In this manuscript, fixed point results without continuity via triangular notion on fuzzy bipolar metric spaces are established. The paper includes tangible examples which display the motivation for such investigations as those presented here. We solve an integral equation in this setting. The present work is a generalization of some published works.
Citation: Gunaseelan Mani, Arul Joseph Gnanaprakasam, Khalil Javed, Eskandar Ameer, Saber Mansour, Hassen Aydi, Wajdi Kallel. On a fuzzy bipolar metric setting with a triangular property and an application on integral equations[J]. AIMS Mathematics, 2023, 8(6): 12696-12707. doi: 10.3934/math.2023639
In this manuscript, fixed point results without continuity via triangular notion on fuzzy bipolar metric spaces are established. The paper includes tangible examples which display the motivation for such investigations as those presented here. We solve an integral equation in this setting. The present work is a generalization of some published works.
[1] | B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313–334. http://dx.doi.org/10.2140/pjm.1960.10.313 doi: 10.2140/pjm.1960.10.313 |
[2] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[3] | I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326–334. |
[4] | M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4 |
[5] | V. Gregori, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets Syst., 125 (2002), 245–252. https://doi.org/10.1016/S0165-0114(00)00088-9 doi: 10.1016/S0165-0114(00)00088-9 |
[6] | A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7 |
[7] | A. Mutlu, U. Gurdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373. http://dx.doi.org/10.22436/jnsa.009.09.05 doi: 10.22436/jnsa.009.09.05 |
[8] | A. Bartwal, R. C. Dimri, G. Prasad, Some fixed point theorems in fuzzy bipolar metric spaces, J. Nonlinear Sci. Appl., 13 (2020), 196–204. http://dx.doi.org/10.22436/jnsa.013.04.04 doi: 10.22436/jnsa.013.04.04 |
[9] | I. Shamas, S. U. Rehman, H. Aydi, T. Mahmood, E. Ameer, Unique fixed-point results in fuzzy metric spaces with an application to Fredholm integral equations, J. Funct. Spaces, 2021 (2021), 4429173. https://doi.org/10.1155/2021/4429173 doi: 10.1155/2021/4429173 |
[10] | A. Moussaoui, N. Hussain, S. Melliani, N. Hayel, M. Imdad, Fixed point results via extended $\mathcal{F}\mathcal{Z}$-simulation functions in fuzzy metric spaces, J. Inequal. Appl., 2022 (2022), 69. https://doi.org/10.1186/s13660-022-02806-z doi: 10.1186/s13660-022-02806-z |
[11] | U. D. Patel, S. Radenović, An application to nonlinear fractional differential equation via $\alpha$-$\Gamma F$-fuzzy contractive mappings in a fuzzy metric space, Mathematics, 10 (2022), 2831. https://doi.org/10.3390/math10162831 doi: 10.3390/math10162831 |
[12] | A. Moussaoui, N. Saleem, S. Melliani, M. Zhou, Fixed point results for new types of fuzzy contractions via admissible functions and $\mathcal{F}\mathcal{Z}$-simulation functions, Axioms, 11 (2022), 87. https://doi.org/10.3390/axioms11030087 doi: 10.3390/axioms11030087 |
[13] | E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Dordrecht: Springer, 2000. https://doi.org/10.1007/978-94-015-9540-7 |
[14] | A. Fernández-León, M. Gabeleh, Best proximity pair theorems for noncyclic mappings in Banach and metric spaces, Fixed Point Theory, 17 (2016), 63–84. |
[15] | W. A. Kirk, P. S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), 79–89. |
[16] | A. Anthony Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001–1006. https://doi.org/10.1016/j.jmaa.2005.10.081 doi: 10.1016/j.jmaa.2005.10.081 |
[17] | Y. Dzhabarova, S. Kabaivanov, M. Ruseva, B. Zlatanov, Existence, uniqueness and stability of market equilibrium in oligopoly markets, Adm. Sci., 10 (2020), 70. https://doi.org/10.3390/admsci10030070 doi: 10.3390/admsci10030070 |
[18] | S. Kabaivanov, V. Zhelinski, B. Zlatanov, Coupled fixed points for Hardy–Rogers type of maps and their applications in the investigations of market equilibrium in duopoly markets for non-differentiable, nonlinear response functions, Symmetry, 14 (2022), 605. https://doi.org/10.3390/sym14030605 doi: 10.3390/sym14030605 |
[19] | B. Zlatanov, Coupled best proximity points for cyclic contractive maps and their applications, Fixed Point Theory, 22 (2021), 431–452. https://doi.org/10.24193/fpt-ro.2021.1.29 doi: 10.24193/fpt-ro.2021.1.29 |