Research article

Computing $\mu$-values for LTI Systems

  • Received: 13 August 2020 Accepted: 23 September 2020 Published: 12 October 2020
  • MSC : 15A03, 15A18, 80M50

  • In this article we consider certain linear time-varying control systems and investigate their stability using structured singular values ($\mu$-values). We use the low rank ordinary differential equations based methodology to compute the lower bounds for $\mu$-values. The inner-outer algorithm computes the local extremizer of an admissible perturbation and adjusts the desired perturbation level. Further, we present a comparison of our results via the well-known MATLAB routine mussv which is available in MATLAB control toolbox.

    Citation: Mutti-Ur Rehman, Jehad Alzabut, Javed Hussain Brohi. Computing $\mu$-values for LTI Systems[J]. AIMS Mathematics, 2021, 6(1): 304-313. doi: 10.3934/math.2021019

    Related Papers:

  • In this article we consider certain linear time-varying control systems and investigate their stability using structured singular values ($\mu$-values). We use the low rank ordinary differential equations based methodology to compute the lower bounds for $\mu$-values. The inner-outer algorithm computes the local extremizer of an admissible perturbation and adjusts the desired perturbation level. Further, we present a comparison of our results via the well-known MATLAB routine mussv which is available in MATLAB control toolbox.


    加载中


    [1] B. Zhou, G. B. Cai, G. R. Duan, Stabilisation of time-varying linear systems via Lyapunov differential equations, Int. J. Control, 86 (2013), 332-347. doi: 10.1080/00207179.2012.728008
    [2] Z. D. Sun, A robust stabilizing law for switched linear systems, Int. J. Control, 77 (2004), 389-398. doi: 10.1080/00207170410001667468
    [3] C. J. Harris, J. F. Miles, Stability of linear systems: some aspects of kinematic similarity, Switzerland: Academic Press, 1980.
    [4] J. C. Doyle, B. A. Francis, A. R. Tannenbaum, Feedback control theory, New York: Dover Publications, 2009.
    [5] J. Doyle, Analysis of feedback systems with structured uncertainties, IET. Control Theory A., 129 (1982), 242-250.
    [6] Ph. Mullhaupt, D. Buccieri, D. Bonvin, A numerical sufficiency test for the asymptotic stability of linear time-varying systems, Automatica, 43 (2007), 631-638. doi: 10.1016/j.automatica.2006.10.014
    [7] B. Zhou, On asymptotic stability of linear time-varying systems, Automatica, 68 (2016). 266-276.
    [8] N. P. Van Der Aa, H. G. Ter Morsche, R. R. M. Mattheij, Computation of eigenvalue and eigenvector derivatives for a general complex-valued eigensystem, Electron J. Linear Al., 16 (2007), 1-10.
    [9] A. Packard, J. Doyle, The complex structured singular value, Automatica, 29 (1993), 71-109. doi: 10.1016/0005-1098(93)90175-S
    [10] T. G. Wright, L. N. Trefethen, 2002. Available from: Software available at http://www.comlab.ox.ac.uk/pseudospectra/eigtool.
    [11] N. Guglielmi, M. Rehman, D. Kressner, A novel iterative method to approximate structured singular values, SIAM J. Matrix Anal. A., 38 (1993), 361-386.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3262) PDF downloads(113) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog