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Abstract: We explore the master-slave chaos synchronization of stochastic time-delay Lur’e systems
within a networked environment. To tackle the challenges posed by potential mode-mismatch behavior and
limited networked channel resources, an asynchronous and adaptive event-triggered (AAET) controller is
employed. A criterion on the stochastic stability andL2−L∞ disturbance-suppression performance of the
synchronization-error system is proposed by using a Lyapunov-Krasovskii functional, a Wirtinger-type
inequality, the Itô formula, as well as a convex combination inequality. Then, a method for determining
the desired AAET controller gains is proposed by decoupling the nonlinearities that arise from the
Lyapunov matrices and controller gains. Finally, the applicability of the AAET control approach is
validated by a Chua’s circuit.
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1. Introduction

Chaotic systems exhibit intricate nonlinear dynamics, characterized by features such as pseudo-
random behavior and a heightened sensitivity to initial conditions. Lur’e systems (LSs), which en-
compass a wide range of chaotic systems such as Chua’s circuits [1] neural networks [2], and n-scroll
attractors [3], have attracted significant research attention in the past decades. Chaos synchronization of
LSs has found applications in diverse areas including image encryption [4–6], cryptography [7, 8] and
confidential communication [9–11]. The existence of time delay and stochastic perturbations are often
unavoidable in a real-world control system and can cause the system to be unstable. Correspondingly,
substantial efforts have been devoted to chaos synchronization of stochastic time-delay LSs, and a few
results have been reported [12–15].
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When implementing chaos synchronization in a networked environment, network-induced phenom-
ena, such as packet losses [16], link failures [17] and cyber attacks [18–20], can introduce inconsistencies
between the system and the controller/filter modes [21]. Therefore, researchers have shown interest in
studying chaos synchronization using asynchronous/mode-unmatched controllers. The hidden Markov
model (HMM), proposed by Rabiner [22], serves as a suitable tool for describing the asynchronous phe-
nomena. Building upon the HMM framework, Li et al. [23] investigated the synchronization control in
Markov-switching neural networks, while Ma et al. [24] explored the drive-response synchronization in
fuzzy complex dynamic networks. Despite these advancements, to our knowledge, there is a scarcity of
research addressing chaos synchronization in stochastic time-delay LSs under asynchronous controllers.

Moreover, in networked control systems, the bandwidth of the communication network is usually
limited, which can impact the control performance significantly. To eliminate unnecessary resource waste
and achieve efficient resource allocation, recent studies on chaos synchronization of LSs have utilized
event-triggered mechanism (ETM)-based control methods. For instance, Wu et al. [25] conducted
research on exponential synchronization and joint performance issues of chaotic LSs by designing a
switching ETM based on perturbation terms. He et al. [26] proposed a secure communication scheme
through synchronized chaotic neural networks based on quantized output feedback ETM. Besides,
several studies on memory-based ETM for chaos synchronization in LSs have been reported in [27–29].
Notably, the above literature employed fixed thresholds in the designed ETM, limiting their ability to
conserve communication resources.

Motivated by the above discussion, we explore the master-slave chaos synchronization of stochastic
time-delay LSs within an asynchronous and adaptive event-triggered (AAET) control framework.
Unlike previous works [25–29], the thresholds of the ETM used can be adjusted adaptively with real-
time system states. The objective is to determine the required AAET controller gains to ensure that
the synchronization-error system (SES) has both stochastic stability (SS) and L2 − L∞ disturbance-
suppression performance (LDSP) [30]. The contributions of this paper are:

1) The AAET controller is first applied to tackle the chaos synchronization issue of stochastic
time-delay LSs;

2) A criterion on the SS and LDSP is proposed using a Lyapunov-Krasovskii functional (LKF), a
Wirtinger-type inequality, the Itô formula, as well as a convex combination inequality (CCI);

3) A method for determining the desired AAET controller is proposed by decoupling the nonlineari-
ties that arise from the Lyapunov matrices and controller gains.

2. Preliminaries

Throughout, we employ Rn1 , Rn1×n2 and N to stand for the n1-dimensional Euclidean space, the
set of all n1 × n2 real matrices, and the set of natural numbers, respectively. The symbol ∥ · ∥ is the
Euclidean vector norm, (·)T represents the matrix transposition, He(G) means the sum of matrix G and
its transpose GT , ∗ indicates the symmetric term in a matrix and E {·} and Prob{·} indicate, respectively,
the expectation and probability operator. Furthermore, we utilize col{·} to denote a column vector,
diag{·} to stand for a block-diagonal matrix and sup{·} and inf{·} to indicate the supremum and infimum
of a set of real numbers, respectively.
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2.1. Physical plant

Consider the following master-slave stochastic time-delay LSs:
dxm(t) =

[
Aα(t)xm(t) + Bα(t)xm(t − τ(t)) +Wα(t)ψ(Fxm(t))

]
dt

+Dα(t)xm(t)dϖ(t),
ym(t) = Cα(t)xm(t),
xm(t) = ξm0, t ∈ [−τ2, 0],

(2.1)


dxs(t) =

[
Aα(t)xs(t) + Bα(t)xs(t − τ(t)) +Wα(t)ψ(Fxs(t))
+u(t) + Eα(t)v(t)

]
dt + Dα(t)xs(t)dϖ(t),

ys(t) = Cα(t)xs(t),
xs(t) = ξs0, t ∈ [−τ2, 0]

(2.2)

with xm(t) ∈ Rnx and xs(t) ∈ Rnx being the state vectors, ξm0 and ξs0 being the initial values, ym(t) ∈ Rny

and ys(t) ∈ Rny being the output vectors, ψ(·) ∈ Rq being the nonlinear term with all components within
[ǵr, g̀r] for r = 1, 2, · · · , q, u(t) ∈ Rq being the control signal to be designed, v(t) being the disturbance
in L2[0, ∞) [31], one-dimension Brownian motion ϖ(t) satisfying E {dϖ(t)} = 0 and E {dϖ2(t)} = dt,
and time-varying delay τ(t) satisfying 0 < τ1 ⩽ τ(t) ⩽ τ2 and µ1 ⩽ τ̇(t) ⩽ µ2, where τ1, τ2, µ1, and µ2

are constants. {α(t), t ⩾ 0} is the Markovian process and belongs to the state space N = {1, 2, · · · ,N}.
The transition rate (TR) matrix and transition probability is given by Π = [πi j]N×N and

Prob {α(t + ς) = j|α(t) = i} =

πi jς + o(ς), i , j.

1 + πiiς + o(ς), i = j,

with ς > 0, limς → 0o(ς)/ς = 0, πi j ⩾ 0, i , j and πii = −
∑N

i=1,i, j πi j [32–34]. Aα(t), Bα(t), Cα(t), Dα(t),
Eα(t) and Wα(t), which can be abbreviated as Ai, Bi, Ci, Di, Ei, and Wi for α(t) = i ∈ N , are matrices
with appropriate dimensions.

2.2. Adaptive event-triggered mechanism

In order to minimize information transmission, the adaptive ETM is employed to determine whether
the current sampled data should be transmitted to the controller, as illustrated in Figure 1. Let tkh
denote the latest transmission time of the output signal, where h > 0 is the sampling period. y(tkh) and
y(t) denote the latest output signal and the current one, respectively. Defining e(t) = y(tkh) − y(t), the
event-triggered condition is designed as follows:

t0h = 0, tk+1h = tkh + inf
p∈N

{
ph|eT (t)Ψie(t) < ρ(t)yT (tkh)Ψiy(tkh)

}
, t ∈ [tkh, tk+1h), (2.3)

where Ψi > 0 is the trigger matrix and ρ(t) is a threshold parameter adjusted by an adaptive law as

ρ(t) = ρ1 + (ρ2 − ρ1)
2
π

arccot(κ∥e(t)∥2), (2.4)

where ρ1 and ρ2 are predetermined parameters with 0 < ρ1 ⩽ ρ2 < 1, κ is a positive scalar used to adjust
the sensitivity of the function ∥e(k)∥2.
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Remark 1. The value of ρ(t) has a certain influence on the trigger condition (2.3). The trigger condition
will be stricter with the value of ρ(t) being higher, resulting in less data being transmitted to the
controller. Conversely, the trigger condition will be relaxed with the value of ρ(t) being lower, allowing
more data to be transmitted. Furthermore, it is worth to mention that, when ρ(t) takes a constant on
(0, 1], the adaptive ETM will be transformed into the periodic ETM (PETM); when ρ(t) is set as 0, it
will be transformed into the sampled-data mechanism (SDM).

Remark 2. The arccot function, incorporated in the adaptive law (2.4), enables the threshold parameter
of ETM to be dynamically adjusted as the output error changes within the range of (ρ1, ρ2]. The presence
of the arccot function results in an inverse relationship between the threshold parameter ρ(t) and the
output error e(t). It can be observed that ρ(t) tends to ρ2 as ∥e(t)∥2 approaches 0, and ρ(t) tends to ρ1 as
∥e(t)∥2 approaches∞.

Master LS

Slave LS

Sensor

Sensor

Sampler

Adaptive ETM

generator
ControllerZOHActuator

-

+

Figure 1. Master-Slave stochastic time-delay LSs.

