Research article

Global stability of traveling fronts of a diffusion system with the Belousov-Zhabotinskii reaction

  • Received: 30 July 2024 Revised: 21 August 2024 Accepted: 23 August 2024 Published: 29 August 2024
  • MSC : 35K40, 35K57, 35C07

  • This paper studied the asymptotic stability of traveling fronts of the Belousov-Zhabotinskii (BZ for short) system. Under the condition that the initial perturbation decays as $ |x|\rightarrow \infty $, we came to the conclusion that the traveling fronts were globally exponentially stable. The main method was the super and sub-solutions combined with a squeezing technique.

    Citation: Hong-Tao Niu. Global stability of traveling fronts of a diffusion system with the Belousov-Zhabotinskii reaction[J]. AIMS Mathematics, 2024, 9(9): 25261-25283. doi: 10.3934/math.20241233

    Related Papers:

  • This paper studied the asymptotic stability of traveling fronts of the Belousov-Zhabotinskii (BZ for short) system. Under the condition that the initial perturbation decays as $ |x|\rightarrow \infty $, we came to the conclusion that the traveling fronts were globally exponentially stable. The main method was the super and sub-solutions combined with a squeezing technique.



    加载中


    [1] X. F. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equ., 2 (1997), 125–160. http://doi.org/10.57262/ade/1366809230 doi: 10.57262/ade/1366809230
    [2] T. T. Du, G. B. Zhang, Y. C. Hao, Y. Q. Shu, Existence and stability of traveling wavefronts for a nonlocal delay Belousov-Zhabotinskii system, Appl. Anal., 102 (2022), 4828–4850. https://doi.org/10.1080/00036811.2022.2139690 doi: 10.1080/00036811.2022.2139690
    [3] Z. Du, Q. Qiao, The dynamics of traveling waves for a nonlinear Belousov-Zhabotinskii system, J. Differ. Equations, 269 (2020), 7214–7230. http://doi.org/10.1016/j.jde.2020.05.033 doi: 10.1016/j.jde.2020.05.033
    [4] R. J. Field, E. Koros, R. M. Noyes, Oscillations in chemical systems. Ⅱ. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system, J. Am. Chem. Soc., 94 (1972), 8649–8664. http://doi.org/10.1021/ja00780a001 doi: 10.1021/ja00780a001
    [5] R. J. Field, R. M. Noyes, Oscillations in chemical systems. Ⅳ. Limit cycle behavior in a model of a real chemical reaction, J. Chem. Phys., 60 (1974), 1877–1884. http://doi.org/10.1063/1.1681288 doi: 10.1063/1.1681288
    [6] B. S. Han, M. X. Chang, W. J. Bo, Traveling waves for a Belousov-Zhabotinskii reaction-diffusion system with nonlocal effect, Nonlinear Anal.-Real, 64 (2022), 103423. http://doi.org/10.1016/j.nonrwa.2021.103423 doi: 10.1016/j.nonrwa.2021.103423
    [7] K. Hasík, J. Kopfová, P. Nábělková, S. Trofimchuk, Bistable wavefronts in the delayed Belousov-Zhabotinskii reaction, SIAM J. Math. Anal., 56 (2024), 1197–1222. https://doi.org/10.1137/23M1569885 doi: 10.1137/23M1569885
    [8] X. J. Hou, Y. Li, Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations, Discrete Contin. Dyn.-A, 15 (2006), 681–701. http://doi.org/10.1016/j.jde.2023.08.013 doi: 10.1016/j.jde.2023.08.013
    [9] Y. Kan-on, Q. Fang, Stability of monotone traveling waves for competition-diffusion equations, JPN J. Ind. Appl. Math., 13 (1996), 343–349. http://doi.org/10.1007/bf03167252 doi: 10.1007/bf03167252
    [10] T. Kapitula, On the stability of traveling waves in weighted $L^{\infty}$ spaces, J. Differ. Equations, 112 (1994), 179–215. http://doi.org/10.1006/jdeq.1994.1100 doi: 10.1006/jdeq.1994.1100
    [11] K. Kirchgässner, On the nonlinear dynamics of travelling fronts, J. Differ. Equations, 96 (1992), 256–278. http://doi.org/10.1016/0022-0396(92)90153-E doi: 10.1016/0022-0396(92)90153-E
    [12] D. Kessler, H. Levine, Stability of traveling waves in the Belousov-Zhabotinskii reaction, Phys. Rev. A, 41 (1990), 5418–5430. https://doi.org/10.1103/PhysRevA.41.5418 doi: 10.1103/PhysRevA.41.5418
    [13] Y. Li, Y. P. Wu, Stability of travelling waves with noncritical speeds for double degenerate Fisher-type equations, Discrete Contin. Dyn.-B, 10 (2008), 149–170. https://doi.org/10.3934/dcdsb.2008.10.149 doi: 10.3934/dcdsb.2008.10.149
    [14] X. Liang, X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with application, Comm. Pure Appl. Math., 60 (2007), 1–40. https://doi.org/10.1002/cpa.20154 doi: 10.1002/cpa.20154
    [15] G. Lin, W. T. Li, Travelling wavefronts of Belousov-Zhabotinskii system with diffusion and delay, Appl. Math. Lett., 22 (2009), 341–346. https://doi.org/10.1016/j.aml.2008.04.006 doi: 10.1016/j.aml.2008.04.006
    [16] G. Y. Lv, M. X. Wang, Nonlinear stability of traveling wave fronts for delayed reaction diffusion systems, Nonlinear Anal.-Real, 13 (2012), 1854–1865. https://doi.org/10.1016/j.nonrwa.2011.12.013 doi: 10.1016/j.nonrwa.2011.12.013
    [17] C. Liu, M. Mei, J. Yang, Global stability of traveling waves for nonlocal time-delayed degenerate diffusion equaitons, J. Differ. Equations, 306 (2022), 60–100. https://doi.org/10.1016/j.jde.2021.10.0270022-0396 doi: 10.1016/j.jde.2021.10.0270022-0396
    [18] M. Mei, C. K. Lin, C. T. Lin, J. W. H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. Ⅱ. Nonlocal nonlinearity, J. Differ. Equations, 247 (2009), 511–529. https://doi.org/10.1016/j.jde.2008.12.026 doi: 10.1016/j.jde.2008.12.026
    [19] M. Mei, C. K. Lin, C. T. Lin, J. W. H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. Ⅰ. Local nonlinearity, J. Differ. Equations, 247 (2009), 495–510. https://doi.org/10.1016/j.jde.2008.12.020 doi: 10.1016/j.jde.2008.12.020
    [20] M. Mei, K. Zhang, Q. Zhang, Global stability of critical traveling waves with oscillations for time-delayed reaction-diffusion equations, Int. J. Numer. Anal. Mod., 16 (2019), 375–397.
    [21] J. D. Murray, Lectures on nonlinear-differential-equation models in biology, Oxford: Clarendon Press, 1977.
    [22] J. D. Murray, On travelling wave solutions in a model for the Belousov-Zhabotinskii reaction, J. Theor. Biol., 56 (1976), 329–353. https://doi.org/10.1016/S0022-5193(76)80078-1 doi: 10.1016/S0022-5193(76)80078-1
    [23] D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312–355. https://doi.org/10.1016/0001-8708(76)90098-0 doi: 10.1016/0001-8708(76)90098-0
    [24] K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations, T. Am. Math. Soc., 302 (1987), 587–615. https://doi.org/10.1090/s0002-9947-1987-0891637-2 doi: 10.1090/s0002-9947-1987-0891637-2
    [25] H. L. Smith, X. Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514–534. https://doi.org/10.1137/S0036141098346785 doi: 10.1137/S0036141098346785
    [26] E. Trofimchuk, M. Pinto, S. Trofimchuk, Traveling waves for a model of the Belousov-Zhabotinskii reaction, J. Differ. Equations, 254 (2013), 3690–3714. https://doi.org/10.1016/j.jde.2013.02.005 doi: 10.1016/j.jde.2013.02.005
    [27] E. Trofimchuk, M. Pinto, S. Trofimchuk, On the minimal speed of front propagation in a model of the Belousov-Zhabotinskii reaction, Discrete Contin. Dyn. Syst. Ser.-B, 19 (2014), 1769–1781. https://doi.org/10.1016/0362-546X(87)90046-0 doi: 10.1016/0362-546X(87)90046-0
    [28] L. Wang, Y. Zhao, Y. Wu, The stability of traveling wave fronts for Belousov-Zhabotinskii system with small delay, Discrete Contin. Dyn. Syst.-B, 28 (2023), 3887–3897. https://doi.org/10.3934/dcdsb.2022246 doi: 10.3934/dcdsb.2022246
    [29] Z. C. Wang, W. T. Li, S. G. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differ. Equations, 238 (2007), 153–200. https://doi.org/10.1016/j.jde.2007.03.025 doi: 10.1016/j.jde.2007.03.025
    [30] Y. P. Wu, X. X. Xing, Stability of traveling waves with critical speeds p-degree Fisher-type equations, Discrete Contin. Dyn. Syst., 20 (2008), 1123–1139. https://doi.org/10.3934/dcds.2008.20.1123 doi: 10.3934/dcds.2008.20.1123
    [31] Y. P. Wu, X. X. Xing, Q. X. Ye. Stability of traveling waves with algebraic decay for n-degree Fisher-type equation, Discrete Contin. Dyn. Syst., 16 (2006), 47–66. https://doi.org/10.3934/dcds.2006.16.47 doi: 10.3934/dcds.2006.16.47
    [32] A. N. Zaikin, A. M. Zhabotinskii, Concentration wave propagation in two-dimensional liquid-phase self-oscillating system, Nature, 225 (1970), 535–537. https://doi.org/10.1038/225535b0 doi: 10.1038/225535b0
    [33] G. B. Zhang, Asymptotics and uniqueness of traveling wavefronts for a delayed model of the Belousov-Zhabotinskii reaction, Appl. Anal., 99 (2018), 1639–1660. https://doi.org/10.1080/00036811.2018.1542686 doi: 10.1080/00036811.2018.1542686
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(379) PDF downloads(43) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog