ε) = {y | y ∈
[0, 1] and |y − x| < ε}. This implies Orb f (x∗) = [0, 1]. □

In summary, due to the topological transitivity and density of periodic points, the PLLM are chaotic
as defined by Devaney.

3. Dynamic properties of the PLLM

This section investigates the dynamic properties of PPLM. The results demonstrate that, in compar-
ison to the LM and the LLM, PPLM exhibits superior performance across several metrics, including
sensitivity, permutation entropy, distribution of function sequences, and Lyapunov exponents. These
findings highlight its substantial potential for applications in fields such as image encryption, secure
communications, and related domains.

3.1. Bifurcation diagram

To observe the dynamic behavior of PLLM numerical simulation analysis of bifurcation diagram
of the mapping was carried out on the MATLAB simulation platform, as depicted in Figure 1: (a)
bifurcation diagram of LM; (b) bifurcation diagram of LLM; (c) bifurcation diagram of PLLM. With
the increase of the parameter µ, the system exhibits period-doubling bifurcations. The parameter range
of (a) is (3.57, 4], while the parameter range of (b) is (1, 1.4] and the parameter range of (c) is (1, 4].
The comparison of the plots reveals that the range of the PLLM parameters is the widest, and, except
for the periodic window at µ=2, there are no windows of period-doubling bifurcations.

3.2. Sensitivity analysis

The randomness of chaotic signal originates from the sensitivity of chaotic system, which is the
essence of chaos. The so-called sensitivity means that even if there exists only a minor variation in the
initial conditions of the system, it may give rise to completely different results after many iterations,
resulting in the phenomenon of the “butterfly effect”.

For chaotic mapping, choose two iterative sequences An and Bn, where the initial term of the se-
quence An is set to A0 (A0∈(0,1)) and the initial value of the sequence Bn is set to B0 = A0+ε (B0∈(0,1)),
and where ε is a fixed offset. Given a threshold σ, define N as the number of iterations required for the
first occurrence of An−Bn > σ. Then, the number of iterations of LM, LLM, and PLLM corresponding
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to the first occurrence of separation under different initial values is given. The corresponding result is
shown in Figure 2. The horizontal axis represents the initial value, and the vertical axis represents the
corresponding number of iterations N.

Figure 1. (a) LM bifurcation diagram; (b) LLM bifurcation diagram; (c) PLLM bifurcation
diagram.

The difference between two initial values in a chaotic mapping is very small, but after multiple
iterations, the gap between the two sequences becomes significantly large, indicating that the mapping
exhibits a high sensitivity to initial conditions. Based on the analysis of Figure 2(a)–(c), it can be
observed that for any initial value within the interval (0,1), the first separation of LM typically occurs
between 15 and 25 iterations, the first separation of LLM occurs between 25 and 28 iterations, and
the first separation of PLLM occurs between 8 and 9 iterations. This demonstrates that PLLM has a
stronger sensitivity. This property can be leveraged in future studies to design more efficient encryption
algorithms.
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Figure 2. (a) graph of iteration numbers for LM’s first separation; (b) graph of iterations
numbers for LLM’s first separation; (c) graph of iteration numbers for PLLM’s first separa-
tion.

3.3. Complexity analysis

There are many methods to measure the complexity of chaotic mappings, such as spectrum entropy
(SE) [27], C0 entropy [28], permutation entropy (PE) [29], and multiscale permutation entropy (MPE)
[30]. Among them, the PE algorithm is the best choice for accurately and quickly estimating the
numerical sequence. Therefore, the PE algorithm is used to analyze the PLLM complexity. The larger
the value of PE, the more complex the time series [31].

The PE complexity of LM, LLM, and PLLM was calculated under different parameters µ. As
shown in Figure 3, for LM in the chaotic regime (µ ∈ [3.6,4]), the PE complexity remains within the
range of [0.6, 0.9]. For LLM in the chaotic regime (µ ∈ [1,1.4]), the PE complexity stays within the
range of [0.52, 0.61]. For PLLM in the chaotic regime (µ ∈ [2,4]), the PE complexity is maintained
within the range of [0.9, 1]. Overall, compared to LM and LLM, PLLM consistently exhibits higher
PE complexity. Notably, around µ = 2, PLLM shows a sharp decrease in PE complexity due to the
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existence of a periodic window, which is consistent with the bifurcation analysis of PLLM. However,
this local decrease does not significantly affect the system’s overall high complexity.

Figure 3. (a) PE complexity of LM; (b) PE complexity of LLM; (c) PE complexity of PLLM.

3.4. Bifurcation iteration count

To further compare the sensitivity of the logistic chaotic mapping and PLLM, we introduce a metric
for assessing sensitivity [32]. That is, the bifurcation iteration count of chaotic mappings.

For the chaotic mapping described by xn+1 = f (xn) in Eq (2.3), let the chaotic sequences generated
from two distinct initial conditions c0 = {c1, c2, . . .} and d0 = {d1, d2, . . .}, respectively. Given a bifur-
cation threshold δ, define Ω = min{i : |ci − di| > δ}. Then, Ω is referred to as the bifurcation iteration
count for the chaotic mapping xn+1 = f (xn) with initial conditions c0 and d0.

Below, we present the average number of iterations necessary for bifurcation corresponding to dif-
ferent bifurcation thresholds for LM, LLM, and PLLM. 5000 points are sampled within the interval
(0, 1). And, the average bifurcation iteration count needed to generate chaotic sequences between
adjacent points is computed. Table 1 displays the corresponding experimental results.
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Table 1. Average number of iterations required for bifurcation in LM, LLM, and PLLM.

Bifurcation Threshold 0.2 0.4 0.6 0.8
LM 11.70 13.02 14.10 18.46
LLM 21.74 23.51 24.32 25.05
PLLM 6.26 7.53 9.42 12.33

The experimental results in Table 1 indicate that, for the same bifurcation threshold value, the
average number of iterations required for the LM and LLM are significantly greater than that for the
PLLM. That is, the bifurcation speed of the PLLM is faster than that of the LM and LLM, thereby
ensuring that the PLLM can enter a chaotic state more quickly during the encryption process.

3.5. Sequential distribution

Figure 4. (a) Distribution histogram comparison of the LM sequence; (b) LLM sequence;
(c) the PLLM sequence; (d) Autocorrelation function diagram of PLLM.

Next, the randomness of sequences generated by LM, LLM, and PLLM is compared. The distribu-
tion of the generated sequence of these three mappings is analyzed experimentally, as shown in Figure
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4, where the generated sequence length is 10,000.
As shown in Figure 4(a)–(c), compared with LM and LLM, the sequence distribution histogram

of PLLM is more uniform and flat, and there is no logistic mapping distribution peak near 0 and
1, which also indicates that PLLM exhibits better uniformity and randomness. According to Figure
2(d), PLLM has good autocorrelation characteristics, and such chaotic sequences can be utilized as
high-quality random number generators. Then, using its uniformity and randomness, data encryption
can effectively protect the security of data and resist various attacks. The system can also be applied to
specific engineering domains, such as image encryption [33] and chaos-based robot path planning [34].

3.6. Lyapunov exponent

Lyapunov exponents (LES ) reflect the numerical properties associated with the average exponential
divergence of neighboring trajectories in phase space. LES are among the features employed to char-
acterize the numerical values of chaotic motion. It is introduced to represent the exponential separation
or convergence between adjacent discrete points caused by multiple iterations. LES corresponding to
the chaotic system xn+1 = f (xn) is defined as

λ = lim
n→∞

1
n

n−1∑
i=1

ln
∣∣∣∣∣d f
dx

∣∣∣∣∣
x=xi

. (3.1)

Lyapunov exponents less than 0 indicates that, after iterative operations under a mapping, neighbor-
ing points will eventually converge to a single point, corresponding to a stable fixed point or periodic
behavior of the system. Conversely, if the Lyapunov exponents are greater than 0, it implies that
neighboring points will be separated through iterative operations under the mapping, leading to locally
unstable trajectories in the chaotic system. Therefore, positive Lyapunov exponents can be used to
determine whether a system exhibits chaotic behavior. Figure 5 illustrates the Lyapunov exponents for
LM, LLM, and PLLM.

Figure 5. Lyapunov exponential plot of LM, LLM, and PLLM.
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For the PLLM,

LES = lim
N→∞

1
N

N−1∑
k=0

ln(| f ′(xn; µ)|). (3.2)

However, due to its inclusion of a sign function, it is inherently discontinuous. For the formula
PLLM, when the parameter µ = 2, a fixed point appears. From the bifurcation diagram, it can be
seen that apart from this point, the system is globally chaotic. Estimating the almost everywhere
chaotic nature of such the PLLM can be achieved computationally. To begin with, we will follow the
aforementioned procedure. In this instance, one has

f (xn; µ) =

µ(xn −
1
4 )sgn(xn −

1
4 ), 0 ≤ xn <

1
2 ;

µ(xn −
3
4 )sgn(xn −

3
4 ), 1

2 ≤ xn ≤ 1.
(3.3)

Then,

f (xn : µ) =


−µ(xn −

1
4 ), 0 ≤ xn ≤

1
4 ;

µ(xn −
1
4 ), 1

4 < xn <
2
4 ;

−µ(xn −
3
4 ), 2

4 ≤ xn <
3
4 ;

µ(xn −
3
4 ), 3

4 ≤ xn ≤ 1.

So,

f ′(xn; µ) =


−µ, 0 ≤ xn ≤

1
4 ;

µ, 1
4 < xn <

2
4 ;

−µ, 2
4 ≤ xn <

3
4 ;

µ, 3
4 ≤ xn ≤ 1.

(3.4)

One can get that | f ′(xn; µ)| = µ > 0. Thus, LES is positive, indicating that the PLLM is almost
everywhere chaotic. Contrasting the Lyapunov exponent plots of LM, LLM, and PLLM, one can
observe stable chaotic behavior for the LM in the range 3.569946 ≤ µ ≤ 4 and the LLM in the range
1 ≤ µ ≤ 1.4. Meanwhile, the PLLM exhibits almost everywhere chaotic behavior across 1 ≤ µ ≤ 4.
The Lyapunov exponents of PLLM is consistently greater than that of LM. Therefore, for PLLM, states
with positive LES are more prevalent compared to the LM and LLM. This suggests that the constructed
PLLM exhibits less stability and faster separation. It poses greater challenges in sequence analysis and
prediction.

4. Analog circuit implementation

To validate the physical feasibility of the PLLM introduced in this paper, the following PSIM simu-
lation circuit was designed, as illustrated in Figure 6. The simulation circuit is primarily composed of
two parts: (i) an iteration processing circuit, (ii) a discrete mapping circuit. Figure 6 shows the iterative
process circuit, which includes two sample-and-hold units, a NOT gate, and two square wave voltage
sources. The core of this model is to perform iterative calculations using the sample-and-hold units.
Controlled by complementary pulse voltage Vc1 through the NOT gate, the two sample-and-hold units
operate in an inverse phase state, with one sampling while the other holds.
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Figure 6. The iterative process circuit.

Figure 7. Block diagram of the PLLM circuit diagram.

Figure 7 displays the frame diagram for the PLLM. It consists of an adder, two diodes, three mul-
tipliers, three sign function modules, four DC voltage sources, twelve operational amplifiers, twenty-
eight resistors, and a sliding potentiometer. Nonlinear terms in the model are realized using multipliers
and sign function modules, while the diodes implement the piecewise nature of the analog circuit.
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Additionally, operational amplifiers and resistors are used to form the inverting adder.
As shown in Figure 8, this circuit diagram is a schematic diagram of PLLM electronic circuit im-

plementation. Accordingly, the circuit voltage outputs at nodes A–E were analyzed using Kirchhoff’s
laws.

Figure 8. The circuit diagram of the PLLM.

The voltage at node A is provided by the output of the U2 amplifier, which generates a piecewise
linear signal.

VA =

0, Vin <
R1

2R2
;

R5
R4

(R3
R1

Vin −
R3
2R2

), Vin ≥
R1

2R2
.

(4.1)

The voltages at nodes B and C are provided by the outputs of multipliers M1 and M2, respectively.
These signals are derived from the nonlinear modules, yielding the following output voltages VB and
VC.

VB = (
R8R10

R6R9
VA +

R8R10

4R7R9
) · sgn(

R8R10

R6R9
VA +

R8R10

4R7R9
). (4.2)

VC = (
R13R15

R11R14
VA −

R13R15

4R12R14
) · sgn(

R13R15

R11R14
VA −

R13R15

4R12R14
). (4.3)

The voltage at node D is given by the output of the U8 amplifier. This signal is then processed
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through a subtractor composed of an additional amplifier and resistors, resulting in 4VC − 4VB.

VD =
R17

R16
·

R20

R18
VC −

R20

R19
VB. (4.4)

The voltage at node E is provided by the output of the U12 amplifier. This signal is obtained through
a nonlinear module that utilizes an amplifier, resistors, a multiplier, and a sign function module. The
resulting output voltage is

VE =
R27

R26
·

R29

R28
(
R22R25

R21R24
Vn −

R23R25

4R22R24
) · sgn(

R22R25

R21R24
Vn −

R23R25

4R22R24
). (4.5)

Finally, the output voltage Vout is provided by the output of the adder a1, resulting in VD + VE.
Assuming ideal performance of all components, the state equations of the circuit can be derived as

xn+1 =

µ(xn −
1
4 ) · sgn(xn −

1
4 );

µ(xn −
3
4 ) · sgn(xn −

3
4 ),

(4.6)

where xn+1 represents the signal Vout, and xn represents the signal Vin. The resistance values provided in
Table 2 are not unique. Consequently, any values that satisfy Eq (4.6) can be arbitrarily chosen. Based
on the analysis above and the component values listed in Table 2, it can be observed that the system
exhibits chaotic behavior when µ = 4. Additionally, Vc1 and Vc2 are the pulse voltages controlling the
sample-and-hold devices, while R5 is an adjustable variable resistor used to observe different states in
the circuit. When implementing chaotic mappings with analog circuits, the discrete time is governed
by the input signal pulse voltage Vc1. Experimental results of the proposed chaotic system simulation
circuit are shown in Figure 9, where the waveforms clearly exhibit discrete states.

Table 2. The values of electronic components in analog circuits for the PLLM.
Device Value
R1,R2,R3,R4,R6,R7,R8,R9,R10,R11,R12,R13,R14

R15,R16,R17,R18,R19R20,R21,R22,R24,R25,R26,R27,R28 10 kΩ Resistor
R20,R29 40 kΩ Resistor
R5 10 kΩ Potentiometer
D1, D2 Diode
U1, U2, U3, U4, U5, U6, U7, U8, U9, U10, U11, U12 Op. Amp
M1, M2, M3 Multiplier
S1, S2, S3 Signum
a1 Adder
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Figure 9. Time series diagram.

5. Conclusions and outlook

Building on the study of the LM, this study proposed an improved PLLM based on the logistic-like
mapping introduced in [5]. First, this paper rigorously proves its chaotic behavior theoretically using
Devaney’s definition of chaos. Then, dynamic behaviors including bifurcation diagrams, Lyapunov
exponents, initial value sensitivity, and function sequence distributions, between the PLLM and the
LM are compared. The results reveal that the PLLM exhibits more complex dynamic behavior.

Currently, digital technologies are the primary methods for implementing discrete chaotic systems,
including DSP (digital signal processors), FPGA (field-programmable gate arrays), and microproces-
sors. In this paper, an analog circuit is designed to realize the proposed new chaotic mapping using
PSIM simulation software. This circuit features a simple structure with a minimal number of compo-
nent types, offering several potential applications such as random number generation, frequency hop-
ping, and spread spectrum signals. Our next research focus is to incorporate the time series generated
by PLLM into the particle swarm optimization (PSO) algorithm to enhance its stochastic detection
capability. The improved PSO algorithm will be applied to sensor node positioning optimization in
wireless sensor networks.
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