In this paper, we consider the simultaneous Pell equations $ (a^2+2)x^2-y^2 = 2 $ and $ x^2-bz^2 = 1 $ where $ a $ is a positive integer and $ b > 1 $ is squarefree and has at most three prime divisors. We obtain the necessary and sufficient conditions that the above simultaneous Pell equations have positive integer solutions by using only the elementary methods of factorization, congruence, the quadratic residue and fundamental properties of Lucas sequence and the associated Lucas sequence. Moreover, we prove that these simultaneous Pell equations have at most one solution in positive integers. When a solution exists, assuming the positive solutions of the Pell equation $ (a^2+2)x^2-y^2 = 2 $ are $ x = x_m $ and $ y = y_m $ with $ m\geq 1 $ odd, then the only solution of the system is given by $ m = 3 $ or $ m = 5 $ or $ m = 7 $ or $ m = 9 $.
Citation: Cencen Dou, Jiagui Luo. Complete solutions of the simultaneous Pell's equations $ (a^2+2)x^2-y^2 = 2 $ and $ x^2-bz^2 = 1 $[J]. AIMS Mathematics, 2023, 8(8): 19353-19373. doi: 10.3934/math.2023987
In this paper, we consider the simultaneous Pell equations $ (a^2+2)x^2-y^2 = 2 $ and $ x^2-bz^2 = 1 $ where $ a $ is a positive integer and $ b > 1 $ is squarefree and has at most three prime divisors. We obtain the necessary and sufficient conditions that the above simultaneous Pell equations have positive integer solutions by using only the elementary methods of factorization, congruence, the quadratic residue and fundamental properties of Lucas sequence and the associated Lucas sequence. Moreover, we prove that these simultaneous Pell equations have at most one solution in positive integers. When a solution exists, assuming the positive solutions of the Pell equation $ (a^2+2)x^2-y^2 = 2 $ are $ x = x_m $ and $ y = y_m $ with $ m\geq 1 $ odd, then the only solution of the system is given by $ m = 3 $ or $ m = 5 $ or $ m = 7 $ or $ m = 9 $.
[1] | Y. Fujita, N. Terai, Generators and integer points on the elliptic curve $y^2 = x^3-nx$, Acta Arith., 160 (2013), 333–348. http://dx.doi.org/10.4064/aa160-4-3 doi: 10.4064/aa160-4-3 |
[2] | F. Najman, Compact representation of quadratic integers and integer points on some elliptic curves, Rocky Mountain J. Math., 40 (2010), 1979–2002. http://dx.doi.org/10.1216/RMJ-2010-40-6-1979 doi: 10.1216/RMJ-2010-40-6-1979 |
[3] | T. Jedrzejak, M. Wieczorek, Integral points on elliptic curves $y^2 = x(x-2^m)(x+p)$, Bull. Polish Acad. Sci. Math., 67 (2019), 53–67. http://dx.doi.org/10.4064/ba8152-1-2019 doi: 10.4064/ba8152-1-2019 |
[4] | A. Thue, Über Annäherungswerte Zahlen (German), J. Reine Angew. Math., 1909 (1909), 284–305. https://doi.org/10.1515/crll.1909.135.284 doi: 10.1515/crll.1909.135.284 |
[5] | M. Cipu, Explicit formula for the solution of simultaneous Pell equations $x^2-(a^2-1)y^2 = 1$, $y^2-bz^2 = 1$, Proc. Amer. Math. Soc., 146 (2018), 983–992. https://doi.org/10.1090/PROC/13802 doi: 10.1090/PROC/13802 |
[6] | M. A. Bennett, On the number of solutions of the simultaneous Pell equations, J. Reine Angew. Math., 1998 (1998), 173–199. https://doi.org/10.1515/crll.1998.049 doi: 10.1515/crll.1998.049 |
[7] | P. Z. Yuan, On the number of solutions of $x^2-4m(m +1)y^2 = y^2-bz^2 = 1$, Proc. Amer. Math. Soc., 132 (2004), 1561–1566. http://dx.doi.org/10.1090/S0002-9939-04-07418-0 doi: 10.1090/S0002-9939-04-07418-0 |
[8] | P. G. Walsh, Sharp bounds for the number of solutions to simultaneous Pellian equations, Acta Arith., 126 (2007), 125–137. http://dx.doi.org/10.4064/aa126-2-3 doi: 10.4064/aa126-2-3 |
[9] | C. S. Luo, J. G. Luo, Complete solutions of the simultaneous Pell equations $(a^2+1)y^2-x^2 = y^2-bz^2 = 1$, AIMS Math., 6 (2021), 9919–9938. https://doi.org/10.3934/math.2021577 doi: 10.3934/math.2021577 |
[10] | D. H. Lehmer, An extended theory of Lucas' functions, Ann. Math., 31 (1930), 419–448. https://doi.org/10.2307/1968235 doi: 10.2307/1968235 |
[11] | P. Ribenboim, The book of prime number records, 2 Eds., Springer-Verlag, New York, 1989. |
[12] | P. Z. Yuan, A note on the divisibility of the generalized Lucas' sequences, Fibonacci Quart., 40 (2002), 153–156. |
[13] | J. G. Luo, P. Z. Yuan, Square-classes in Lehmer sequences having odd parameters and their applications, Acta Arith., 127 (2007), 49–62. https://doi.org/10.4064/aa127-1-4 doi: 10.4064/aa127-1-4 |
[14] | W. Ljunggren, Ein Satz über die diophantische Gleichung $Ax^2-By^4 = C (C = 1, 2, 4)$, Tolfte Skand. Mat.-Kongr., 1953 (1954), 188–194. |
[15] | S. Akhtari, The Diophantine equation $aX^4-by^2 = 1$, J. Reine Angew. Math., 2009 (2009), 33–57. https://doi.org/10.1515/CRELLE.2009.034 doi: 10.1515/CRELLE.2009.034 |
[16] | Q. Sun, P. Z. Yuan, A note on the Diophantine equation $x^4-Dy^2 = 1$, J. Sichuan Univ., 34 (1997), 265–268. |
[17] | J. H. E. Cohn, The Diophantine equation $x^4-Dy^2 = 1, $ Ⅱ, Acta Arith., 78 (1997), 401–403. |
[18] | A. Togbé, P. M. Voutier, P. G. Walsh, Solving a family of Thue equations with an application to the equation $x^2-Dy^4 = 1$, Acta Arith., 120 (2005), 39–58. https://doi.org/10.4064/aa120-1-3 doi: 10.4064/aa120-1-3 |
[19] | F. Luca, P. G. Walsh, Squares in Lehmer sequences and some Diophantine applications, Acta Arith., 100 (2001), 47–62. https://doi.org/10.4064/aa100-1-4 doi: 10.4064/aa100-1-4 |
[20] | P. Z. Yuan, Y. Li, Squares in Lehmer sequences and the Diophantine equation $Ax^4-By^2 = 2$, Acta Arith., 139 (2009), 275–302. https://doi.org/10.4064/aa139-3-6 doi: 10.4064/aa139-3-6 |