Citation: Mutti-Ur Rehman, Jehad Alzabut, Javed Hussain Brohi. Computing $\mu$-values for LTI Systems[J]. AIMS Mathematics, 2021, 6(1): 304-313. doi: 10.3934/math.2021019
[1] | B. Zhou, G. B. Cai, G. R. Duan, Stabilisation of time-varying linear systems via Lyapunov differential equations, Int. J. Control, 86 (2013), 332-347. doi: 10.1080/00207179.2012.728008 |
[2] | Z. D. Sun, A robust stabilizing law for switched linear systems, Int. J. Control, 77 (2004), 389-398. doi: 10.1080/00207170410001667468 |
[3] | C. J. Harris, J. F. Miles, Stability of linear systems: some aspects of kinematic similarity, Switzerland: Academic Press, 1980. |
[4] | J. C. Doyle, B. A. Francis, A. R. Tannenbaum, Feedback control theory, New York: Dover Publications, 2009. |
[5] | J. Doyle, Analysis of feedback systems with structured uncertainties, IET. Control Theory A., 129 (1982), 242-250. |
[6] | Ph. Mullhaupt, D. Buccieri, D. Bonvin, A numerical sufficiency test for the asymptotic stability of linear time-varying systems, Automatica, 43 (2007), 631-638. doi: 10.1016/j.automatica.2006.10.014 |
[7] | B. Zhou, On asymptotic stability of linear time-varying systems, Automatica, 68 (2016). 266-276. |
[8] | N. P. Van Der Aa, H. G. Ter Morsche, R. R. M. Mattheij, Computation of eigenvalue and eigenvector derivatives for a general complex-valued eigensystem, Electron J. Linear Al., 16 (2007), 1-10. |
[9] | A. Packard, J. Doyle, The complex structured singular value, Automatica, 29 (1993), 71-109. doi: 10.1016/0005-1098(93)90175-S |
[10] | T. G. Wright, L. N. Trefethen, 2002. Available from: Software available at http://www.comlab.ox.ac.uk/pseudospectra/eigtool. |
[11] | N. Guglielmi, M. Rehman, D. Kressner, A novel iterative method to approximate structured singular values, SIAM J. Matrix Anal. A., 38 (1993), 361-386. |