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Abstract: Suppose that a, l, m are positive integers with a ≡ 1 (mod 2) and a2m2 ≡ −2 (mod p),
where p is a prime factor of l. In this paper, we prove that the title exponential Diophantine equation
has only the positive integer solution (x, y, z) = (1, 1, 2). As an another result, we show that if a = l,
then the title equation has positive integer solutions (x, y, z) = (n, 1, 2), n ∈ N. The proof is based
on elementary methods, Bilu-Hanrot-Voutier Theorem on primitive divisors of Lehmer numbers, and
some results on generalized Ramanujan-Nagell equations.
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1. Introduction

Let Z, N denote the sets of integers, positive integers, respectively. Let a, b, c be fixed relatively
prime positive integers greater than one. There have been many papers investigating the positive integer
solutions of the exponential Diophantine equation

ax + by = cz. (1.1)

A lot of interesting results have been obtained. In recent years, T. Miyazaki, N. Terai and
other scientific research workers have also made certain progress. For detailed historical research
background, see [15, 21].

In 1956, Sierpinski [20] considered the case of (a, b, c)=(3, 4, 5), and showed that (x, y, z) = (2, 2, 2)
is the only positive integer solution. Jesmanowicz [9] conjectured that if a, b, c are Pythagorean
numbers, then the Eq (1.1) has only the positive integer solution (x, y, z) = (2, 2, 2). As an analogue of
Jesmanowicz’s conjecture, Terai [22] conjectured that the exponential Diophantine equation

ax + by = cz, ap + bq = cr, p, q, r ∈ N, r ≥ 2 (1.2)
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has only the positive integer solution (x, y, z) = (p, q, r) except for a handful of triples (a, b, c).
Exceptional cases are listed explicitly in [24] and [16]. This conjecture has been proved to be true
in many special cases, see [5, 8, 14, 17, 23], but is still unsolved in general.

Now take the Diophantine equation

(am2 + 1)x + (bm2 − 1)y = (cm)z (1.3)

where a, b, c and m are given positive integers such that a + b = c2. Some authors studied Eq (1.3) for
some special values, see [1, 10, 18, 25, 26]. Terai and Hibino [25] studied the equation

(3pm2 − 1)x + (p(p − 3)m2 + 1)y = (pm)z, (1.4)

where m be a positive integer and p be a prime. As m ≡ 1 (mod 4), m ≡ 1, 2 (mod 3), p ≡ 1 (mod 4),
and p < 3784, they proved that the only solution of Eq (1.4) is (x, y, z) = (1, 1, 2). The proof of this
result is based on elementary methods and Baker’s method. In 2019, Deng, Wu and Yuan [7] studied
the equation

(3am2 − 1)x + (a(a − 3)m2 + 1)y = (am)z, (1.5)

where a and m be positive integers such that am ≡ 1, 2 (mod 3), a ≡ 1 (mod 2), and a ≥ 5. They
showed that the exponential Diophantine Eq (1.5) has only the positive integer solution (x, y, z)=(1, 1, 2)
by using some results on generalized Ramanujan-Nagell equations and some elementary methods.
In 2020, Kizildere and Soydan [11] studied the equation

(5pm2 − 1)x + (p(p − 5)m2 + 1)y = (pm)z, (1.6)

where p be a prime with p ≥ 5, p ≡ 3 (mod 4) and m be a positive integer. They proved that
the Diophantine Eq (1.6) has only the positive integer solution (x, y, z) = (1, 1, 2) where pm ≡ 1, 4
(mod 5) by the methods of [25]. In the same year, Kizildere, Le and Soydan [12] studied the equation

(a(a − l)m2 + 1)x + (alm2 − 1)y = (am)z (1.7)

where l, m, a be positive integers such that a ≡ 1 (mod 2), am ≡ 1, 2 (mod 3), l ≡ 0 (mod 3). They
showed that the exponential Diophantine Eq (1.7) has only the positive integer solution (x, y, z)=(1, 1, 2)
with min{a(a− l)m2 +1, alm2−1} > 30 by using the Bilu-Hanrot-Voutier Theorem on primitive divisors
of Lehmer numbers.

In this paper, we consider the Diophantine equation

(a(a − l)m2 + 1)x + (alm2 − 1)y = (am)z (1.8)

where a ≡ 1 (mod 2), a > l ≥ 3 and there exists a prime factor p of l satisfying a2m2 ≡ −2 (mod p).
The following results are the main theorems of this paper.

Theorem 1.1. Suppose that a, l and m are positive integers with a ≡ 1 (mod 2), a > l ≥ 3 and there
exists a prime factor p of l satisfying a2m2 ≡ −2 (mod p). If l ≡ 1 (mod 2) or l ≡ 0 (mod 2) and
min{a(a − l)m2 + 1, alm2 − 1} > 30, then Diophantine Eq (1.8) has only the positive integer solution
(x, y, z) = (1, 1, 2).

AIMS Mathematics Volume 7, Issue 4, 7187–7198.



7189

Theorem 1.2. Suppose that a and m are positive integers with a = l. Then Diophantine Eq (1.8) has
positive integer solutions (x, y, z) = (n, 1, 2), n ∈ N.

As a corollary to Theorem 1.1, taking l = 3 (mod 6), we get a general result as follows :

Corollary 1.3. Suppose that a and m are positive integers with a ≥ 5, a ≡ 1 (mod 2), and 3 6 |am.
Then Diophantine equation

(a(a − l)m2 + 1)x + (alm2 − 1)y = (am)z (1.9)

has only the positive integer solution (x, y, z) = (1, 1, 2).

As another corollary to Theorem 1.1, taking l ≡ 0 (mod 3), we give a general result as follows:

Corollary 1.4. [12] Suppose that a, m and l are positive integers with a ≥ 5, a ≡ 1 (mod 2), 3 6 |am
and l ≡ 0 (mod 3). Then Diophantine equation

(a(a − l)m2 + 1)x + (alm2 − 1)y = (am)z (1.10)

has only the positive integer solution (x, y, z) = (1, 1, 2) with min{a(a − l)m2 + 1, alm2 − 1} > 30.

By Corollary 1.3, we know that Eq (1.8) has only the positive integer solution (x, y, z)=(1, 1, 2) when
a = 11 and 3 6 |m. By using a result on linear forms in p-adic logarithms due to Bugeaud [2], we give a
general result as follows:

Corollary 1.5. If m > 2360 or 3 6 |m, then the exponential Diophantine equation

(88m2 + 1)x + (33m2 − 1)y = (11m)z (1.11)

has only the positive integer solution (x, y, z) = (1, 1, 2).

It’s easy to see, letting a a prime and l = 3 in Theorem 1.1 gives us the result of [25]. Picking l = 3
in Theorem 1.1 yields the result of Deng, Wu and Yuan [7] and taking l ≡ 0 (mod 3) in Theorem 1.1
yields the result of Kizildere, Le and Soydan [12], respectively.

This paper is organized as follows. First of all, in Section 2, we show some preliminary lemmas
which are needed in the proofs of our main results. Then in Section 3, we give the proof of Theorem 1.1.
Section 4 is devoted to the proof of Theorem 1.2. Finally, Section 5 is devoted to the proof of
Corollary 1.5.

2. Preliminaries

In this section, we present several auxiliary lemmas that are needed in the proof of Theorem 1.1 and
Theorem 1.2. Firstly, we will introduce here some definitions.

For any positive integer n, let Fn and Ln be the n-th Fibonacci number and Lucas number,
respectively.

Next, we recall some useful lemmas.
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Lemma 2.1. [13] For a fixed solution (X,Y, z) of the equation

D1X2 + D2Y2 = kz, gcd(X,Y) = 1, z ≥ 1, X,Y, z ∈ Z, (2.1)

there exists a unique positive integer L such that

L = D1αX + D2βY, 1 ≤ L < k,

where α, β are integers with βX−αY = 1 and {D1,D2, k} ∈ Z,min{D1,D2, k} > 1,gcd(D1,D2) = 1,2 6 |k.

The positive integer L defined as in Lemma 2.1 is called the characteristic number of the
solution (X,Y, z) and is denoted by 〈X,Y, z〉.

Lemma 2.2. [13] If 〈X,Y, z〉 = L , then D1X ≡ −LY (mod k).

