Research article Special Issues

On the exponential Diophantine equation $ (a(a-l)m^{2}+1)^{x}+(alm^{2}-1)^{y} = (am)^{z} $

  • Received: 03 November 2021 Revised: 07 January 2022 Accepted: 16 January 2022 Published: 09 February 2022
  • MSC : 11D61

  • Suppose that $ a $, $ l $, $ m $ are positive integers with $ a\equiv1\pmod2 $ and $ a^{2}m^{2}\equiv-2\pmod p $, where $ p $ is a prime factor of $ l $. In this paper, we prove that the title exponential Diophantine equation has only the positive integer solution $ (x, y, z) = (1, 1, 2) $. As an another result, we show that if $ a = l $, then the title equation has positive integer solutions $ (x, y, z) = (n, 1, 2) $, $ n\in\mathbb{N} $. The proof is based on elementary methods, Bilu-Hanrot-Voutier Theorem on primitive divisors of Lehmer numbers, and some results on generalized Ramanujan-Nagell equations.

    Citation: Jinyan He, Jiagui Luo, Shuanglin Fei. On the exponential Diophantine equation $ (a(a-l)m^{2}+1)^{x}+(alm^{2}-1)^{y} = (am)^{z} $[J]. AIMS Mathematics, 2022, 7(4): 7187-7198. doi: 10.3934/math.2022401

    Related Papers:

  • Suppose that $ a $, $ l $, $ m $ are positive integers with $ a\equiv1\pmod2 $ and $ a^{2}m^{2}\equiv-2\pmod p $, where $ p $ is a prime factor of $ l $. In this paper, we prove that the title exponential Diophantine equation has only the positive integer solution $ (x, y, z) = (1, 1, 2) $. As an another result, we show that if $ a = l $, then the title equation has positive integer solutions $ (x, y, z) = (n, 1, 2) $, $ n\in\mathbb{N} $. The proof is based on elementary methods, Bilu-Hanrot-Voutier Theorem on primitive divisors of Lehmer numbers, and some results on generalized Ramanujan-Nagell equations.



    加载中


    [1] C. Bertok, The complete solution of Diophantine equation $(4m^{2}+1)^{x}+(5m^{2}-1)^{y} = (3m)^{z}$, Period. Math. Hung., 72 (2016), 37–42. http://dx.doi.org/10.1007/s10998-016-0111-x doi: 10.1007/s10998-016-0111-x
    [2] Y. Bugeaud, Linear forms in $p$-adic logarithms and the Diophantine equation $\frac{x^{n}-1}{x-1} = y^{q}$, Math. Proc. Camb. Phil. Soc., 127 (1999), 373–381. http://dx.doi.org/10.1017/S0305004199003692 doi: 10.1017/S0305004199003692
    [3] Y. Bugeaud, T. Shorey, On the number of solutions of the generalized Ramanujan-Nagell equation, J. Reine Angew. Math., 539 (2001), 55–74. http://dx.doi.org/10.1515/crll.2001.079 doi: 10.1515/crll.2001.079
    [4] Y. Bilu, G. Hanrot, P. Voutier, M. Mignotte, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539 (2001), 75–122. http://dx.doi.org/10.1515/crll.2001.080 doi: 10.1515/crll.2001.080
    [5] Z. Cao, A note on the Diophantine equation $a^{x}+b^{y} = c^{z}$, Acta Arith., 91 (1999), 85–93. http://dx.doi.org/10.4064/aa-91-1-85-93 doi: 10.4064/aa-91-1-85-93
    [6] J. Cohn, On square Fibonacci numbers, J. London Math. Soc., 39 (1964), 537–540. http://dx.doi.org/10.1112/jlms/s1-39.1.537 doi: 10.1112/jlms/s1-39.1.537
    [7] N. Deng, D. Wu, P. Yuan, The exponential Diophantine equation $(3am^{2}-1)^{x}+(a(a-3)m^{2}+1)^{y} = (am)^{z}$, Turk. J. Math., 43 (2019), 2561–2567. http://dx.doi.org/10.3906/mat-1905-20 doi: 10.3906/mat-1905-20
    [8] R. Fu, H. Yang, On the exponential Diophantine equation $(am^{2}+1)^{x}+(bm^{2}-1)^{y} = (cm)^{z}$ with $c|m$, Period. Math. Hung., 75 (2017), 143–149. http://dx.doi.org/10.1007/s10998-016-0170-z doi: 10.1007/s10998-016-0170-z
    [9] L. Jesmanowicz, Some remarks on Pythagorean numbers (in Polish), Wiad. Math., 1 (1955), 196–202.
    [10] E. Kizildere, T. Miyazaki, G. Soydan, On the Diophantine equation $((c+1)m^{2}+1)^{x}+(cm^{2}-1)^{y} = (am)^{z}$, Turk. J. Math., 42 (2018), 2690–2698. http://dx.doi.org/10.3906/mat-1803-14 doi: 10.3906/mat-1803-14
    [11] E. Kizildere, G. Soydan, On the Diophantine equation $(5pn^{2}-1)^{x}+(p(p-5)n^{2}+1)^{y} = (pn)^{z}$, Honam Math. J., 42 (2020), 139–150. http://dx.doi.org/10.5831/HMJ.2020.42.1.139 doi: 10.5831/HMJ.2020.42.1.139
    [12] E. Kizildere, M. Le, G. Soydan, A note on the ternary purely exponential diophantine equation $A^{x}+B^{y} = C^{z}$ with $A+B = C^{2}$, Stud. Sci. Math. Hung., 57 (2020), 200–206. http://dx.doi.org/10.1556/012.2020.57.2.1457 doi: 10.1556/012.2020.57.2.1457
    [13] M. Le, Some exponential Diophantine equations $ \rm I $:the equation $D_{1}x^{2}-D_{2}y^{2} = \lambda k^{z}$, J. Number Theory, 55 (1995), 209–221. http://dx.doi.org/10.1006/jnth.1995.1138 doi: 10.1006/jnth.1995.1138
    [14] M. Le, A conjecture concerning the exponential Diophantine equation $a^{x}+b^{y} = c^{z}$, Acta. Arith., 106 (2003), 345–353. http://dx.doi.org/10.4064/aa106-4-2 doi: 10.4064/aa106-4-2
    [15] M. Le, R. Scott, R. Styer, A survey on the ternary purely exponential Diophantine $a^{x}+b^{y} = c^{z}$, Surveys in Mathematics and its Applications, 14 (2019), 109–140.
    [16] T. Miyazaki, Exceptional cases of Terai's conjecture on Diophantine equations, Arch. Math., 95 (2010), 519–527. http://dx.doi.org/10.1007/s00013-010-0201-6 doi: 10.1007/s00013-010-0201-6
    [17] T. Miyazaki, Terai's conjecture on exponential Diophantine equations, Int. J. Number Theory, 7 (2011), 981–999. http://dx.doi.org/10.1142/S1793042111004496 doi: 10.1142/S1793042111004496
    [18] T. Miyazaki, N. Terai, On the exponential Diophantine equation $(m^{2}+1)^{x}+(cm^{2}-1)^{y} = (am)^{z}$, Bull. Aust. Math. Soc., 90 (2014), 9–19. http://dx.doi.org/10.1017/S0004972713000956 doi: 10.1017/S0004972713000956
    [19] P. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004), 167–195. http://dx.doi.org/10.1515/crll.2004.048 doi: 10.1515/crll.2004.048
    [20] W. Sierpinski, On the equation $3^{x}+4^{y} = 5^{z}$ (in Polish), Wiadom. Math., 1 (1955), 194–195.
    [21] G. Soydan, M. Demirci, I. Cangul, A. Togbè, On the conjecture of Jesmanowicz, Int. J. App. Math. Stat., 56 (2017), 46–72.
    [22] N. Terai, The diophantine equation $a^{x}+b^{y} = c^{z}$, Proc. Japan Acad. Ser. A Math Sci., 70 (1994), 22–26. http://dx.doi.org/10.3792/pjaa.70.22 doi: 10.3792/pjaa.70.22
    [23] N. Terai, Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations, Acta Arith., 90 (1999), 17–35. http://dx.doi.org/10.4064/aa-90-1-17-35 doi: 10.4064/aa-90-1-17-35
    [24] N. Terai, T. Hibino, On the exponential Diophantine equation $a^{x}+lb^{y} = c^{z}$, Int. J. Algebra, 10 (2016), 393–403. http://dx.doi.org/10.12988/ija.2016.6747 doi: 10.12988/ija.2016.6747
    [25] N. Terai, T. Hibino, On the exponential Diophantine equation $(3pm^{2}-1)^{x}+(p(p-3)m^{2}+1)^{y} = (pm)^{z}$, Period. Math. Hung., 74 (2017), 227–234. http://dx.doi.org/10.1007/s10998-016-0162-z doi: 10.1007/s10998-016-0162-z
    [26] J. Wang, T. Wang, W. Zhang, A Note on the exponential Diophantine equation $(4m^{2}+1)^{x}+(5m^{2}-1)^{y} = (3m)^{z}$, Colloq. Math., 139 (2015), 121–126. http://dx.doi.org/10.4064/cm139-1-7 doi: 10.4064/cm139-1-7
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1672) PDF downloads(137) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog