This paper establishes non-uniform continuity of the data-to-solution map in the periodic case for the two-component Fornberg-Whitham system in Besov spaces $ B^s_{p, r}(\mathbb{T}) \times B^{s-1}_{p, r}(\mathbb{T}) $ for $ s > \max\{2+\frac{1}{p}, \frac{5}{2}\} $. In particular, when $ p = 2 $ and $ r = 2 $, this proves the non-uniform dependence on initial data for the system in Sobolev spaces $ H^s(\mathbb{T})\times H^{s-1}(\mathbb{T}) $ for $ s > \frac{5}{2} $.
Citation: Prerona Dutta, Barbara Lee Keyfitz. Non-uniform dependence on periodic initial data for the two-component Fornberg-Whitham system in Besov spaces[J]. AIMS Mathematics, 2024, 9(9): 25284-25296. doi: 10.3934/math.20241234
This paper establishes non-uniform continuity of the data-to-solution map in the periodic case for the two-component Fornberg-Whitham system in Besov spaces $ B^s_{p, r}(\mathbb{T}) \times B^{s-1}_{p, r}(\mathbb{T}) $ for $ s > \max\{2+\frac{1}{p}, \frac{5}{2}\} $. In particular, when $ p = 2 $ and $ r = 2 $, this proves the non-uniform dependence on initial data for the system in Sobolev spaces $ H^s(\mathbb{T})\times H^{s-1}(\mathbb{T}) $ for $ s > \frac{5}{2} $.
[1] | H. Bahouri, J. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Springer-Verlag Berlin Heidelberg, 2011. |
[2] | R. Danchin, A few remarks on the Camassa-Holm equation, Differ. Integral Equ., 14 (2001), 953–988. |
[3] | R. Danchin, Fourier analysis methods for PDE's, Lect. Notes, 2005. Available from: https://perso.math.u-pem.fr/danchin.raphael/cours/courschine.pdf. |
[4] | P. Dutta, Well-posedness of the two-component Fornberg-Whitham system in Besov spaces, La Mat., 3 (2024), 704–720. https://doi.org/10.1007/s44007-024-00103-3 doi: 10.1007/s44007-024-00103-3 |
[5] | X. Fan, L. Tian, S. Yang, J. Yin, Bifurcations of traveling wave solutions for a two-component Fornberg-Whitham equation, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 3956–3963. https://doi.org/10.1016/j.cnsns.2011.02.010 doi: 10.1016/j.cnsns.2011.02.010 |
[6] | A. A. Himonas, G. Misiolek, Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics, Commun. Math. Phys., 296 (2010), 285–301. https://doi.org/10.1007/s00220-010-0991-1 doi: 10.1007/s00220-010-0991-1 |
[7] | J. Holmes, R. C. Thompson, Well-posedness and continuity properties of the Fornberg-Whitham equation in Besov spaces, J. Differ. Equations, 263 (2017), 4355–4381. https://doi.org/10.1016/j.jde.2017.05.019 doi: 10.1016/j.jde.2017.05.019 |
[8] | J. Holmes, F. Tiglay, Non-uniform dependence of the data-to-solution map for the Hunter-Saxton equation in Besov spaces, J. Evol. Equ., 18 (2018), 1173–1187. https://doi.org/10.1007/s00028-018-0436-4 doi: 10.1007/s00028-018-0436-4 |
[9] | T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181–205. https://doi.org/10.1007/BF00280740 doi: 10.1007/BF00280740 |
[10] | B. L. Keyfitz, F. Tiglay, Non-uniform dependence on initial data for compressible gas dynamics: The periodic Cauchy problem, J. Differ. Equations, 263 (2017), 6494–6511. https://doi.org/10.1016/j.jde.2017.07.020 doi: 10.1016/j.jde.2017.07.020 |
[11] | F. Xu, Y. Zhang, F. Li, The well-posedness, blow-up, and traveling waves for a two-component Fornberg-Whitham system, J. Math. Phys., 62 (2021), 1–17. https://doi.org/10.1063/5.0030436 doi: 10.1063/5.0030436 |
[12] | Y. Yu, J. Li, Non-uniform dependence of the data-to-solution map for the two-component Fornberg-Whitham system, Ann. Mat. Pur. Appl., 202 (2022), 59–76. https://doi.org/10.1007/s10231-022-01232-8 doi: 10.1007/s10231-022-01232-8 |