We explore the master-slave chaos synchronization of stochastic time-delay Lur'e systems within a networked environment. To tackle the challenges posed by potential mode-mismatch behavior and limited networked channel resources, an asynchronous and adaptive event-triggered (AAET) controller is employed. A criterion on the stochastic stability and $ \mathcal{L}_{2}-\mathcal{L}_{\infty} $ disturbance-suppression performance of the synchronization-error system is proposed by using a Lyapunov-Krasovskii functional, a Wirtinger-type inequality, the Itô formula, as well as a convex combination inequality. Then, a method for determining the desired AAET controller gains is proposed by decoupling the nonlinearities that arise from the Lyapunov matrices and controller gains. Finally, the applicability of the AAET control approach is validated by a Chua's circuit.
Citation: Xinling Li, Xueli Qin, Zhiwei Wan, Weipeng Tai. Chaos synchronization of stochastic time-delay Lur'e systems: An asynchronous and adaptive event-triggered control approach[J]. Electronic Research Archive, 2023, 31(9): 5589-5608. doi: 10.3934/era.2023284
We explore the master-slave chaos synchronization of stochastic time-delay Lur'e systems within a networked environment. To tackle the challenges posed by potential mode-mismatch behavior and limited networked channel resources, an asynchronous and adaptive event-triggered (AAET) controller is employed. A criterion on the stochastic stability and $ \mathcal{L}_{2}-\mathcal{L}_{\infty} $ disturbance-suppression performance of the synchronization-error system is proposed by using a Lyapunov-Krasovskii functional, a Wirtinger-type inequality, the Itô formula, as well as a convex combination inequality. Then, a method for determining the desired AAET controller gains is proposed by decoupling the nonlinearities that arise from the Lyapunov matrices and controller gains. Finally, the applicability of the AAET control approach is validated by a Chua's circuit.
[1] | L. O. Chua, L. Kocarev, K. Eckert, M. Itoh, Experimental chaos synchronization in Chua's circuit, Int. J. Bifurcat. Chaos, 2 (1992), 705–708. https://doi.org/10.1142/S0218127492000811 doi: 10.1142/S0218127492000811 |
[2] | H. Sompolinsky, A. Crisanti, H. J. Sommers, Chaos in random neural networks, Phys. Rev. Lett., 61 (1988), 259. https://doi.org/10.1103/PhysRevLett.61.259 doi: 10.1103/PhysRevLett.61.259 |
[3] | J. A. K. Suykens, A. Huang, L. O. Chua, A family of n-scroll attractors from a generalized Chua's circuit, AEU Int. J. Electron. Commun., 51 (1997), 131–137. |
[4] | Y. Fan, Z. Wang, X. Huang, H. Shen, Using partial sampled-data information for synchronization of chaotic Lur'e systems and its applications: an interval-dependent functional method, Inform. Sci., 619 (2023), 358–373. https://doi.org/10.1016/j.ins.2022.11.066 doi: 10.1016/j.ins.2022.11.066 |
[5] | L. Wang, S. Jiang, M. F. Ge, C. Hu, J. Hu, Finite-/fixed-time synchronization of memristor chaotic systems and image encryption application, IEEE Trans. Circuits-I, 68 (2021), 4957–4969. https://doi.org/10.1109/TCSI.2021.3121555 doi: 10.1109/TCSI.2021.3121555 |
[6] | S. Moon, J. J. Baik, J. M. Seo, Chaos synchronization in generalized Lorenz systems and an application to image encryption, Commun. Nonlinear Sci., 96 (2021), 105708. https://doi.org/10.1016/j.cnsns.2021.105708 doi: 10.1016/j.cnsns.2021.105708 |
[7] | M. Roohi, C. Zhang, Y. Chen, Adaptive model-free synchronization of different fractional-order neural networks with an application in cryptography, Nonlinear Dyn., 100 (2020), 3979–4001. https://doi.org/10.1007/s11071-020-05719-y doi: 10.1007/s11071-020-05719-y |
[8] | V. K. Yadav, V. K. Shukla, S. Das, Exponential synchronization of fractional-order complex chaotic systems and its application, Chaos Solitons Fractals, 147 (2021), 110937. https://doi.org/10.1016/j.chaos.2021.110937 doi: 10.1016/j.chaos.2021.110937 |
[9] | S. Lakshmanan, M. Prakash, C. P. Lim, R. Rakkiyappan, P. Balasubramaniam, S. Nahavandi, Synchronization of an inertial neural network with time-varying delays and its application to secure communication, IEEE Trans. Neural Net. Learn. Syst., 29 (2018), 195–207. https://doi.org/10.1109/TNNLS.2016.2619345 doi: 10.1109/TNNLS.2016.2619345 |
[10] | A. M. Gonzalez-Zapata, E. Tlelo-Cuautle, I. Cruz-Vega, W. D. León-Salas, Synchronization of chaotic artificial neurons and its application to secure image transmission under MQTT for IoT protocol, Nonlinear Dyn., 104 (2021), 4581–4600. https://doi.org/10.1007/s11071-021-06532-x doi: 10.1007/s11071-021-06532-x |
[11] | W. Shao, Y. Fu, M. Cheng, L. Deng, D. Liu, Chaos synchronization based on hybrid entropy sources and applications to secure communication, IEEE Photonic. Tech. Lett., 33 (2021), 1038–1041. https://doi.org/10.1109/LPT.2021.3093584 doi: 10.1109/LPT.2021.3093584 |
[12] | Q. Li, X. Liu, Q. Zhu, S. Zhong, J. Cheng, Stochastic synchronization of semi-Markovian jump chaotic Lur'e systems with packet dropouts subject to multiple sampling periods, J. Franklin I., 356 (2019), 6899–6925. https://doi.org/10.1016/j.jfranklin.2019.06.005 doi: 10.1016/j.jfranklin.2019.06.005 |
[13] | Y. Li, J. Feng, J. Wang, Mean square synchronization for stochastic delayed neural networks via pinning impulsive control, Electron. Res. Arch., 30 (2022), 3172–3192. http://dx.doi.org/10.3934/era.2022161 doi: 10.3934/era.2022161 |
[14] | T. Yang, Z. Wang, J. Xia, H. Shen, Sampled-data exponential synchronization of stochastic chaotic Lur'e delayed systems, Math. Comput. Simulation, 203 (2023), 44–57. https://doi.org/10.1016/j.matcom.2022.06.010 doi: 10.1016/j.matcom.2022.06.010 |
[15] | Y. Zhou, X. H. Chang, W. Huang, Z. M. Li, Quantized extended dissipative synchronization for semi-Markov switching Lur'e systems with time delay under deception attacks, Commun. Nonlinear Sci., 117 (2023), 106972. https://doi.org/10.1016/j.cnsns.2022.106972 doi: 10.1016/j.cnsns.2022.106972 |
[16] | X. H. Chang, Y. Liu, Quantized output feedback control of AFS for electric vehicles with transmission delay and data dropouts, IEEE Trans. Intell. Transp. Syst., 23 (2022), 16026–16037. https://doi.org/10.1109/TITS.2022.3147481 doi: 10.1109/TITS.2022.3147481 |
[17] | C. Jia, J. Hu, H. Liu, J. Du, S. Feng, Recursive state estimation for a class of nonlinear uncertain coupled complex networks subject to random link failures and packet disorders, ISA Trans., 127 (2022), 88–98. https://doi.org/10.1016/j.isatra.2021.12.036 doi: 10.1016/j.isatra.2021.12.036 |
[18] | D. Xu, X. Li, W. Tai, J. Zhou, Event-triggered stabilization for networked control systems under random occurring deception attacks, Math. Biosci. Eng., 20 (2023), 859–878. http://dx.doi.org/10.3934/mbe.2023039 doi: 10.3934/mbe.2023039 |
[19] | J. Zhou, D. Xu, W. Tai, C. K. Ahn, Switched event-triggered $\mathcal{H}_{\infty}$ security control for networked systems vulnerable to aperiodic DoS attacks, IEEE Trans. Net. Sci. Eng., 10 (2023), 2109–2123. https://doi.org/10.1109/TNSE.2023.3243095 doi: 10.1109/TNSE.2023.3243095 |
[20] | Y. Fan, X. Huang, Y. Li, H. Shen, Sampled-data-based secure synchronization control for chaotic Lur'e systems subject to Denial-of-Service attacks, IEEE Trans. Neural Net. Learn. Syst., 2022 (2022). https://doi.org/10.1109/TNNLS.2022.3203382 |
[21] | Y. Xu, Z. G. Wu, Y. J. Pan, J. Sun, Resilient asynchronous state estimation for Markovian jump neural networks subject to stochastic nonlinearities and sensor saturations, IEEE Trans. Cybern., 52 (2022), 5809–5818. https://doi.org/10.1109/TCYB.2020.3042473 doi: 10.1109/TCYB.2020.3042473 |
[22] | L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE, 77 (1989), 257–286. https://doi.org/10.1109/5.18626 doi: 10.1109/5.18626 |
[23] | F. Li, S. Song, J. Zhao, S. Xu, Z. Zhang, Synchronization control for Markov jump neural networks subject to HMM observation and partially known detection probabilities, Appl. Math. Comput., 360 (2019), 1–13. https://doi.org/10.1016/j.amc.2019.04.032 doi: 10.1016/j.amc.2019.04.032 |
[24] | C. Ma, L. Hao, H. Fu, Neural network based asynchronous synchronization for fuzzy hidden Markov jump complex dynamical networks, Complex Intell. Syst., 8 (2022), 1941–1948. https://doi.org/10.1007/s40747-021-00370-5 doi: 10.1007/s40747-021-00370-5 |
[25] | W. Wu, L. He, J. Zhou, Z. Xuan, S. Arik, Disturbance-term-based switching event-triggered synchronization control of chaotic Lurie systems subject to a joint performance guarantee, Commun. Nonlinear Sci., 115 (2022), 106774. https://doi.org/10.1016/j.cnsns.2022.106774 doi: 10.1016/j.cnsns.2022.106774 |
[26] | W. He, T. Luo, Y. Tang, W. Du, Y. C. Tian, F. Qian, Secure communication based on quantized synchronization of chaotic neural networks under an event-triggered strategy, IEEE Trans. Neural Net. Learn. Syst., 31 (2020), 3334–3345. https://doi.org/10.1109/TNNLS.2019.2943548 doi: 10.1109/TNNLS.2019.2943548 |
[27] | Y. Ni, Z. Wang, Y. Fan, X. Huang, H. Shen, Memory-based event-triggered control for global synchronization of chaotic Lur'e systems and its application, IEEE Trans. Syst. Man Cybern. Syst., 53 (2023), 1920–1931. https://doi.org/10.1109/TSMC.2022.3207353 doi: 10.1109/TSMC.2022.3207353 |
[28] | Y. Ni, Z. Wang, Y. Fan, J. Lu, H. Shen, A switching memory-based event-trigger scheme for synchronization of Lur'e systems with actuator saturation: A hybrid Lyapunov method, IEEE Trans. Neural Net. Learn. Syst., 2023. https://doi.org/10.1109/TNNLS.2023.3273917 |
[29] | Z. Gu, S. Yan, J. H. Park, X. Xie, Event-triggered synchronization of chaotic Lur'e systems via memory-based triggering approach, IEEE Trans. Circuits-II, 69 (2022), 1427–1431. https://doi.org/10.1109/TCSII.2021.3113955 doi: 10.1109/TCSII.2021.3113955 |
[30] | W. Tai, D. Zuo, Z. Xuan, J. Zhou, Z. Wang, Non-fragile $\mathcal{L}_{2}-\mathcal{L}_{\infty}$ filtering for a class of switched neural networks, Math. Comput. Simulation, 185 (2021), 629–645. https://doi.org/10.1016/j.matcom.2021.01.014 doi: 10.1016/j.matcom.2021.01.014 |
[31] | P. Selvaraj, O. Kwon, S. Lee, R. Sakthivel, Robust fault-tolerant control design for polynomial fuzzy systems, Fuzzy Sets Syst., 464 (2023), 108406. https://doi.org/10.1016/j.fss.2022.09.012 doi: 10.1016/j.fss.2022.09.012 |
[32] | X. Li, X. Ma, W. Tai, J. Zhou, Designing an event-triggered $\mathcal{H}_{\infty}$ filter with possibly inconsistent modes for Markov jump systems, Digital Signal Process., 139 (2023), 104092. https://doi.org/10.1016/j.dsp.2023.104092 doi: 10.1016/j.dsp.2023.104092 |
[33] | J. Gu, H. Wang, W. Li, Output-feedback stabilization for stochastic nonlinear systems with Markovian switching and time-varying powers, Math. Biosci. Eng., 19 (2022), 11071–11085. http://dx.doi.org/10.3934/mbe.2022516 doi: 10.3934/mbe.2022516 |
[34] | W. Tai, X. Li, J. Zhou, S. Arik, Asynchronous dissipative stabilization for stochastic Markov-switching neural networks with completely-and incompletely-known transition rates, Neural Net., 161 (2023), 55–64. https://doi.org/10.1016/j.neunet.2023.01.039 doi: 10.1016/j.neunet.2023.01.039 |
[35] | R. Vadivel, P. Hammachukiattikul, N. Gunasekaran, R. Saravanakumar, H. Dutta, Strict dissipativity synchronization for delayed static neural networks: An event-triggered scheme, Chaos Solitons Fractals, 150 (2021), 111212. https://doi.org/10.1016/j.chaos.2021.111212 doi: 10.1016/j.chaos.2021.111212 |
[36] | X. Liu, K. Shi, Y. Tang, L. Tang, Y. Wei, Y. Han, A novel adaptive event-triggered reliable $\mathcal{H}_{\infty}$ control approach for networked control systems with actuator faults, Electron. Res. Arch., 31 (2023), 1840–1862. http://dx.doi.org/10.3934/era.2023095 doi: 10.3934/era.2023095 |
[37] | L. Yao, X. Huang, Memory-based adaptive event-triggered secure control of Markovian jumping neural networks suffering from deception attacks, Sci. China Technol. Sci., 66 (2023), 468–480. https://doi.org/10.1007/s11431-022-2173-7 doi: 10.1007/s11431-022-2173-7 |
[38] | J. Zhou, J. Dong, S. Xu, Asynchronous dissipative control of discrete-time fuzzy Markov jump systems with dynamic state and input quantization, IEEE Trans. Fuzzy Syst., 2023. https://doi.org/10.1109/TFUZZ.2023.3271348 |
[39] | S. Dong, M. Liu, Adaptive fuzzy asynchronous control for nonhomogeneous Markov jump power systems under hybrid attacks, IEEE Trans. Fuzzy Syst., 31 (2023), 1009–1019. https://doi.org/10.1109/TFUZZ.2022.3193805 doi: 10.1109/TFUZZ.2022.3193805 |
[40] | J. Wang, X. M. Zhang, Y. Lin, X. Ge, Q. L. Han, Event-triggered dissipative control for networked stochastic systems under non-uniform sampling, Inform. Sci., 447 (2018), 216–228. https://doi.org/10.1016/j.ins.2018.03.003 doi: 10.1016/j.ins.2018.03.003 |
[41] | F. Zeng, Y. Wang, G. Zhuang, F. Chen, Dynamic-memory event-triggered-based controller design for singular stochastic semi-Markov jump systems against multiple cyber-attacks, Nonlinear Dyn., 110 (2022), 1559–1582. https://doi.org/10.1007/s11071-022-07728-5 doi: 10.1007/s11071-022-07728-5 |
[42] | E. K. Boukas, Control of singular systems with random abrupt changes, Springer, Berlin, 2008. |
[43] | X. H. Chang, J. H. Park, J. Zhou, Robust static output feedback $\mathcal{H}_{\infty}$ control design for linear systems with polytopic uncertainties, Syst. Control Lett., 85 (2015), 23–32. https://doi.org/10.1016/j.sysconle.2015.08.007 doi: 10.1016/j.sysconle.2015.08.007 |
[44] | I. Kucukdemiral, X. Han, M. S. Erden, Robust induced $l_{2}-l_{\infty}$ optimal control of discrete-time systems having magnitude and rate-bounded actuators, ISA Trans., 129 (2022), 73–87. https://doi.org/10.1016/j.isatra.2022.02.025 doi: 10.1016/j.isatra.2022.02.025 |
[45] | H. B. Zeng, Z. L. Zhai, Y. He, K. L. Teo, W. Wang, New insights on stability of sampled-data systems with time-delay, Appl. Math. Comput., 374 (2020), 125041. https://doi.org/10.1016/j.amc.2020.125041 doi: 10.1016/j.amc.2020.125041 |
[46] | T. S. Peng, H. B. Zeng, W. Wang, X. M. Zhang, X. G. Liu, General and less conservative criteria on stability and stabilization of T–S fuzzy systems with time-varying delay, IEEE Trans. Fuzzy Syst., 31 (2023), 1531–1541. https://doi.org/10.1109/TFUZZ.2022.3204899 doi: 10.1109/TFUZZ.2022.3204899 |
[47] | W. Wang, H. B. Zeng, K. L. Teo, Y. J. Chen, Relaxed stability criteria of time-varying delay systems via delay-derivative-dependent slack matrices, J. Franklin I., 360 (2023), 6099–6109. https://doi.org/10.1016/j.jfranklin.2023.04.019 doi: 10.1016/j.jfranklin.2023.04.019 |
[48] | H. B. Zeng, Y. He, M. Wu, J. She, New results on stability analysis for systems with discrete distributed delay, Automatica, 60 (2015), 189–192. https://doi.org/10.1016/j.automatica.2015.07.017 doi: 10.1016/j.automatica.2015.07.017 |
[49] | H. B. Zeng, X. G. Liu, W. Wang, A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems, Appl. Math. Comput., 354 (2019), 1–8. https://doi.org/10.1016/j.amc.2019.02.009 doi: 10.1016/j.amc.2019.02.009 |
[50] | H. B. Zeng, H. C. Lin, Y. He, K. L. Teo, W. Wang, Hierarchical stability conditions for time-varying delay systems via an extended reciprocally convex quadratic inequality, J. Franklin I., 357 (2020), 9930–9941. https://doi.org/10.1016/j.jfranklin.2020.07.034 doi: 10.1016/j.jfranklin.2020.07.034 |
[51] | H. C. Lin, H. B. Zeng, X. M. Zhang, W. Wang, Stability analysis for delayed neural networks via a generalized reciprocally convex inequality, IEEE Trans. Neural Net. Learn. Syst., 2022. https://doi.org/10.1109/TNNLS.2022.3144032 |
[52] | W. Wang, H. B. Zeng, A looped functional method to design state feedback controllers for Lurie networked control systems, IEEE/CAA J. Autom. Sinica, 10 (2023), 1093–1095. https://doi.org/10.1109/JAS.2023.123141 doi: 10.1109/JAS.2023.123141 |
[53] | E. Tian, C. Peng, Memory-based event-triggering $\mathcal{H}_{\infty}$ load frequency control for power systems under deception attacks, IEEE Trans. Cybern., 50 (2020), 4610–4618. https://doi.org/10.1109/TCYB.2020.2972384 doi: 10.1109/TCYB.2020.2972384 |