2.3. Controller

Consider the following controller:

u(t) = Kβ(t) (ym(tkh) − ys(tkh)) , t ∈ [tkh, tk+1h). (2.5)

Unlike [35–37], the controller is based on output feedback, which is known to be more easily imple-
mented. In the controller, we introduce another stochastic variable with state space M = {1, 2, · · · ,M}
to describe this stochastic process {β(t), t ⩾ 0}. The conditional transition probability (CTP) matrix is
signed as Φ = [φiι]N×M with

φiι = Prob {β(t) = ι|α(t) = i}

and
∑M
ι=1 φiι = 1. Kβ(t), which will be abbreviated as Kι, is the controller gain to be designed. Note that

{{α(t), t ⩾ 0}{β(t), t ⩾ 0}} constitutes a HMM [38, 39].
Define x(t) = xm(t) − xs(t). Then, from (2.1), (2.2) and (2.5), one can establish the following SES:

dx(t) = F (t)dt + G (t)dϖ(t), t ∈ [tkh, tk+1h), (2.6)

Electronic Research Archive Volume 31, Issue 9, 5589–5608.
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where F (t) = (Ai − KιCi)x(t) + Bix(t − τ(t)) +Wiψ̃(Fx(t)) − Kιe(t) − Eiv(t), G (t) = Dix(t), ψ̃(Fx(t)) =
ψ (F(x(t) + xs(t))) − ψ(Fxs(t)) that satisfies

ǵr ⩽
ψr( f T

r (x + xs)) − ψr( f T
r xs)

f T
r x

=
ψ̃r( f T

r x)
f T
r x

⩽ g̀r,∀x, xs, r = 1, 2, · · · , q, (2.7)

where f T
r indicates the r-th row of F. From (2.7), one can get[

ψ̃r( f T
r x) − ǵr f T

r x
] [
ψ̃r( f T

r x) − g̀r f T
r x
]
⩽ 0. (2.8)

Remark 3. The constants ǵr and g̀r can be taken as positive, negative, or zero. By allowing ǵr and g̀r to
have a wide range of values, the sector bounded nonlinearity can flexibly adapt to the needs of different
systems and provide a more flexible regulation and control mechanism.

To streamline the subsequent analysis, we define

ζ(t) = col {x(t), x(t − τ1), x(t − τ(t)), x(t − τ2), ϕ1, ϕ2, ϕ3} ,

ϱd =
[

0n×(d−1)n In×n 0n×(9−d)n

]
(d = 1, 2, · · · , 9),

ϕ1 =
1
τ1

∫ t

t−τ1

x(s) ds, ϕ2 =
1

τ(t) − τ1

∫ t−τ1

t−τ(t)
x(s) ds,

ϕ3 =
1

τ2 − τ(t)

∫ t−τ(t)

t−τ2

x(s) ds, τ12 = τ2 − τ1,

and provide two definitions and four lemmas.

Definition 1. The SES (2.6) is said to be with SS if there exists a scalarM(α0, ξ(·)) satisfying

E

{∫ ∞

0
∥x(t)∥2 dt|α0, x(t) = ξ0, t ∈ [−τ2, 0]

}
<M(α0, ξ(·))

when v(t) ≡ 0.

Definition 2. Under the zero initial condition, for a given scalar γ > 0, the SES (2.6) is said to have a
LDSP if

E

{
sup
t⩾0
{∥y(t)∥2}

}
⩽ γ2E

{∫ t

0
∥v(s)∥2ds

}
holds for v(t) , 0.

Lemma 1. Given stochastic differential equation

dx(t) = F (t)dt + G (t)dϖ(t), (2.9)

where ϖ(t) is one-dimension Brownian motion, for scalars a, b (b > a), and a matrix R, one has∫ b

a
F T (s)RF (s) ds ⩾

1
b − a

ΩT (a, b)R̃Ω(a, b) +
2

b − a
ΩT (a, b)R̃µ(a, b),

where R̃ = diag{R, 3R} and

Ω(a, b) =
 x(b) − x(a)

x(b) + x(a) − 2
b−a

∫ b

a
x(s) ds

 , µ(a, b) =

 −
∫ b

a
G (s) dϖ(s)

1
b−a

∫ b

a
(b + a − 2s)G (s) dϖ(s)

 .
Electronic Research Archive Volume 31, Issue 9, 5589–5608.



5594

Remark 4. Following the approaches used in [40,41], the Wirtinger-type inequality of Lemma 1 can be
readily established. It should be noted that the integral term in µ(a, b) should be 1

b−a

∫ b

a
(b+a−2s)G (s) dϖ(s)

instead of 1
b−a

∫ b

a
(b − a + 2s)G (s) dϖ(s).

Lemma 2. [40] Consider the stochastic differential equation (2.9). For n × n real matrix R > 0 and
the piecewise function τ(t) satisfying 0 < τ1 ⩽ τ(t) ⩽ τ2, where τ1 and τ2 are two constants, and for

S ∈ R2n×2n satisfying
[

R̃ S T

∗ R̃

]
⩾ 0 with R̃ = diag{R, 3R}, the following CCI holds:

−τ12

∫ t−τ1

t−τ2

F T (s)RF (s) ds ⩽ −2℧T
2 S℧1 −℧

T
1 R̃℧1 −℧

T
2 R̃℧2 − 2℘(dϖ(t)),

where

℧1 = Ω(t − τ(t), t − τ1),℧2 = Ω(t − τ2, t − τ(t)),

℘(dϖ(t)) =
τ12

τ(t) − τ1
℧T

1 R̃µ(t − τ(t), t − τ1) +
τ12

τ2 − τ(t)
℧T

2 R̃µ(t − τ2, t − τ(t)).

Lemma 3. [42] For any two matrices G and R > 0 with appropriate dimensions,

−GTR−1G ⩽ R − GT − G

holds true.

Lemma 4. [43] For a given scalar ε > 0, suppose there are matrices Λ, U, V and W ensuring[
Λ U + εV
∗ −εX − εXT

]
< 0.

Then, one gets
Λ + He(UX−1VT ) < 0.

3. Main result

In contrast to the commonH∞ performance, LDSP imposes a limitation on the energy-to-peak gain
from disturbance to the output signal, ensuring it does not exceed a specified disturbance-suppression
index [44]. In this paper, we intend to develop an asynchronous controller in (2.5) with the adaptive
ETM in (2.3) to guarantee the SS and LDSP of SES (2.6). First, we give a condition to ensure the SS
and LDSP of SES (2.6).

Theorem 1. Given scalars γ > 0 and ρ2, suppose that there exist matrices Pi > 0, Q1 > 0, Q2 > 0,
Q3 > 0, R1 > 0, R2 > 0, Ψi > 0, diagonal matrix L > 0, and matrices S , Kι, for any i ∈ N , ι ∈ M
satisfying

Electronic Research Archive Volume 31, Issue 9, 5589–5608.
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[
R̃2 S T

∗ R̃2

]
⩾ 0, (3.1)

CT
i Ci − Pi < 0, (3.2)

Λi =

M∑
c=1

φiι

[ Λ1,1
iι Λ1,2

i
∗ −γ2I

]
+

[
ÃT

iι
−ET

i

] (
τ2

1R1 + τ
2
12R2

) [ ÃT
iι
−ET

i

]T  < 0. (3.3)

Then the SES (2.6) has the SS and LDSP, where

Λ1,1
iι =

 Υ
1,1
iι Υ1,2

i Υ1,3
iι

∗ −He(L) 0
∗ ∗ (ρ2 − 1)Ψi

 , Λ1,2
i =


−ϱT

1 PiEi

0
0

 ,
Υ1,1

iι = He
(
ϱT

1 PiAiι − ϱ
T
1 FTǴT LG̀Fϱ1

)
+ ϱT

1 (DT
i PiDi + P̃i)ϱ1

+ Q̃ − 2GT
2 SG1 − G

T
0 R̃1G0 − G

T
1 R̃2G1 − G

T
2 R̃2G2 + ϱ

T
1 ρ2CT

i ΨiCiϱ1,

Υ1,2
i = ϱ

T
1 PiWi + ϱ

T
1 FT (ǴT + FT )L, Υ1,3

iι = ϱ
T
1 ρ2CT

i Ψi − ϱ
T
1 PiKι,

R̃d = diag{Rd, 3Rd} (d = 1, 2), Ãiι =
[

Aiι Wi −Kι

]
,

Q̃ = diag {Q1,−Q1 + Q2, (1 − µ1)Q3 − (1 − µ2)Q2,−Q3, 03n×3n} ,

Aiι =
[

Ai − KιCi 0 Bi 0 0 0 0
]
, P̃i =

N∑
i=1

πi jP j,

G0 =

[
ϱ1 − ϱ2

ϱ1 + ϱ2 − 2ϱ5

]
, G1 =

[
ϱ2 − ϱ3

ϱ2 + ϱ3 − 2ϱ6

]
, G2 =

[
ϱ3 − ϱ4

ϱ3 + ϱ4 − 2ϱ7

]
.

Proof. Select a LKF candidate as:

V(t, x(t), α(t), β(t)) =
4∑

k=1

Vk(t, x(t), α(t), β(t)), (3.4)

where

V1(t, x(t), α(t), β(t)) = xT (t)Pα(t)x(t),

V2(t, x(t), α(t), β(t)) =
∫ t

t−τ1

xT (s)Q1x(s) ds +
∫ t−τ1

t−τ(t)
xT (s)Q2x(s) ds +

∫ t−τ(t)

t−τ2

xT (s)Q3x(s) ds,

V3(t, x(t), α(t), β(t)) = τ1

∫ t

t−τ1

∫ t

v
F T (s)R1F (s) ds dv + τ12

∫ t−τ1

t−τ2

∫ t

v
F T (s)R2F (s) ds dv.

Assume that α(t) = i, α(t + ς) = j, β(t) = ι and define L as the weak infinitesimal operator of the
stochastic process {x(t), α(t)}. Then, along SES (2.6), we get

L V1(t, x(t), i, ι) = 2xT (t)PiF (t) + G T (t)PiG (t) + xT (t)
N∑

i=1

πi jP jx(t)

Electronic Research Archive Volume 31, Issue 9, 5589–5608.



5596

= ζT (t)
[
He(ϱT

1 PiAiι) + ϱT
1

(
DT

i PiDi + P̃i

)
ϱ1

]
ζ(t)

+ 2ζT (t)ϱT
1 PiWiψ̃(Fx(t)) − 2ζT (t)ϱT

1 PiKιe(t) − 2ζT (t)ϱT
1 PiEiv(t), (3.5)

L V2(t, x(t), i, ι) = xT (t)Q1x(t) + xT (t − τ1)(−Q1 + Q2)x(t − τ1)
+ (1 − τ̇(t))xT (t − τ(t))(−Q2 + Q3)x(t − τ(t)) − xT (t − τ2)Q3x(t − τ2)
⩽ ζT (t)Q̃ζ(t), (3.6)

L V3(t, x(t), i, ι) = F T (t)
(
τ2

1R1 + τ
2
12R2

)
F (t)

− τ1

∫ t

t−τ1

F T (s)R1F (s) ds − τ12

∫ t−τ1

t−τ2

F T (s)R2F (s) ds. (3.7)

Define an augmented vector as ζ̃(t) = col{ζ(t), ψ̃(Fx(t)), e(t)}. We can derive that

F T (t)
(
τ2

1R1 + τ
2
12R2

)
F (t) =

[
ζ̃(t)
v(t)

]T [
ÃT

iι
−ET

i

] (
τ2

1R1 + τ
2
12R2

) [ ÃT
iι
−ET

i

]T [
ζ̃(t)
v(t)

]
. (3.8)

Based on (3.1), applying Lemmas 1 and 2 to the integral terms in (3.7) yields

−τ1

∫ t

t−τ1

F T (s)R1F (s) ds ⩽ −ζT (t)GT
0 R̃1G0ζ(t) − 2ζT (t)GT

0 R̃1µ(t − τ1, t), (3.9)

−τ12

∫ t−τ1

t−τ2

F T (s)R2F (s) ds ⩽ ζT (t)
[
−2GT

2 SG1 − G
T
1 R̃2G1 − G

T
2 R̃2G2

]
ζ(t) − 2℘(dϖ(t)), (3.10)

where ℘(dϖ(t)) = τ12
τ(t)−τ1

ζT (t)GT
1 R̃2µ(t − τ(t), t − τ1) + τ12

τ2−τ(t)ζ
T (t)GT

2 R̃2µ(t − τ2, t − τ(t)). Recalling
(3.7)–(3.10), we have

L V3(t, x(t), i, ι) ⩽
[
ζ̃(t)
v(t)

]T [
ÃT

iι
−ET

i

] (
τ2

1R1 + τ
2
12R2

) [ ÃT
iι
−ET

i

]T [
ζ̃(t)
v(t)

]
+ ℘̃(dϖ(t))

+ ζT (t)
[
−GT

0 R̃1G0 − 2GT
2 SG1 − G

T
1 R̃2G1 − G

T
2 R̃2G2

]
ζ(t), (3.11)

where ℘̃(dϖ(t)) = −2ζT (t)GT
0 R̃1µ(t − τ1, t) − 2℘(dϖ(t)). It follows from (2.8) that

−2
(
ψ̃(Fx(t)) − ǴFx(t)

)T
L
(
ψ̃(Fx(t)) − G̀Fx(t)

)
⩾ 0,

which means

0 ⩽ −2
(
ψ̃(Fx(t)) − ǴFϱ1ζ(t)

)T
L
(
ψ̃(Fx(t)) − G̀Fϱ1ζ(t)

)
= −ψ̃T (Fx(t))He(L)ψ̃(Fx(t)) + 2ζT (t)ϱT

1 FT (ǴT + G̀T )Lψ̃(Fx(t))

− ζT (t)He(ϱT
1 FTǴT LG̀Fϱ1)ζ(t). (3.12)

In addition, recalling the adaptive ETM (2.3), we obtain

0 ⩽ ρ(t)yT (tkh)Ψiy(tkh) − eT (t)Ψie(t)

⩽ ρ2
[
y(t) + e(t)

]T
Ψi
[
y(t) + e(t)

]
− eT (t)Ψie(t)

Electronic Research Archive Volume 31, Issue 9, 5589–5608.
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= ρ2

[
xT (t)CT

i ΨiCix(t) + 2xT (t)CT
i Ψie(t) + eTΨie(t)

]
− eT (t)Ψie(t)

= ζT (t)ϱT
1 ρ2CT

i ΨiCiϱ1ζ(t) + 2ζT (t)ϱT
1 ρ2CT

i Ψie(t) + eT (t)(ρ2 − 1)Ψie(t). (3.13)

Combining (3.5), (3.6), (3.11), (3.12) and (3.13), we find that

L V(t, x(t), i, ι) ⩽ ζT (t)Υ1,1
iι ζ(t) + 2ζT (t)Υ1,2

i ψ̃(Fx(t)) + 2ζT (t)Υ1,3
iι e(t) − 2ζT (t)ϱT

1 PiEiv(t)
+ eT (t)(ρ2 − 1)Ψie(t) − ψ̃T (Fx(t))He(L)ψ̃(Fx(t)) + ℘̃(dϖ(t)

+

[
ζ̃(t)
v(t)

]T [
ÃT

iι
−ET

i

] (
τ2

1R1 + τ
2
12R2

) [ ÃT
iι
−ET

i

]T [
ζ̃(t)
v(t)

]
. (3.14)

Noting E {℘̃(dϖ(t))} = 0, we can calculate E {L V(t, x(t), i, ι)} by (3.14) that

E {L V(t, x(t), i, ι)}

⩽

[
ζ̃(t)
v(t)

]T D∑
c=1

φiι

[ Λ1,1
iι Λ2,2

i
∗ 0

]
+

[
ÃT

iι
−ET

i

] (
τ2

1R1 + τ
2
12R2

) [ ÃT
iι
−ET

i

]T  [ ζ̃(t)
v(t)

]T
. (3.15)

Next, we discuss the SS of (2.6) under the condition of v(t) ≡ 0 and the LDSP of (2.6) under the
condition of v(t) , 0, respectively.

i) v(t) ≡ 0, we can get the following inequality from (3.15):

E {L V(t, x(t), i, ι)} ⩽ ζ̃T (t)Λ0
i ζ̃(t),

where Λ0
i =
∑M

c=1 φiι

(
Λ1,1

iι + ÃT
iι

(
τ2

1R1 + τ
2
12R2

)
Ãiι

)
. From (3.3), we can find that there exists a > 0 such

that for any
E {L V(t, x(t), i, ι)} ⩽ −a∥x(t)∥2, i ∈ N .

Utilizing the Itô formula, we obtain

E {V(t, x(t), α(t))} − E {V(0, x0, α0)} = E

{∫ t

0
V(s, x(s), α(s)) ds

}
⩽ −aE

{∫ t

0
∥x(s)∥2 ds

}
,

which means

E

{∫ t

0
∥x(s)∥2 ds

}
⩽

1
a

V(0, x0, α0).

Thus, the SS of (2.6) is proved.
ii) v(t) , 0, under the zero initial condition, defining J(t) = yT (t)y(t) − γ2

∫ t

0
vT (s)v(s) ds leads to

J(t) = yT (t)y(t) − γ2
∫ t

0
vT (s)v(s) ds + E

{∫ t

0
L V(s, x(s), i, ι)ds

}
− (V(t, x(t), i, ι) − V(0, x0, α0, β0))

⩽ xT (t)(CT
i Ci − Pi)x(t) +

∫ t

0

[
ζ̃(s)
v(s)

]T
Λi

[
ζ̃(s)
v(s)

]
ds.

From conditions (3.2) and (3.3), we know that J(t) ⩽ 0. According to Definition 2, the SES (2.6) has a
LDSP γ. □
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On the basis of Theorem 1, a design method of the AAET controller can be proposed.

Theorem 2. Given scalars ε, ρ2 and γ > 0, suppose that there exist matrices Pi > 0, Q1 > 0, Q2 > 0,
Q3 > 0, R1 > 0, R2 > 0, Ψi > 0, diagonal matrix L > 0, matrices S , Xι, Yι, and Tiι for any i ∈ N ,
ι ∈M satisfying (3.1), (3.2), and [

−He(Tiι + Yι) Pi − Xι − εYT
ι

∗ −εXι − εXT
ι

]
< 0, (3.16)

Θi =

M∑
c=1

φiι


Θ1,1

iι Λ1,2
i Θ1,3

i Θ1,4
i

∗ −γ2I Θ2,3
i Θ2,4

i
∗ ∗ Θ3,3

i 0
∗ ∗ ∗ Θ4,4

i

 < 0, (3.17)

where

Θ1,1
iι =

 Υ̃
1,1
iι Υ1,2

i Υ̃1,3
iι

∗ −He(L) 0
∗ ∗ (ρ2 − 1)Ψi

 , Λ1,2
i =


−ϱT

1 PiEi

0
0

 ,
Θ1,3

i =
[
τ1
√
φi1ℵ̃

T
i1 · · · τ1

√
φiMℵ̃

T
iM

]
,

Θ1,4
i =

[
τ12
√
φi1ℵ̃

T
i1 · · · τ12ℵ̃

T
iM

]
,

Θ2,3
i =

[
−τ1
√
φi1ET

i Pi · · · −τ1
√
φiMET

i Pi

]
,

Θ2,4
i =

[
−τ12
√
φi1ET

i Pi · · · −τ12
√
φiMET

i Pi

]
,

Θ3,3
i = diag {R1 − 2Pi, · · · ,R1 − 2Pi} , Θ

4,4
i = diag {R2 − 2Pi, · · · ,R2 − 2Pi} ,

Υ̃1,1
iι = He

(
ϱT

1ℵiι − ϱ
T
1 FTǴT LG̀Fϱ1

)
+ ϱT

1 (DT
i PiDi + P̃i)ϱ1

+ Q̃ − 2GT
2 SG1 − G

T
0 R̃1G0 − G

T
1 R̃2G1 − G

T
2 R̃2G2 + ϱ

T
1 ρ2CT

i ΨiCiϱ1,

Υ1,2
i = ϱ

T
1 PiWi + ϱ

T
1 FT (ǴT + G̀T )L, Υ̃1,3

iι = ϱ
T
1 ρ2CT

i Ψi + ϱ
T
1 Tiι,

ℵ̃iι =
[
ℵiι PiWi Tiι

]
, ℵiι =

[
PiAi + TiιCi 0 PiBi 0 0 0 0

]
,

P̃i =

N∑
i=1

πi jP j, R̃d = diag{Rd, 3Rd} (d = 1, 2),

Q̃ = diag {Q1,−Q1 + Q2, (1 − µ1)Q3 − (1 − µ2)Q2,−Q3, 03n×3n} ,

G0 =

[
ϱ1 − ϱ2

ϱ1 + ϱ2 − 2ϱ5

]
, G1 =

[
ϱ2 − ϱ3

ϱ2 + ϱ3 − 2ϱ6

]
, G2 =

[
ϱ3 − ϱ4

ϱ3 + ϱ4 − 2ϱ7

]
.

Then, AAET controller (2.5) with gains

Kι = X−1
ι Yι, ι ∈M (3.18)

enables the SES (2.6) to have both SS and LDSP.

Proof. According to (3.18), we have −PiKι < Tiι by applying Lemma 4 to (3.16). Then, we can conclude
that PiAiι < ℵiι and PiÃiι < ℵ̃iι lead to

Λ1,1
iι ⩽ Θ

1,1
iι , (3.19)
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Λ1,3
i ⩽ Θ

1,3
i , (3.20)

Λ1,4
i ⩽ Θ

1,4
i , (3.21)

where

Λ1,3
i =

[
τ1
√
φi1ÃT

i1Pi · · · τ1
√
φiDÃT

iDPi

]
, Λ1,4

i =
[
τ12
√
φi1ÃT

i1Pi · · · τ12
√
φiDÃT

iDPi

]
.

Based on Lemma 3, we can get that −PiR−1
1 Pi ⩽ R1 − 2Pi and −PiR−1

2 Pi ⩽ R2 − 2Pi, which means

Λ3,3
i ⩽ Θ

3,3
i , (3.22)

Λ4,4
i ⩽ Θ

4,4
i , (3.23)

where Λ3,3
i = diag

{
−PiR−1

1 Pi, · · · ,−PiR−1
1 Pi

}
, Λ4,4

i = diag
{
−PiR−1

2 Pi, · · · ,−PiR−1
2 Pi

}
. Due to φiι > 0,

combining (3.19)–(3.23) yields

Λ0
i ⩽ Θi < 0, (3.24)

where

Λ0
i =

D∑
c=1

φiι


Λ1,1

iι Λ1,2
i Λ1,3

i Λ1,4
i

∗ −γ2I Θ2,3
i Θ2,4

i
∗ ∗ Λ3,3

i 0
∗ ∗ ∗ Λ4,4

i

 .
By applying Schur’s complement to (3.24), we find that (3.3) can be guaranteed by (3.17). The proof
is completed. □

Remark 5. The coupling between parameter Pi and the controller gain Kι in Theorem 1 is addressed by
introducing a slack matrix Tiι. It is worth mentioning that directly setting the coupling term KιP−1

i equal
to the matrix Tiι (i.e. Kι = TiιPi) would result in non-uniqueness of controller gains Kι. In this paper, we
introduce Tiι such that −PiKι < Tiι. By designing the controller gains, as given in equation (3.18), and
combining it with Lemma 4, the aforementioned issue is avoided.

Remark 6. Theorem 1 provides a analysis result of the SS and LDSP for SES (2.6) based on HMM,
while Theorem 2 presents a design scheme for the needed AAET controller. The proofs of these theorems
involve the use of the LKF in (3.4), Itô formula, as well as the inequalities in Lemmas 1-4. To further
reduce the conservatism of the obtained results, one may refer to the augmented LKFs in [45, 46], the
free-matrix-based approaches in [47–49], the refined CCIs in [50,51] and the decoupling methods in [52].

4. Simulation example

Example 1. In this example, we consider a three-mode Chua’s circuit given by
dx1(t) =

[
ai (x2(t) − m1x1(t) + (m1 − m0)ψ1(x1(t))) − cix1(t − τ(t))

]
dt + di (x2(t) − m1x1(t)) dϖ(t),

dx2(t) = [x1(t) − x2(t) + x3(t) − cix1(t − τ(t))] dt + 0.1 (x1(t) − x2(t) + x3(t)) dϖ(t),
dx3(t) = [−bix2(t) + ci (2x1(t − τ(t)) − x3(t − τ(t)))] dt − m3x2(t)dϖ(t),
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where parameters m0 = −
1
7 , m1 =

2
7 , m3 = 0.1, and ai, bi, ci, di (i = 1, 2, 3) are listed in Table 1.

The nonlinear characteristics ψ1(x1(t)) = 1
2(|x1(t) + 1| − |x1(t) − 1|) belonging to sector [0, 1], and

ψ2(x2(t)) = ψ3(x3(t)) = 0. The circuit model can be re-expressed as LS (2.1) with

Ai =


−aim1 ai 0

1 −1 1
0 −bi 0

 , Bi =


−ci 0 0
−ci 0 0
2ci 0 −ci

 ,
Di =


−dim1 di 0

0.1 −0.1 0.1
0 −m3 0

 ,Ci =


−1 0 0
0 −1 0
0 0 −1

 ,
Wi =


ai(m1 − m0) 0 0

0 0 0
0 0 0

 , Ei =
[

0.1 0 0
]T
.

Table 1. The parameters ai, bi, ci, di in the Chua’s circuit.

i ai bi ci di

1 9 14.28 0.1 0.01
2 8 10 0.05 0.01
3 9 14 0.15 0.01

The delay parameters are specified as τ1 = 0.1, τ2 = 0.18, µ1 = 0.1 and µ2 = 0.26, the parameters
related to the adaptive law are given by ρ1 = 0.1, ρ2 = 0.9, κ = 0.5 and the TR and CTP matrices are
chosen as

Π =


−5 2 3
3 −6 3
4 1 −5

 , Φ =


0.4 0.3 0.3
0.2 0.3 0.5
0.4 0.5 0.1

 .
By solving the LMIs in Theorem 2, the optimal LDSP is found to be γ∗ = 0.0553, and the controller

gains and adaptive ETM weight matrices are calculated as

K1 =


−2.1803 −3.4217 −0.2840
−0.3775 −0.1768 0.0748
0.2038 −1.8311 −2.1877

 ,K2 =


−2.1223 −3.3641 −0.3704
−0.4417 −0.4562 −0.0072
0.2660 −0.9016 −2.0248

 ,
K3 =


−2.1969 −2.9252 −0.3438
−0.4544 −0.0631 0.0453
0.2441 −1.2244 −2.1906

 ,Ψ1 =


12.3581 6.0393 −0.0059
6.0393 24.5561 5.5930
−0.0059 5.5930 12.6577

 ,
Ψ2 =


12.3187 9.0377 1.0279
9.0377 22.2312 4.1752
1.0279 4.1752 12.0248

 ,Ψ3 =


12.0007 9.9128 0.6669
9.9128 24.4770 4.4405
0.6669 4.4405 12.1092

 .
We set the initial states as xm(t) =

[
−0.2 −0.3 0.2

]T
, xs(t) =

[
0.25 0.35 0.35

]T
(t ∈ [−τ2, 0])

and the disturbance as v(t) = 0.1sint(t). The sampling period is chosen to be h = 0.05s. A possible
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mode evolution of system and AAET controller is drawn in Figure 2. When there is no controller applied,
we can find from Figure 3 that the system is unstable. By utilizing the devised AAET controller shown
in Figure 4, the state response curves of the SES (2.6) are exhibited in Figure 5. It can be seen that
the synchronization error between the master and slave LSs approaches zero over time, indicating
that the master and slave LSs can successfully achieve synchronization under the presented AAET
controller. The trajectory of the adaptive law and release time intervals between two trigger moments
are depicted in Figures 6 and 7, respectively. Based on the simulation results, it can be observed that as
the SES (2.6) stabilizes, the threshold function gradually converges to a fixed value. Define the function

γ(t) =
√

E
{
supt⩾0{∥y(t)∥2}

}
/E
{∫ t

0
∥v(s)∥2ds

}
for LDSP. Then the trajectory of γ(t) under zero initial

condition is depicted in Figure 8. It is evident from Figure 8 that the maximum value of γ(t) is 0.0047,
which is lower than γ∗ = 0.0553.
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Figure 2. Possible mode evolution processes of the LSs and AAET controller.
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Figure 3. Trajectory of SES (2.6) without control.
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Figure 4. Trajectory of AAET controller (2.5).
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Figure 5. Trajectory of SES (2.6) with control.
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Figure 6. Trajectory of the adaptive law.
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Figure 7. Release time intervals.
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Figure 8. Trajectory of γ(t)

Table 2 presents the data transmission rates under different triggering mechanisms in the same
conditions. The comparison demonstrates that the adaptive ETM employed in this study can effectively
reduce data transmission to achieve the goal of conserving channel resources.

Table 2. The data transmission rates under different triggering mechanisms.

SDM in [14] PETM in [53] Adaptive ETM in this paper
Number of transmitted data 500 236 194
Data transmission rates 100% 47.20% 38.80%

5. Conclusions

The master-slave chaos synchronization of stochastic time-delay LSs (2.1) and (2.2) within a
networked environment has been considered. To tackle the challenges posed by potential mode-
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mismatch behavior and limited networked channel resources, the AAET controller in (2.5) has been
employed. A criterion on the SS and LDSP of the SES (2.6) has been proposed in Theorem 1 using a
LKF, a Wirtinger-type inequality, the Itô formula, as well as a CCI. Then, a method for determining the
desired AAET controller gains has been proposed in Theorem 2 by decoupling the nonlinearities that
arise from the Lyapunov matrices and controller gains. Finally, simulation results have confirmed that the
designed controller can achieve chaos synchronization between the master LS (2.1) and slave LS (2.2),
while significantly reducing data transmission.
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