Citation: Hui-Ling Niu. Multidimensional stability of V-shaped traveling fronts in bistable reaction-diffusion equations with nonlinear convection[J]. AIMS Mathematics, 2021, 6(1): 314-332. doi: 10.3934/math.2021020
[1] | E. C. M. Crooks, J. F. Toland, Travelling waves for reaction-diffusion-convection systems, Topol. Methods Nonlinear Anal., 11 (1998), 19-43. doi: 10.12775/TMNA.1998.002 |
[2] | E. C. M. Crooks, Stability of travelling-wave solutions for reaction-diffusion-convection systems, Topol. Methods Nonlinear Anal., 16 (2000), 37-63. doi: 10.12775/TMNA.2000.029 |
[3] | E. C. M. Crooks, Travelling fronts for monostable reaction-diffusion systems with gradient-dependence, Adv. Differ. Equ., 8 (2003), 279-314. |
[4] | E. C. M. Crooks, Front profiles in the vanishing-diffusion limit for monostable reaction-diffusion-convection equations, Differ. Integr. Equ., 23 (2010), 495-512. |
[5] | E. C. M. Crooks, C. Mascia, Front speeds in the vanishing diffusion limit for reaction-diffusion-convection equations, Differ. Integr. Equ., 20 (2007), 499-514. |
[6] | E. C. M. Crooks, J. C. Tsai, Front-like entire solutions for equations with convection, J. Differ. Equ., 253 (2012), 1206-1249. doi: 10.1016/j.jde.2012.04.022 |
[7] | B. H. Gilding, On front speeds in the vanishing diffusion limit for reaction-convection-diffusion equations, Differ. Integr. Equ., 23 (2010), 445-450. |
[8] | B. H. Gilding, R. Kersner, Travelling waves in nonlinear diffusion-convection reaction, Progr. Nonlinear Differ. Equ. Appl., 60 Birkhäuser Verlag, Basel, 2004. |
[9] | B. Feng, R. Chen, J. Liu, Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard equation, Adv. Nonlinear Anal., 10 (2021), 311-330. |
[10] | H. L. Niu, J. Liu, Curved fronts of bistable reaction-diffusion equations with nonlinear convection, Adv. Differ. Equ., 2020 (2020), 1-27. doi: 10.1186/s13662-019-2438-0 |
[11] | H. Ninomiya, M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differ. Equ., 213 (2005), 204-233. doi: 10.1016/j.jde.2004.06.011 |
[12] | A. Bonnet, F. Hamel, Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31 (1999), 80-118. doi: 10.1137/S0036141097316391 |
[13] | F. Hamel, Bistable transition fronts in $\mathbb{R}^N$, Adv. Math., 289 (2016), 279-344. doi: 10.1016/j.aim.2015.11.033 |
[14] | F. Hamel, R. Monneau, Solutions of semilinear elliptic equations in $\mathbb{R}^N$ with conical-shaped level sets, Comm. Partial Differ. Equ., 25 (2000), 769-819. doi: 10.1080/03605300008821532 |
[15] | F. Hamel, R. Monneau, J. M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), 1069-1096. doi: 10.3934/dcds.2005.13.1069 |
[16] | F. Hamel, R. Monneau, J. M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), 75-92. |
[17] | F. Hamel, R. Monneau, J. M. Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions, Ann. Sci. École Norm. Sup., 37 (2004), 469-506. doi: 10.1016/j.ansens.2004.03.001 |
[18] | F. Hamel, N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $\mathbb{R}^N$, Arch. Ration. Mech. Anal., 157 (2001), 91-163. doi: 10.1007/PL00004238 |
[19] | F. Hamel, J. M. Roquejoffre, Heteroclinic connections for multidimensional bistable reaction-diffusion equations, Discrete Contin. Dynam. Syst. S, 4 (2011), 101-123. doi: 10.3934/dcdss.2011.4.101 |
[20] | H. Ninomiya, M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equation, Discrete Contin. Dyn. Syst., 15 (2006), 819-832. doi: 10.3934/dcds.2006.15.819 |
[21] | W. J. Sheng, W. T. Li, Z. C. Wang, Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity, J. Differ. Equ., 252 (2012), 2388-2424. doi: 10.1016/j.jde.2011.09.016 |
[22] | B. Feng, R. Chen, Q. Wang, Instability of standing waves for the nonlinear Schrödinger-Poisson equation in the L2-critical case, J. Dynam. Differ. Equ., 32 (2020) 1357-1370. |
[23] | M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344. doi: 10.1137/060661788 |
[24] | M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differ. Equ., 246 (2009), 2103-2130. doi: 10.1016/j.jde.2008.06.037 |
[25] | M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst., 32 (2012), 1011-1046. doi: 10.3934/dcds.2012.32.1011 |
[26] | H. T. Niu, Z. H. Bu, Z. C. Wang, Global stability of curved fronts in the Belousov-Zhabotinskii reaction-diffusion system in R2, Nonlinear Anal. RWA, 46 (2019), 493-524. doi: 10.1016/j.nonrwa.2018.10.003 |
[27] | H. T. Niu, Z. C. Wang, Z. H. Bu, Curved fronts in the Belousov-Zhabotinskii reaction-diffusion systems in R2, J. Differ. Equ., 264 (2018), 5758-5801. doi: 10.1016/j.jde.2018.01.020 |
[28] | W. J. Sheng, W. T. Li, Z. C. Wang, Multidimensional stability of V-shaped traveling fronts in the Allen-Cahn equation, Sci. China Math., 56 (2013), 1969-1982. doi: 10.1007/s11425-013-4699-5 |
[29] | Z. C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 32 (2012), 2339-2374. doi: 10.3934/dcds.2012.32.2339 |
[30] | Z. C. Wang, Cylindrically symmetric traveling fronts in periodic reaction-diffusion equations with bistable nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 145A (2015), 1053-1090. |
[31] | Z. C. Wang, W. T. Li, S. Ruan, Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems, Sci.China Math., 59 (2016), 1869-1908. |
[32] | Z. C. Wang, H. L. Niu, S. Ruan, On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in R3, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1111-1144. |
[33] | Z. C. Wang, J. Wu, Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity, J. Differ. Equ., 250 (2011), 3196-3229. doi: 10.1016/j.jde.2011.01.017 |
[34] | B. Feng, J. Liu, H. Niu, B. Zhang, Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions, Nonlinear Anal., 196 (2020), 111791. doi: 10.1016/j.na.2020.111791 |
[35] | Z. H. Bu, L. Y. Ma, Z. C. Wang, Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations II, Nonlinear Anal. RWA, 47 (2019), 80-118. |
[36] | Z. H. Bu, L. Y. Ma, Z. C. Wang, Conical traveling fronts of combustion equations in R3, Appl. Math. Lett., 108 (2020), 106509. doi: 10.1016/j.aml.2020.106509 |
[37] | Z. C. Wang, Z. H. Bu, Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearities, J. Differ. Equ., 260 (2016), 6405-6450. doi: 10.1016/j.jde.2015.12.045 |
[38] | B. Feng, On the blow-up solutions for the nonlinear Schrödinger equation with combined power-type nonlinearities, J. Evol. Equ., 18 (2018), 203-220. doi: 10.1007/s00028-017-0397-z |
[39] | T. Kapitula, Multidimensional stability of planar travelling waves, Trans. Amer. Math. Soc., 349 (1997), 257-269. doi: 10.1090/S0002-9947-97-01668-1 |
[40] | C. D. Levermore, J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, II, Commun. Partial Differ. Equ., 17 (1992), 1901-1924. doi: 10.1080/03605309208820908 |
[41] | H. Matano, M. Nara, Large time behavior of disturbed planar fronts in the Allen-Cahn equation, J. Differ. Equ., 251 (2011), 3522-3557. doi: 10.1016/j.jde.2011.08.029 |
[42] | H. Matano, M. Nara, M. Taniguchi, Stability of planar waves in the Allen-Cahn equation, Commun. Partial Differ. Equ., 34 (2009), 976-1002. doi: 10.1080/03605300902963500 |
[43] | J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, I, Commun. Partial Differ. Equ., 17 (1992), 1889-1899. doi: 10.1080/03605309208820907 |
[44] | J. M. Roquejoffre, V. Roussier-Michon, Nontrivial large-time behaviour in bistable reaction-diffusion equations, Ann. Mat. Pura Appl., 188 (2009), 207-233. |
[45] | H. Cheng, R. Yuan, Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation, Discrete Contin. Dyn. Syst., 20 (2015), 1015-1029. doi: 10.3934/dcdsb.2015.20.1015 |
[46] | A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser Verlag, Basel, 1995. |
[47] | M. Nara, M. Taniguchi, Stability of a traveling wave in curvature flows for spatially non-decaying initial perturbations, Discrete Contin. Dyn. Syst., 14 (2006), 203-220. |
[48] | D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001. |
[49] | A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, 1964. |