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1. Introduction and preliminaries

In 1960, Schweizer et al. [1] first initiated the concept of a continuous #-norm. In 1965, Zadeh [2]
introduced a fuzzy set and its properties. After that, Kramosil et al. [3] established the fuzzy sets
into fuzzy metric spaces in 1975 using the concept of continuous t-norms. In 1994, George et al. [6]
introduced the modified version of fuzzy metric spaces. Grabeic [4] established and improved the
well-known Banach’s fixed point theorem (FPT) to fuzzy metric spaces in the visual of Karamosil
et al. [3]. Following that, Gregori et al. [5] gave an extension of the Banach contraction theorem using
a fuzzy metric space in the same way as George et al. [6], Mutlu et al. [7] generalized a metric space,
also known as a bipolar metric space. Bartwal et al. [8] proposed and proved FPTs using the fuzzy
bipolar metric space (FBMS). Very recently, Shamas et al. [9] demonstrated fixed-point results without
continuity in the setting of fuzzy metric spaces using the triangular property. In this paper, we will use
the triangular property on fuzzy bipolar metric spaces to prove fixed point theorems without continuity.
For further fixed point results using fuzzy setting, see the works [10-12].

Now, let’s include some basic definitions and useful lemmas.

Definition 1.1. [13] A triangular norm (shortly, [-norm) is a binary operation on the unit interval [0, 1],
1.e., a function * : [0, 1] X [0, 1] — [0, 1] such that for all a, b, ¢ € [0, 1], the following four axioms are
satisfied:

(Tnl) a = (b *c) = (ax*b)x* c (associativity);

(Tn2) a = b = b * a (commutativity);

(Tn3) a * 1 = a (boundary condition);

(Tn4) a+b < a*c, whenever b < ¢ (monotonicity).

Definition 1.2. [6] The 3-tuple (X, y, *) is a fuzzy metric space if X is an arbitrary set, * is a -norm
and u : X x (0,00) — [0, 1] is a fuzzy set on X? X (0, o0) satisfying the following conditions for all
x,y,k € Xand r,t > O:

(fD) u(x,y, 1) > 0;

() uxy.n=1ex=y;

(f3) u(x, y, 1) = pu(y, x, 1);

(f4) p(x, 3, 0) % u(y, &, 1) < pa(x, K, 1+ 1);

(f5) u(x,y,.) : (0,00) = [0, 1] is continuous.

Definition 1.3. [8] Let @ # 0 and ¥ # 0. A quadruple (D, ¥, I, %) is called a FBMS, where * is a
continuous [-norm and 7 is a fuzzy set on @ X ¥ x (0, 00), if for all [, p, 6 > 0:

(1) I'g(o,u, 1) > Oforall (o,u) € DX Y;

2) I'g(o,u,)=1iffoc=pforce Pandu e ¥;

(3) I'p(o,pu, 1) = I'g(u, o, forallo,ue dNY;

4) I'g(o1, o, 1+ p +6) > Tp(oy, py, Dl (02, o1, p)*I (02, o, 0) for all oy, 0, € @ and g, 1, € ¥
(5) I'g(o,p,.) 2 [0,00) — [0, 1] is left continuous;

(6) I's(o, p,.)1s non-decreasing foralloc € Pandu € V.
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Definition 1.4. [8] Let (&, ¥, I's, ) be a FBMS.

(1) Anelement oo € @ U ¥ is referred to as a left point if oo € @, a right point if o € ¥, and a central
point if both are satisfied. Similarly, a sequence {0, } on @ and a sequence {u,} on ¥ are referred
to as left and right sequences, respectively;

(2) A sequence {0} is convergent to a point o iff ({0} is a left sequence, o is a right point
and lim I's(o,,0,1) = 1 for all [ > 0) or ({o,} is a right sequence, o is a left point and
Yy—0

lim I's(0, o), 1) = 1 for all [ > 0);
Y0

(3) A bisequence ({0}, {1,}) is a sequence on the set @ x ¥. If the sequences {o,} and {u,} are
convergent, then the bisequence ({c,}, {u,}) is said to be convergent. ({0}, {u,}) is a Cauchy
bisequence, if lim Is(oy, iy, 1) = 1 for all [ > 0;

¥, M—00

(4) (D, ¥, I, +)1s complete, if every Cauchy bisequence is convergent in @ X .

Lemma 1.5. [8] Let (D, ¥,1g,%) be a FBMS and x € @ N ¥ be a limit of a sequence, then it is its
unique limit.

Definition 1.6. Let (D, ¥, I's, *) be a FBMS. The FBM I is triangular if

1 1
——13(——1)+(——1)
I'g(o1, 2, 1) I'g(oi, 11, 1) I'g(o2, 11, 1)

1
+(— - 1).
[g(0a, 12, 1)

Example 1.7. Let (&, ?, |.|) be a bipolar metric space (where @ and ¥ are subsets of the real number).
LetI'z: @ x ¥ x(0,00) — [0, 1] be a FBM defined by

T D = e

forall1> 0,0 € ®and u € ¥. The FBM [} is triangular.
Proof. We have forall1> 0,0 e ®andue ¥,

1 _ :|0'1—,U2|:|0'1—,U1+,U1—0'2+0'2—ﬂ2|
['g(01, 2, 1) [ [
< o ;,Ul| N |0'2;,U1| N |0'2I—ﬂ2|

- (rﬁ«rll,m,m -1)+ (rﬁwz,m,n -1)

1
N
[g(0a, 2, 1)

which implies that
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1 1 1
——1s(——1)+(——1)
Ig(01, 12, 1) (o1, 11, 1) Ig(02, 11, 1)

+ (; _ 1), for all > 0.
Ig(02, 12, 1)

Hence, the FBM I is triangular. O

Motivated by Shamas et al. [9], we demonstrate FPTs omitting continuity and using triangular
property on FBMSs with an application.

2. Main results

In this section, we use the triangular property to prove FPTs on FBMSs without continuity. The
following result investigates for fixed points of maps Y satisfying T(®) C @ and Y (¥) C ¥. These
maps are referred in the literature as noncyclic maps, introduced by Fernandez-Leon and Gabeleh [14].

Theorem 2.1. Let (D, ¥, I, *) be a complete FBMS and the mapping T : U ¥ — ® U ¥ be such
that

(1) T(D) C ®and Y (V) C ¥ (i.e., the map Y is noncyclic);
1 1 .
(2) rr — | < k(w - 1),f0r all 1> 0, where k € (0, 1),
(3) I'sis triangular.
Then Y has a UFP (unique fixed point).

Proof. Fix o9 € @ and y € V. Assume that V(o)) = 0444 and Y(u,) = p,., for all y € N U {0}. Then

1 1
—1= ~1
FB(O-)/H s My+1s I) Fﬁ(T(O-y)’ T(;uy)’ I)

1
)
FB(O-)/’ /’Ly’ I)

1
M
Lp(Yoy1, Try-1, D)

v(; - 1).
I's(00, 1o, 1)
As y — oo, we derive that
lim I's(oy, uy, 1) = 1, for [> 0.
y—0
We have
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1 1
= 1
F,B(O-y+l s My, I) FB(T(O-}/)’ T(/J}/—l)a I)

1
< k(— - 1)
Fﬂ(o-y’/’ly—]’ I)
1
s
Ip(Coy 1, T, 2, 1)

7(; - 1).
Ig(o1, o, 1)

As y — oo, we derive that

lim I'g(0y41, 1y, 1) = 1, forall [> 0.
y—0

Lety, m € N with y < m. Then by I is triangular, we get

1 1
s 1) (e - 1)
Fﬂ(o-y’ M, [) Fﬁ(o-y’ My, I) Fﬁ(o—y+1’,uy’ [)

1
1)
Fﬂ(0-7+1 > Hms I)

1 1
s(——1)+(——1)
I'g(oy, py, 1) Ig(0ys1, py, D)

1
+---+( - 1)
F,B(0-111—1’/1m—1’1)
1
+(—— 1)+(;—1)
rﬂ(o_m,/lm—l’l) FB(O-m’,um,I)
1 1
< kv(— - 1) ; ky(— - 1)
I'g(00, 1o, 1) Ig(or1, 1o, 1)
1 1
+~-+k’”‘1(—— 1)+k‘“(—— 1)
I's(00, o, ) Ig(0r1, 1o, 1)

+ "I(— _ 1)
I'g(0o, po, 1)

1
<K +k+E +--- +k"“7)(— - 1)
I'g(00, po, D)
1
+k7(1+k+k2+---+km‘7)(—— 1)
F,B(O-laﬂ()a I)

kY 1 kY 1
< ( - 1)+ ( - 1).
1 = k\I'g(cg, po, ) 1 —k\I'g(o1, po, D)
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As y,m — oo, we get

lim I'g(oy, p, 1) = 1, for [ > 0.
Y, m—00
Thus, ({0}, {i,}) is a Cauchy bisequence. Since (D, ¥, Ig, *) is complete, ({0}, {1, }) is a convergent
bisequence. We know that the bisequence ({0}, {i,}) is biconvergent, so {o,} — r and {u,} — 1 for all
re N Y. By Lemma 1.5, both sequences {0} and {u,} have a unique limit.
Next, we prove that v € @ N ¥ is a fixed point of Y. Since I'; is triangular, we derive that

1 1 1
[MT@LnD_lS(q{ﬂoﬂnhxn_1)+@¢ﬂnqumﬂJf_q
()
Tp(Y(0)), 1, 1)
1 1
S]K([hﬁgﬂy,n _'1)+-k([h(oy,yy,0 - 1)

1
1)
Fﬁ(o-’y+la T, I)
Asy — oo, the three right-hand terms go to zero. We deduce that
Ip(C(x),r,) = 1.

Therefore, Y'(r) = r. Let v € @ N ¥ be another fixed point of T. Then

Eﬁ%ﬁ_lzmwmkumf*sgﬁéiﬁ_q
As k € (0, 1), therefore
Ip(r,0,1) = 1.
Hence, r = v. O

Example 2.2. Let @ = [0,1] and ¥ = {0} UN — {1} be equipped with a continuous [-norm. Define
Ip(r,v,1) = Wl—ul’ forall > 0,0 € ®and u € V. Clearly, (@, ¥, I, *) is a complete FBMS. Note

that Iy is triangular. Define T : U ¥ — & U ¥ by

Loifrelo,1],
T(r) = :
0, ifreN—{l).

Then,
1 | = |To — Yyl
[p(Yo, Y1) [
_lo—ul
41
Sw—m
21
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b el
Therefore, all the conditions of Theorem 2.1 are fulfilled with k = % € (0,1). Hence, T has a UFP,
ie.,o0=0.

The notion of cyclic maps was first introduced in by Kirk el al. [15]. Later, the notion for cyclic
maps and fixed points for cyclic maps have been further developed by Eldred and Veeramani [16] by
introducing the notion of best proximity points.

Theorem 2.3. Let (D, ¥, I, *) be a complete FBMS and the mapping I : U ¥ — ® U ¥ be such
that

(1) T(D) C ¥ and T(¥)C D (i.e. the map Y is cyclic);

1 1 .
(2) s = 1 < H{pk = 1) for all 1> 0, where k € 0,1);

(3) I'gis triangular.
Then X has a UFP.
Proof. Fix oy € @. Assume that V(o) = u, and T(u,) = 0,4 forall y € NU {0}. Then

1 1
B E ~1
F,B(O-)/’ /’t‘y’ I) Fﬁ(T(/'l’)/—l)a T(O-’y)a I)

v
FB(O-’ya Hy-1, I)

At
rﬁ(Tﬂy—l’ To-’y—la I)

o L)
I'g(0ro, o, 1)
Asy — oo, we derive that
lim I'g(oy, py, ) = 1, for [> 0.
y—00

1 1
1= -1
F,B(O-)/+l’/l)/’ I) rﬁ(‘r(l'ly)a T(O-)/)a I)

1
)
rﬁ(o-’ya MY—I’ I)

A
FB(T/"L}/—l’ To-’y—b I)

L)
I's(00, o, D)
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Again,

lim I'g(0y41, 1y, 1) = 1, for [> 0.
y—00

Let y, m € N with y < m. Since I is triangular, we get

1 1
(e = 1)t (e - 1)
F,B(O-ya M I) F,B(O-ya My, I) I—‘,B(O-y+l»,uy’ I)

1
1)
Fﬁ(o-y+1’,unu [)

1 1
(1)t (e - )
Fﬁ(o-ya/”l‘ya I) Fﬁ(o-y+laﬂy7 I)

1
+---+( - 1)
rﬂ(a-m—l’ﬂm—la I)

1 1
+(——1)+(——1)
Fﬁ(o-m’ MHm-1, I) F,B(O-nn/-lnn I)

e e L)
I'g(00, o, 1) I'g(0o, o, 1)

1 1
- k2m2(— _ 1) 4 kZml(— _ 1)
I'g(0o, po, D) Ig(0o, 1o, D)

1
+ kZm( _ 1)
I'g(00, po, 1)

1
<KL+ k+1 4+ kZm-Zy)(— - 1)
I'g(oo, po, 1)

k> 1
Ry )
1 =&\ I's(00, po, 1)
Asy,m — oo, we get

lim I'g(oy, p, 1) = 1, for [ > 0.
Y, m—00
Thus, ({0}, {1, }) 1s a Cauchy bisequence. Since (D, ¥, I's, *) is complete, ({0}, {1, }) 18 a convergent
bisequence. Since the bisequence ({07}, {i1,}) is biconvergent sequence, {o-,} — r and {u,} — 1 for all
re &N Y. By Lemma 1.5, both sequences {0} and {u,} have a unique limit.
Next, we prove that v € @ N ¥ is a fixed point of Y. Since I'; is triangular, we derive that

1 1 1
Tp(T(),x,1) b= (r,g('r(r), T(uy), D) 1) " (rﬁ('r(ay), Ty, ) 1)
¥ (m -1)
= k(rﬁ(r, o0 1) " k(rﬁ((ryl, o0 1)

AIMS Mathematics Volume 8, Issue 6, 12696-12707.



12704

1
1),
Fﬁ(o—yﬂa T, I)
Again, all the right-terms go to zero when y — co. Consequently, as y — oo, we get
Ip(Y(x),x,1) = 1.

Therefore, Y(r) = r. Let v € @ N ¥ is another fixed point of Y. Then
1 1
— 1= —lsk(——l).
Fﬁ(r’ D, I) F,B(T(r)’ T(D), I) F,B(r’ D, I)
Ask € (0, 1), therefore

Tp(r,0,1) = 1.
Hence, r = v. O

Example 2.4. Let @ = {0,1,2,7} and ¥ = {0, ‘—1‘, %, 3} be equipped with a continuous [-norm. Define
Tp(r,0,1) = W[—ul forall [> 0,0 € ®and u € ¥. Clearly, (D, ¥, I, *) is a complete FBMS. Note that

Iz is triangular. Define T : U ¥ — d U ¥ by

Loifre{0,7,2),
Ty ={>
0, ifrefl, 11,3}

it
Then,
1 1= |To — Yy
Is(Yo, YT, 1) [
_lo—u
51
o —
< | 2I,U|

el

~ 2\
Therefore, all the conditions of Theorem 2.3 are fulfilled with k = % € (0,1). Hence, T has a UFP, i.e.,
o=0.

3. Application

The applications of cyclic maps are presented in the investigation of market equilibrium in duopoly
markets, see [17,18]. These applications allow us to find the exact solutions of systems of transcendent
equations with the help of cyclic maps, for which the computer algebra systems can present only an
approximation solutions. For more details, see [19].

In this section, we are going to present an application of the result for fixed points for noncyclic
maps in solving integral equations. Let us consider the integral equation

a(b) = B(b) + f Q0, p, a(p))dp, b € H; UH,, 3.1)

FHUH,
where H, U H, is a Lebesgue measurable set.

AIMS Mathematics Volume 8, Issue 6, 12696-12707.
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Theorem 3.1. Suppose that:
(1) Q: (H? UHZ) X [0,00) — [0,00) and b € L™(H) U L™(H,);

(2) A a continuous function 6 : H} U H? — [0, 00) and k € (0, 1) such that

120, p, 07(p)) = Q0. p, ()] < KO, )l (D) — (D)D),
forb,p € HX U HZ,
(3) fyip, 00 p)dp < 1.
Then the integral equation (3.1) has a unique solution in L*(H,) U L*(H,).

Proof. Let @ = L*(H;) and ¥ = L*(H,) be two normed linear spaces, where H;, H, are Lebesgue
measurable sets and m(H; U H,) < co. Consider I3 : @ X ¥ x (0, 00) — [0, 1] by

[

Ig(o,u, 1) = m

for all o € @,u € V. Then (D, ¥, I, %) is a complete FBMS. Define Y : L*(H,) U L*(H,) —
L¥(Hy) U L¥(H>) by

(o (b)) = Blb) + fH L Qp.aloNdp, b€ H U
Now,
1 L [o) = TGk
rﬁ(TO'(b), Tub), D) [
50)+ f 3, 200,00 = (BO) + [y, Qs
[
B (20,70 = Q00,0
[
B, 2600, p210) = 0]

[
< klﬁ(b)l— p(0)|

<

1
= -1).
Hence, all the conditions of Theorem 2.1 hold. Here, the integral equation has a unique solution. O
4. Conclusions
In this paper, we defined FBMSs and investigated some of their properties. The characteristic
features of FBMSs have developed and proved fixed point theorems without continuity. Hereafter, we

ensured the existence of a solution of an integral equation via the FBMS setting.
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