Research article Special Issues

Stabilization of discrete-time positive switched T-S fuzzy systems subject to actuator saturation

  • Received: 24 January 2023 Revised: 17 March 2023 Accepted: 21 March 2023 Published: 29 March 2023
  • The stabilization of discrete-time positive switched Takagi-Sugeno (T-S) fuzzy systems with actuator saturation is investigated in this paper. It is assumed that the switched subsystems are partially stabilizable. Based on the convex hull technique (CHT) and parallel distribution compensation (PDC) algorithm, a saturated fuzzy controller and slow-fast combined mode-dependent average dwell time (MDADT) switching signal are co-designed and sufficient conditions for the positivity and stability of closed-loop positive switched T-S fuzzy systems (PSTSFSs) are developed, which can be reduced to the ones under the case where all switched subsystems are stabilizable. Moreover, the largest attraction domain estimation (ADE) is given for PSTSFSs by formulating an optimization problem. Finally, the designed control scheme is applied to two illustrative examples to verify its availability and superiority.

    Citation: Gengjiao Yang, Fei Hao, Lin Zhang, Lixin Gao. Stabilization of discrete-time positive switched T-S fuzzy systems subject to actuator saturation[J]. AIMS Mathematics, 2023, 8(6): 12708-12728. doi: 10.3934/math.2023640

    Related Papers:

  • The stabilization of discrete-time positive switched Takagi-Sugeno (T-S) fuzzy systems with actuator saturation is investigated in this paper. It is assumed that the switched subsystems are partially stabilizable. Based on the convex hull technique (CHT) and parallel distribution compensation (PDC) algorithm, a saturated fuzzy controller and slow-fast combined mode-dependent average dwell time (MDADT) switching signal are co-designed and sufficient conditions for the positivity and stability of closed-loop positive switched T-S fuzzy systems (PSTSFSs) are developed, which can be reduced to the ones under the case where all switched subsystems are stabilizable. Moreover, the largest attraction domain estimation (ADE) is given for PSTSFSs by formulating an optimization problem. Finally, the designed control scheme is applied to two illustrative examples to verify its availability and superiority.



    加载中


    [1] X. Zhao, L. Zhang, P. Shi, M. Liu, Stability of switched positive linear systems with average dwell time switching, Automatica, 48 (2012), 1132–1137. https://doi.org/10.1016/j.automatica.2012.03.008 doi: 10.1016/j.automatica.2012.03.008
    [2] L. You, J. Fang, X. Mu, Stability of switched positive linear systems with actuator saturation under mode-dependent average dwell time, Int. J. Control Autom. Syst., 18 (2020), 817–823. https://doi.org/10.1007/s12555-019-0332-x doi: 10.1007/s12555-019-0332-x
    [3] Y. Ju, Y. Sun, Stabilization of discrete-time switched positive linear systems via weak switched linear copositive Lyapunov function, Automatica, 114 (2020), 108836. https://doi.org/10.1016/j.automatica.2020.108836 doi: 10.1016/j.automatica.2020.108836
    [4] P. Wang, J. Zhao, Dissipativity of positive switched systems using multiple linear supply rates, Nonlinear Anal.: Hybrid Syst., 32 (2019), 37–53. https://doi.org/10.1016/j.nahs.2018.08.009 doi: 10.1016/j.nahs.2018.08.009
    [5] I. Ghous, J. Lu, Robust observer design for two-dimensional discrete positive switched systems with delays, IEEE Trans. Circuits Syst. II: Express Briefs, 67 (2020), 3297–3301. https://doi.org/10.1109/TCSII.2020.2986888 doi: 10.1109/TCSII.2020.2986888
    [6] A. Jadbabaie, J. Lin, A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control, 48 (2003), 988–1001. https://doi.org/10.1109/TAC.2003.812781 doi: 10.1109/TAC.2003.812781
    [7] R. Shorten, D. Leith, J. Foy, R. Kilduff, Towards an analysis and design framework for congestion control in communication networks, Proceedings of the 12th Yale workshop on adaptive and learning systems, 2003.
    [8] H. He, X. Gao, W. Qi, Observer-based sliding mode control for switched positive nonlinear systems with asynchronous switching, Nonlinear Dyn., 93 (2018), 2433–2444. https://doi.org/10.1007/s11071-018-4334-7 doi: 10.1007/s11071-018-4334-7
    [9] J. Chen, J. Yu, Robust control for discrete-time T-S fuzzy singular systems, J. Syst. Sci. Complex., 34 (2021), 1345–1363. https://doi.org/10.1007/s11424-020-0059-z doi: 10.1007/s11424-020-0059-z
    [10] J. Chen, J. Yu, H.K. Lam, New admissibility and admissibilization criteria for nonlinear discrete-time singular systems by switched fuzzy models, IEEE Trans. Cybernetics, 52 (2021), 9240–9250. https://doi.org/10.1109/TCYB.2021.3057127 doi: 10.1109/TCYB.2021.3057127
    [11] S. Li, Z. Xiang, Exponential stability analysis and $L_2$-gain control synthesis for positive switched T–S fuzzy systems, Nonlinear Anal.: Hybrid Syst., 27 (2018), 77–91. https://doi.org/10.1016/j.nahs.2017.08.006 doi: 10.1016/j.nahs.2017.08.006
    [12] S. Du, J. Qiao, Stability analysis and $L_1$-gain controller synthesis of switched positive T–S fuzzy systems with time-varying delays, Neurocomputing, 275 (2018), 2616–2623. https://doi.org/10.1016/j.neucom.2017.11.026 doi: 10.1016/j.neucom.2017.11.026
    [13] S. Li, Z. Xiang, J. Guo, Stabilisation for positive switched T–S fuzzy delayed systems under standard $L_1$ and ${L}_\infty$ performance, Int. J. Syst. Sci., 49 (2018), 1226–1241. https://doi.org/10.1080/00207721.2018.1442512 doi: 10.1080/00207721.2018.1442512
    [14] Y.-W. Wang, Z.-H. Zeng, X.-K. Liu, Z.-W. Liu, Input-to-state stability of switched linear systems with unstabilizable modes under DoS attacks, Automatica, 146 (2022), 110607. https://doi.org/10.1016/j.automatica.2022.110607 doi: 10.1016/j.automatica.2022.110607
    [15] J. Yan, Y. Xia, X. Wang, X. Feng, Quantized stabilization of switched systems with partly unstabilizable subsystems and denial-of-service attacks, Int. J. Robust Nonlinear Control, 32 (2022), 4574–4593. https://doi.org/10.1002/rnc.6039 doi: 10.1002/rnc.6039
    [16] R. Ma, H. Zhang, S. Zhao, Exponential stabilization of switched linear systems subject to actuator saturation with stabilizable and unstabilizable subsystems, J. Franklin Inst., 358 (2021), 268–295. https://doi.org/10.1016/j.jfranklin.2020.10.008 doi: 10.1016/j.jfranklin.2020.10.008
    [17] G. Yang, F. Hao, L. Zhang, B. H. Li, Controller synthesis for discrete-time positive switched T–S fuzzy systems with partially controllable subsystems, Asian J. Control, 24 (2022), 1622–1637. https://doi.org/10.1002/asjc.2550 doi: 10.1002/asjc.2550
    [18] X. Lyu, Z. Lin, PID control of planar nonlinear uncertain systems in the presence of actuator saturation, IEEE-CAA J. Autom. Sin., 9 (2022), 90–98. https://doi.org/10.1109/JAS.2021.1004281 doi: 10.1109/JAS.2021.1004281
    [19] J. Lian, F. Wu, Stabilization of switched linear systems subject to actuator saturation via invariant semiellipsoids, IEEE Trans. Autom. Control, 65 (2020), 4332–4339. https://doi.org/10.1109/TAC.2019.2955028 doi: 10.1109/TAC.2019.2955028
    [20] P. Sun, B. Zhu, Z. Zuo, M. V. Basin, Vision-based finite-time uncooperative target tracking for UAV subject to actuator saturation, Automatica, 130 (2021), 109708. https://doi.org/10.1016/j.automatica.2021.109708 doi: 10.1016/j.automatica.2021.109708
    [21] Y. Chen, Z. Wang, Local stabilization for discrete-time systems with distributed state delay and fast-varying input delay under actuator saturations, IEEE Trans. Autom. Control, 66 (2021), 1337–1344. https://doi.org/10.1109/TAC.2020.2991013 doi: 10.1109/TAC.2020.2991013
    [22] J.-M. Yang, D.-E. Lee, Model matching of input/state asynchronous sequential machines with actuator saturation and bounded delays, Automatica, 120 (2020), 109134. https://doi.org/10.1016/j.automatica.2020.109134 doi: 10.1016/j.automatica.2020.109134
    [23] F. Yang, S. Yan, Z. Gu, Derivative-based event-triggered control of switched nonlinear cyber-physical systems with actuator saturation, Int. J. Control Autom. Syst., 20 (2022), 2474–2482. https://doi.org/10.1007/s12555-021-0305-8 doi: 10.1007/s12555-021-0305-8
    [24] G. Yang, F. Hao, L. Zhang, B. Li, Actuator saturation control of continuous-time positive switched T–S fuzzy systems, J. Franklin Inst., 358 (2021), 8862–8885. https://doi.org/10.1016/j.jfranklin.2021.09.001 doi: 10.1016/j.jfranklin.2021.09.001
    [25] E. Fornasini, M. E. Valcher, Stability and stabilizability criteria for discrete-time positive switched systems, IEEE Trans. Autom. Control, 57 (2011), 1208–1221. https://doi.org/10.1109/TAC.2011.2173416 doi: 10.1109/TAC.2011.2173416
    [26] C. Houpis, S. Sheldon, Linear control system analysis and design with MATLAB, 6 Eds., Boca Raton: CRC Press, 2013. https://doi.org/10.1201/b16032
    [27] A. Benzaouia, A. Hmamed, A. E. Hajjaji, Stabilization of controlled positive discrete-time T-S fuzzy systems by state feedback control, ACSP, 24 (2010), 1091–1106. https://doi.org/10.1002/acs.1185 doi: 10.1002/acs.1185
    [28] D. Liberzon, Switching in systems and control, Boston: Birkhäuser, 2003. https://doi.org/10.1007/978-1-4612-0017-8
    [29] X. Zhao, L. Zhang, P. Shi, M. Liu, Stability and stabilization of switched linear systems with mode-dependent average dwell time, IEEE Trans. Autom. Control, 57 (2011), 1809–1815. https://doi.org/10.1109/TAC.2011.2178629 doi: 10.1109/TAC.2011.2178629
    [30] X. Zhao, Y. Yin, L. Zhang, H. Yang, Control of switched nonlinear systems via T–S fuzzy modeling, IEEE Trans. Fuzzy Syst., 24 (2015), 235–241. https://doi.org/10.1109/TFUZZ.2015.24508349 doi: 10.1109/TFUZZ.2015.24508349
    [31] T. Hu, Z. Lin, B. M. Chen, Analysis and design for discrete-time linear systems subject to actuator saturation, Syst. Control Lett., 45 (2002), 97–112. https://doi.org/10.1016/S0167-6911(01)00168-2 doi: 10.1016/S0167-6911(01)00168-2
    [32] Y. Zhang, J. Hu, D. Liu, D. Xia, Robust stabilization of switched positive discrete-time systems with asynchronous switching and input saturation, Optim. Control Appl. Methods, 40 (2019), 105–118. https://doi.org/10.1002/oca.2469 doi: 10.1002/oca.2469
    [33] K. Tanaka, H. O. Wang, Fuzzy control systems design and analysis: A linear matrix inequality approach, New York: John Wiley & Sons, 2001. https://doi.org/10.1002/0471224596
    [34] M. S. Mahmoud, Switched delay-dependent control policy for water-quality systems, IET Control Theory Appl., 3 (2009), 1599–1610. https://doi.org/10.1049/iet-cta.2008.0474 doi: 10.1049/iet-cta.2008.0474
    [35] J. Shen, W. Wang, $L_1$-gain analysis and control for switched positive systems with dwell time constraint, Asian J. Control, 20 (2018), 1793–1803. https://doi.org/10.1002/asjc.1702 doi: 10.1002/asjc.1702
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1135) PDF downloads(98) Cited by(2)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog