Research article

Synchronization analysis of delayed quaternion-valued memristor-based neural networks by a direct analytical approach

  • Received: 11 January 2024 Revised: 12 March 2024 Accepted: 22 April 2024 Published: 24 May 2024
  • This issue discusses the asymptotic synchronization and the exponential synchronization for memristor-based quaternion-valued neural networks under the time-varying delays. Some criteria for synchronization of the memristor-based quaternion-valued neural networks are given by exploiting the set-valued theory, the differential inclusion theory, some analytic techniques, as well as constructing novel controllers, It is worth noting that the synchronization problem about the memristor-based quaternion-valued neural networks were studied by the direct analysis method in this paper. Finally, the main theoretical results were verified by numerical simulations.

    Citation: Jun Guo, Yanchao Shi, Shengye Wang. Synchronization analysis of delayed quaternion-valued memristor-based neural networks by a direct analytical approach[J]. Electronic Research Archive, 2024, 32(5): 3377-3395. doi: 10.3934/era.2024156

    Related Papers:

  • This issue discusses the asymptotic synchronization and the exponential synchronization for memristor-based quaternion-valued neural networks under the time-varying delays. Some criteria for synchronization of the memristor-based quaternion-valued neural networks are given by exploiting the set-valued theory, the differential inclusion theory, some analytic techniques, as well as constructing novel controllers, It is worth noting that the synchronization problem about the memristor-based quaternion-valued neural networks were studied by the direct analysis method in this paper. Finally, the main theoretical results were verified by numerical simulations.