For a fixed positive integer L1, if Eq (2.1) has a solution (X1,Y1, z1) with (X1,Y1, z1) = L1, then the
set of all solutions (X,Y, z) of Eq (2.1) with (X,Y, z) ≡ ±L1 (mod k) is called a solution class of (2.1)
and is denoted by S (L1).

Lemma 2.3. [13] For any fixed solution class S (L1) of Eq (2.1), there exists a unique solution
(X1,Y1, z1) ∈ S (L1) such that X1 ≥ 1, Y1 ≥ 1, and z1 ≤ z, where z runs through all solution
(X,Y, z) ∈ S (L1).The solution (X1,Y1, z1) is called the least solution of S (L1). Every solution
(X,Y, z) ∈ S (L1) can be expressed as

z = z1t, 2 6 |t, t ∈ N,

X
√

D1 + Y
√
−D2 = λ1(X1

√
D1 + λ2Y1

√
−D2)t, λ1, λ1 ∈ {1,−1}.

Lemma 2.4. [3] Let (X1,Y1, z1) be the least solution of S (L1). If Eq (2.1) has solution (X,Y, z) ∈ S (L1)
satisfying X ≥ 1 and Y = 1, then Y1 = 1. Furthermore, if (X, z) , (X1, z1), then one of the following
conditions is satisfied:

(1) D1X2
1 = 1

4 (kz1 ± 1),D2 = 1
4 (3kz1 ∓ 1), (X, z) = (X1|D1X2

1 − 3D2|, 3z1).
(2) D1X2

1 = 1
4 F3r+3ε,D2 = 1

4 L3r, kz1 = F3r+ε, (X, z) = (X1|D2
1X4

1 − 10D1D2X2
1 + 5D2

2|, 5z1), where r is
a positive integer, ε ∈ {1,−1}.

Lemma 2.5. [6] For any positive integer n, let Fn be the n-th Fibonacci number. The equation

Fn = u2, n, u ∈ N (2.2)

has only the solutions (n, u) = (1, 1), (2, 1), and (12, 12).

Lemma 2.6. [19] Suppose that x, y, m, n are positive integers greater than one. Then the equation

xm − yn = 1 (2.3)

has only the positive integer solution (x, y,m, n) = (3, 2, 2, 3).

Finally, we need a result on primitive divisors of Lehmer numbers due to Bilu, Hanrot, Voutier [4].
Let α, β be algebraic integers. If (α + β)2, αβ are nonzero coprime integers, and α

β
is not a root of

unity, then (α, β) is called a Lehmer pair. Let E = (α + β)2 and G = αβ. Then we have

α =
1
2

(
√

E + λ
√

F), β =
1
2

(
√

E − λ
√

F), λ ∈ {−1, 1}, (2.4)
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where F = E − 4G. Further, one defines the corresponding sequence of Lehmer numbers by

Ln =
αn − βn

α − β
.

Obviously, Ln(α, β), (n ≥ 1) are nonzero integers.
A prime q is called a primitive divisor of the Lehmer number Ln(α, β), (n ≥ 1) if q|Ln(α, β) and

q 6 |FL1(α, β)...Ln−1(α, β).

Lemma 2.7. [4] If n > 30, then Ln(α, β) has primitive divisors.

Lemma 2.8. Let m ≥ 2100 be a positive integer and (x, y, z) be a positive integer solution of Eq (1.11).
Suppose that N = max{x, y}, then z > 1.87N.

Proof. Let (x, y, z) be a positive integer solution of Eq (1.11), then we derive that

(11m)z = (88m2 + 1)x + (33m2 − 1)y > (88m2 + 1)x (2.5)

and
(11m)z = (88m2 + 1)x + (33m2 − 1)y > (33m2 − 1)y. (2.6)

By (2.5) and (2.6), we get that

z > f (m) · x :=
log(88m2 + 1)

log(11m)
· x (2.7)

and

z > g(m) · y :=
log(33m2 − 1)

log(11m)
· y. (2.8)

Notice that f (m) and g(m) are increasing and m ≥ 2100, we get that

z > f (m) · x ≥ f (2100) · x > 1.96 · x (2.9)

and
z > g(m) · y ≥ g(2100) · y > 1.87 · y. (2.10)

If N = max{x, y} = x, then
z > 1.96 · x > 1.87N.

If N = max{x, y} = y, then
z > 1.87 · y = 1.87N.

Therefore, we conclude that if m ≥ 2100 and N = max{x, y}, then

z > 1.87N.

This completes the proof of Lemma 2.8. �
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3. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1.

Lemma 3.1. Let (x, y, z) be a positive integer solution of Eq (1.8). Suppose there exists a prime factor
p of l satisfying a2m2 ≡ −2 (mod p). Then both x and y are odd.

Proof. Since a > l ≥ 3, we see from Eq (1.8) that

0 ≡ (am)z ≡ (a(a − l)m2 + 1)x + (alm2 − 1)y ≡ 1 + (−1)y (mod a),

and y is odd.
Since a2m2 ≡ −2 (mod p), by Eq (1.8) and y is odd , we have

0 . (am)z ≡ (a(a − l)m2 + 1)x + (alm2 − 1)y ≡ (−1)x + (−1)y (mod p). (3.1)

Hence, we obtain from (3.1) that x is odd. �

Lemma 3.1 is proved.

3.1. The case m ≡ 0 (mod 2)

Lemma 3.2. Suppose that m ≡ 0 (mod 2). Then Eq (1.8) has only the positive integer solution
(x, y, z) = (1, 1, 2).

Proof. If z ≤ 2, then (x, y, z) = (1, 1, 2) from Eq (1.8). Hence, we may assume that z ≥ 3. Taking
Eq (1.8) modulo m3 implies that

a(a − l)x + aly ≡ 0 (mod m).

That is,
a2x ≡ 0 (mod 2),

which is impossible, since both x and a are odd. Therefore, we conclude that if m is even, then Eq (1.8)
has only the positive integer solution (x, y, z) = (1, 1, 2). �

Lemma 3.2 is proved.

3.2. The case m ≡ 1 (mod 2)

Lemma 3.3. Suppose that m is odd and there exists a prime factor p of l satisfying a2m2 ≡ −2 (mod p).
Then Eq (1.8) has only the positive integer solution (x, y, z) = (1, 1, 2).

Proof. We assume that Eq (1.8) has another positive integer solution (x, y, z) , (1, 1, 2). By Lemma 3.1,
we get that both x and y are odd positive integers. Thus, Eq (1.8) yields the following equation:

(a(a − l)m2 + 1)X2 + (alm2 − 1)Y2 = (am)z, (3.2)

where
X = (a(a − l)m2 + 1)

x−1
2 ,Y = (alm2 − 1)

y−1
2 , z ≥ 2.
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Hence, (X,Y, z) = ((a(a−l)m2 +1)
x−1

2 , (alm2−1)
y−1

2 , z) , (1, 1, 2) is a positive integer solution of Eq (3.2)
with gcd(X,Y) = 1.

Let L = 〈(a(a− l)m2 + 1)
x−1

2 , (alm2 − 1)
y−1

2 , z)〉. By Lemma 2.2 and Eq (3.2), we know that L satisfies

1 ≡ (a(a − l)m2 + 1)
x+1

2 ≡ −L(alm2 − 1)
y−1

2 ≡ (−1)
y+1

2 L (mod am). (3.3)

On the other hand, let L1 = 〈1, 1, 2〉, since (X1,Y1, z1) = (1, 1, 2) is a positive integer solution of
Eq (3.2). Then by Lemma 2.2 we have

1 ≡ a(a − l)m2 + 1 ≡ −L1 (mod am).

It implies that L ≡ ±L1 (mod am), and it is obvious that (X1,Y1, z1) = (1, 1, 2) is the least solution of
S (L1), since z ≥ 2. Hence, (X,Y, z) ∈ S (L1) . Therefore, using Lemma 2.3, we get that

z = z1t = 2t, 2 6 |t, t ∈ N,

(a(a − l)m2 + 1)
x−1

2
√

a(a − l)m2 + 1 + (alm2 − 1)
y−1

2
√

1 − alm2

= λ1(
√

a(a − l)m2 + 1 + λ2

√
1 − alm2))t, λ1, λ2 ∈ {−1, 1}. (3.4)

By Eq (3.4), we get

(alm2 − 1)
y−1

2 = λ1λ2

t−1
2∑

i=0

(
t

2i + 1

)
(a(a − l)m2 + 1)

t−1
2 −i(1 − alm2)i. (3.5)

and

(a(a − l)m2 + 1)
x−1

2 = λ1

t−1
2∑

i=0

(
t
2i

)
(a(a − l)m2 + 1)

t−1
2 −i(1 − alm2)i. (3.6)

�

Now, we consider the following two cases.
Case 1. l ≡ 1 (mod 2). Since 2|(alm2 − 1) and 2 6 |(a(a − l)m2 + 1), we see from Eq (3.5) that
y = 1 and (alm2 − 1)

y−1
2 = 1. It implies that (X,Y, z) is a solution of S (L1) satisfying Y = 1 and

(X, z) , (X1, z1) = (1, 2).
Therefore, by Lemma 2.4, we get either

(a(a − l)m2 + 1) = (a(a − l)m2 + 1)X2
1 =

1
4

((am)2 ± 1) (3.7)

or
(am)2 = (am)z1 = F3r+ε, ε ∈ {−1, 1}. (3.8)

By Eq (3.7), we can obtain
3a2m2 + 3 = 4alm2, (3.9)

and
am2(4l − 3a) = 5 (3.10)
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If Eq (3.9) holds, taking modulo 4, we get 6 ≡ 0 (mod 4), which is impossible.
If Eq (3.10) holds, we get am2 | 5, that is, a = 5, m = 1 and l = 4, which is impossible.
By Lemma 2.5, we know that Eq (3.8) has no positive integer solution, since am ≡ 1 (mod 2).
Hence, Eq (1.8) has only the positive integer solution (x, y, z) = (1, 1, 2) with l ≡ 1 (mod 2).

Case 2. l ≡ 0 (mod 2) and min{a(a − l)m2 + 1, alm2 − 1} > 30.
By Eqs (3.5) and (3.6), we get either a(a − l)m2 + 1|t or alm2 − 1|t. This implies that

t ≥ min{a(a − l)m2 + 1, alm2 − 1}. (3.11)

Further, since min{a(a − l)m2 + 1, alm2 − 1} > 30, we see from (3.11) that

t > 30. (3.12)

Let
α =

√
alm2 − 1 +

√
a(l − a)m2 − 1, β =

√
alm2 − 1 −

√
a(l − a)m2 − 1 (3.13)

Then (α + β)2 = 4(alm2 − 1), αβ = (am)2 are nonzero coprime integers, and α
β

is not a root of unity.
Hence, (α, β) is a Lehmer pair. By Eqs (3.5) and (3.13), we have

(alm2 − 1)
y−1

2 =
∣∣∣αt − βt

α − β

∣∣∣ =
∣∣∣Lt(α, β)

∣∣∣. (3.14)

We see from (3.14) that the Lehmer number Lt(α, β) has no primitive divisors. But, by Lemma 2.7, we
find from (3.14) that this is false.

Thus, under the assumption, Eq (1.8) has only the positive integer solution (x, y, z) = (1, 1, 2)
with l ≡ 0 (mod 2).

This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Proof. Since l = a, Eq (1.8) can be written as

(am)z − (a2m2 − 1)y = 1. (4.1)

By Lemma 2.6, we obtain that Eq (4.1) has only positive integer solutions (x, y, z) = (n, 1, 2), n ∈ N. �

This completes the proof of Theorem 1.2.

5. Proof of Corollary 1.5

In order to obtain an upper bound for m, we shall quote a result on linear forms in p-adic logarithms
due to Bugeaud [2]. Here we consider the case where y1 = y2 = 1 in the notation of [2], page 375.

Let p be an odd prime. Let a1 and a2 be nonzero integers prime to p. Let g be the least positive
integer such that

v(ag
1 − 1) ≥ 1, v(ag

2 − 1) ≥ 1,

AIMS Mathematics Volume 7, Issue 4, 7187–7198.
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where we denote the p-adic valuation by vp(·). Assume that there exists a real number E such that

1
p − 1

< E ≤ vp(ag
1 − 1).

We consider the integer
Λ = ab1

1 − ab2
2

where b1 and b2 are positive integers. We let A1 and A2 be real numbers greater than one with

log Ai ≥ max{log |ai|, E log p}, i = 1, 2,

and we put

B =
b1

log A2
+

b2

log A1
.

Proposition 5.1. [2] With the above notation, if a1 and a2 are multiplicatively independent, then we
have the upper estimates

vp(Λ) ≤
36.1g

E3(log p)4 (max{log B + log(E log p) + 0.4, 6E log p, 5})2 log A1 log A2. (5.1)

Proof. Now let (x, y, z) be a solution of Eq (1.11). By Corollary 1.3 and Lemma 3.2, we know that
Eq (1.11) has only the positive integer solution (x, y, z) = (1, 1, 2) when 3 6 |m or 2|m. Thus, the proof
of Corollary 1.5 suffices to prove the case m > 2360, 3|m, 2 6 |m. Recall that y is odd. Here, we apply
Proposition 5.1. For this, we set p = 11, a1 = 88m2 + 1, a2 = 1 − 33m2, b1 = x, b2 = y, and

Λ = (88m2 + 1)x − (1 − 33m2)y.

Then we may take g = 1, E = 1, A1 = 88m2 + 1, A2 = 33m2 − 1. Hence by (5.1), we have

z ≤
36.1

(log 11)4 (max{log B + log(log 11) + 0.4, 6 log 11, 5})2 log(88m2 + 1) log(33m2 − 1), (5.2)

where
B =

x
log(33m2 − 1)

+
y

log(88m2 + 1)
.

Suppose that z ≥ 4. Taking Eq (1.11) modulo m4 we have

88x + 33y ≡ 0 (mod m2).

In particular, we put N = max{x, y}, then N ≥ m2

121 . Since z > N and B ≤ N
log 5m we have that

N < z ≤
36.1

(log 11)4 (max{log(
N

log 5m
)+log(log 11)+0.4, 6 log 11, 5})2 log(88m2+1) log(33m2−1). (5.3)

Let
H(N,m) = max{log(

N
log 5m

) + log(log 11) + 0.4, 6 log 11, 5}.
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Note that 6 log 11 > 5, then

H(N,m) = max{log(
N

log 5m
) + log(log 11) + 0.4, 6 log 11}.

If
H(N,m) = log(

N
log 5m

) + log(log 11) + 0.4 ≥ 6 log 11.

Then the inequality log N > 6 log 11 − log(log 11) − 0.4 implies that N > 495231. On the other hand,
from (5.3) we have that

N < 1.092 · (log N + 1.275)2 log(88 · 121N + 1) log(33 · 121N − 1), (5.4)

which implies that N < 66033, a contradiction. Hence H(N,m) = 6 log 11 and therefore from (5.3) we
have the inequality

m2 ≤ 27348.57 · log(88m2 + 1) log(33m2 − 1). (5.5)

This implies that m ≤ 3342.
If 2100 ≤ m ≤ 3342, by Lemma 2.8 we have

1.87m2 < 27348.57 · log(88m2 + 1) log(33m2 − 1).

Then m ≤ 2359, which contradicts the fact that m > 2360.
We conclude z ≤ 3. If z = 3, let a = 88m2 + 1, b = 33m2 − 1 we obtain that

a2x + 2axby + b2y = a3 + 3a2b + 3ab2 + b3. (5.6)

If y = 1, we get from (5.6) that a|b2(b − 1). It follows that a = 88m2 + 1|b − 1 = 33m2 − 2 since
gcd(a, b) = 1, which is impossible. If x = 1, we get from (5.6) that b|a2(a − 1). It follows that
b = 33m2 − 1|a− 1 = 88m2, so 33m2 − 1|11m2 − 3, which is impossible. Thus we have x > 1 and y > 1.
This will lead to

a3 + 3a2b + 3ab2 + b3 = a2x + 2axby + b2y ≥ a4 + 2a2b2 + b4 > a3 + 3a2b + 3ab2 + b3,

a contradiction.
Hence z ≤ 2. In this case, one can easily show that (x, y, z) = (1, 1, 2).

�

This completes the proof of Corollary 1.5.
Remark. It is easy to see that the Diophantine equation (a(a − l)m2 + 1)x + (alm2 − 1)y = (am)z has
solution (x, y, z) = (1, 1, 2) if we remove all the conditions in Theorem 1.1. How can prove it? On the
other hand, it is worth noting that from Theorem 1.1, the condition min{a(a − l)m2 + 1, alm2 − 1} ≤ 30
still has the value of further research.
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