    加载中


    [1] L. Chua, Memristor-the missing circuit element, IEEE Trans. Circuit Theory, 18 (1971), 507–519. https://doi.org/10.1109/TCT.1971.1083337 doi: 10.1109/TCT.1971.1083337
    [2] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, The missing memristor found, Nature, 453 (2008), 80–83. https://doi.org/10.1038/nature06932 doi: 10.1038/nature06932
    [3] Y. Li, Y. Zhong, L. Xu, J. Zhang, X. Xu, H. Sun, et al., Ultrafast synaptic events in a chalcogenide memristor, Sci. Rep., 3 (2013), 1619. https://doi.org/10.1038/srep01619 doi: 10.1038/srep01619
    [4] Y. Pershin, M. Di Ventra, Experimental demonstration of associative memory with memristive neural networks, Neural Netw., 23 (2010), 881–886. https://doi.org/10.1016/j.neunet.2010.05.001 doi: 10.1016/j.neunet.2010.05.001
    [5] F. Merrikh-Bayat, S. Shouraki, Memristor-based circuits for performing basic arithmetic operations, Procedia Comput. Sci., 3 (2011), 128–132. https://doi.org/10.1016/j.procs.2010.12.022 doi: 10.1016/j.procs.2010.12.022
    [6] Z. Q. Wang, H. Y. Xu, X. H. Li, H. Yu, Y. C. Liu, X. J. Zhu, Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor, Adv. Funct. Mater., 22 (2012), 2759–2765. https://doi.org/10.1002/adfm.201103148 doi: 10.1002/adfm.201103148
    [7] G. Zhang, J. Hu, Y. Shen, New results on synchronization control of delayed memristive neural networks, Nonlinear Dyn., 81 (2015), 1167–1178. https://doi.org/10.1007/s11071-015-2058-5 doi: 10.1007/s11071-015-2058-5
    [8] J. Hu, J. Wang, Global uniform asymptotic stability of memristor-based recurrent neural networks with time delays, in The 2010 International Joint Conference on Neural Networks (IJCNN), (2010), 1–8. https://doi.org/10.1109/IJCNN.2010.5596359
    [9] J. Cheng, L. Xie, D. Zhang, H. Yan, Novel event-triggered protocol to sliding mode control for singular semi-Markov jump systems, Automatica, 151 (2023), 110906. https://doi.org/10.1016/j.automatica.2023.110906 doi: 10.1016/j.automatica.2023.110906
    [10] A. Wu, Z. Zeng, X. Zhu, J. Zhang, Exponential synchronization of memristor-based recurrent neural networks with time delays, Neurocomputing, 74 (2011), 3043–3050. https://doi.org/10.1016/j.neucom.2011.04.016 doi: 10.1016/j.neucom.2011.04.016
    [11] J. Cheng, Y. Wu, Z. Wu, H. Yan, Nonstationary filtering for fuzzy Markov switching affine systems with quantization effects and deception attacks, IEEE T. Syst. Man Cybern.: Syst., 52 (2022), 6545–6554. https://doi.org/10.1109/TSMC.2022.3147228 doi: 10.1109/TSMC.2022.3147228
    [12] A. Wu, S. Wen, Z. Zeng, Synchronization control of a class of memristor-based recurrent neural networks, Inf. Sci., 183 (2012), 106–116. https://doi.org/10.1016/j.ins.2011.07.044 doi: 10.1016/j.ins.2011.07.044
    [13] G. Zhang, Y. Shen, L. Wang, Global anti-synchronization of a class of chaotic memristive neural networks with time-varying delays, Neural Netw., 46 (2013), 1–8. https://doi.org/10.1016/j.neunet.2013.04.001 doi: 10.1016/j.neunet.2013.04.001
    [14] X. Li, R. Rakkiyappan, G. Velmurugan, Dissipativity analysis of memristor-based complex-valued neural networks with time-varying delays, Inf. Sci., 294 (2015), 645–665. https://doi.org/10.1016/j.ins.2014.07.042 doi: 10.1016/j.ins.2014.07.042
    [15] N. Li, W. Zheng, Bipartite synchronization for inertia memristor-based neural networks on coopetition networks, Neural Netw., 124 (2020), 39–49. https://doi.org/10.1016/j.neunet.2019.11.010 doi: 10.1016/j.neunet.2019.11.010
    [16] Y. Shi, J. Cao, G. Chen, Exponential stability of complex-valued memristor-based neural networks with time-varying delays, Appl. Math. Comput., 313 (2017), 222–234. https://doi.org/10.1016/j.amc.2017.05.078 doi: 10.1016/j.amc.2017.05.078
    [17] H. Wang, S. Duan, T. Huang, L. Wang, C. Li, Exponential stability of complex-valued memristive recurrent neural networks, IEEE Trans. Neural Netw. Learn. Syst., 28 (2017), 766–771. https://doi.org/10.1109/TNNLS.2015.2513001 doi: 10.1109/TNNLS.2015.2513001
    [18] Y. Cheng, Y. Shi, Synchronization of memristor-based complex-valued neural networks with time-varying delays, Comput. Appl. Math., 41 (2022), 388. https://doi.org/10.1007/s40314-022-02097-6 doi: 10.1007/s40314-022-02097-6
    [19] W. Hamilton, Elements of Quaternions, Longmans, Green, & Company, London, 1866.
    [20] S. Pei, C. Cheng, A novel block truncation coding of color images by using quaternion-moment-preserving principle, in 1996 IEEE International Symposium on Circuits and Systems (ISCAS), (1996), 684–687. https://doi.org/10.1109/ISCAS.1996.541817
    [21] M. Xiang, B. S. Dees, D. P. Mandic, Multiple-model adaptive estimation for 3-D and 4-D signals: a widely linear quaternion approach, IEEE T. Neur. Netw. Lear., 30 (2019), 72–84. https://doi.org/10.1109/TNNLS.2018.2829526 doi: 10.1109/TNNLS.2018.2829526
    [22] J. Wang, Y. Li, J. Li, X. Luo, Y. Shi, S. Jha, Color image-spliced localization based on quaternion principal component analysis and quaternion skewness, J. Inf. Secur. Appl., 47 (2019), 353–362. https://doi.org/10.1016/j.jisa.2019.06.004 doi: 10.1016/j.jisa.2019.06.004
    [23] T. Barfoot, J. Forbes, P. Furgale, Pose estimation using linearized rotations and quaternion algebra, Acta Astronaut., 68 (2011), 101–112. https://doi.org/10.1016/j.actaastro.2010.06.049 doi: 10.1016/j.actaastro.2010.06.049
    [24] C. Zou, K. Kou, Y. Wang, Quaternion collaborative and sparse representation with application to color face recognition, IEEE T. Image Process., 25 (2016), 3287–3302. https://doi.org/10.1109/TIP.2016.2567077 doi: 10.1109/TIP.2016.2567077
    [25] T. Isokawa, T. Kusakabe, N. Matsui, F. Peper, Quaternion neural network and its application, in Knowledge-Based Intelligent Information and Engineering Systems, Springer, Berlin, 2003. https://doi.org/10.1007/978-3-540-45226-3_44
    [26] B. C. Ujang, C. C. Took, D. P. Mandic, Quaternion-valued nonlinear adaptive filtering, IEEE Trans Neural Netw., 22 (2011), 1193–1206. https://doi.org/10.1109/TNN.2011.2157358 doi: 10.1109/TNN.2011.2157358
    [27] L. Luo, H. Feng, L. Ding, Color image compression based on quaternion neural network principal component analysis, in 2010 International Conference on Multimedia Technology, (2010), 1–4. https://doi.org/10.1109/ICMULT.2010.5631456
    [28] H. Kusamichi, T. Isokawa, N. Matsui, Y. Ogawa, K. Maeda, A new scheme for color night vision by quaternion neural network, in Proceedings of the 2nd International Conference on Autonomous Robots and Agents, (2004), 1315.
    [29] S. Qin, J. Feng, J. Song, X. Wen, C. Xu, A one-layer recurrent neural network for constrained complex-variable convex optimization, IEEE T. Neur. Netw. Lear., 29 (2018), 534–544. https://doi.org/10.1109/TNNLS.2016.2635676 doi: 10.1109/TNNLS.2016.2635676
    [30] Y. Shi, X. Chen, P. Zhu, Dissipativity for a class of quaternion-valued memristor-based neutral-type neural networks with time-varying delays, Math. Method. Appl. Sci., 46 (2023), 18166–18184. https://doi.org/10.1002/mma.9551 doi: 10.1002/mma.9551
    [31] T. Zhang, J. Jian, Quantized intermittent control tactics for exponential synchronization of quaternion-valued memristive delayed neural networks, ISA Trans., 126 (2022), 288–299. https://doi.org/10.1016/j.isatra.2021.07.029 doi: 10.1016/j.isatra.2021.07.029
    [32] Z. Tu, D. Wang, X. Yang, J. Cao, Lagrange stability of memristive quaternion-valued neural networks with neutral items, Neurocomputing, 399 (2020), 380–389. https://doi.org/10.1016/j.neucom.2020.03.003 doi: 10.1016/j.neucom.2020.03.003
    [33] R. Li, J. Cao, Dissipativity and synchronization control of quaternion-valued fuzzy memristive neural networks: Lexicographical order method, Fuzzy Set. Syst., 443 (2022), 70–89. https://doi.org/10.1016/j.fss.2021.10.015 doi: 10.1016/j.fss.2021.10.015
    [34] X. Song, J. Man, S. Song, C. Ahn, Finite/Fixed-time anti-synchronization of inconsistent markovian quaternion-valued memristive neural networks with reaction-diffusion terms, IEEE T. Circuits-I, 68 (2021), 363–375. https://doi.org/10.1109/TCSI.2020.3025681 doi: 10.1109/TCSI.2020.3025681
    [35] D. Lin, X. Chen, G. Yu, Z. Li, Y. Xia, Global exponential synchronization via nonlinear feedback control for delayed inertial memristor-based quaternion-valued neural networks with impulses, Appl. Math. Comput., 401 (2021), 126093. https://doi.org/10.1016/j.amc.2021.126093 doi: 10.1016/j.amc.2021.126093
    [36] R. Wei, J. Cao, Fixed-time synchronization of quaternion-valued memristive neural networks with time delays, Neural Netw., 113 (2019), 1–10. https://doi.org/10.1016/j.neunet.2019.01.014 doi: 10.1016/j.neunet.2019.01.014
    [37] R. Li, X. Gao, J. Cao, K. Zhang, Exponential stabilization control of delayed quaternion-valued memristive neural networks: vector ordering approach, Circ. Syst. Signal Pr., 39 (2020), 1353–1371. https://doi.org/10.1007/s00034-019-01225-8 doi: 10.1007/s00034-019-01225-8
    [38] Z. Tu, J. Cao, A. Alsaedi, T. Hayat, Global dissipativity analysis for delayed quaternion-valued neural networks, Neural Netw., 89 (2017), 97–104. https://doi.org/10.1016/j.neunet.2017.01.006 doi: 10.1016/j.neunet.2017.01.006
    [39] A. F. Filippov, Differential Equations with Discontinuous Right-hand Sides, Springer Science & Business Media, Berlin, 1988.
    [40] J. Cao, J. Wang, Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays, Neural Netw., 17 (2004), 379–390. https://doi.org/10.1016/j.neunet.2003.08.007 doi: 10.1016/j.neunet.2003.08.007
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(470) PDF downloads(29) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog