
For figuring out general variational inequalities, we propose a novel and innovative iterative method. First, we demonstrate that the fixed point formulation and general vaiational inequality are equivalent. The fixed point formulation is used to formulate the explicit and implicit schemes. The general variational inequalities are the basis for the new algorithms. The newly developed algorithm is demonstrated numerically. For figuring out general variational inequalities, these new methods are innovative. Additionally, the convergence analysis is provided under certain favorable conditions.
Citation: Muhammad Bux, Saleem Ullah, Muhammad Bilal Khan, Najla Aloraini. A novel iterative approach for resolving generalized variational inequalities[J]. AIMS Mathematics, 2023, 8(5): 10788-10801. doi: 10.3934/math.2023547
[1] | Giuseppe Maria Coclite, Carlotta Donadello . Vanishing viscosity on a star-shaped graph under general transmission conditions at the node. Networks and Heterogeneous Media, 2020, 15(2): 197-213. doi: 10.3934/nhm.2020009 |
[2] | John D. Towers . An explicit finite volume algorithm for vanishing viscosity solutions on a network. Networks and Heterogeneous Media, 2022, 17(1): 1-13. doi: 10.3934/nhm.2021021 |
[3] | Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro . On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 617-633. doi: 10.3934/nhm.2010.5.617 |
[4] | Wen Shen . Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks and Heterogeneous Media, 2018, 13(3): 449-478. doi: 10.3934/nhm.2018020 |
[5] | Martin Gugat, Mario Sigalotti . Stars of vibrating strings: Switching boundary feedback stabilization. Networks and Heterogeneous Media, 2010, 5(2): 299-314. doi: 10.3934/nhm.2010.5.299 |
[6] |
Giuseppe Maria Coclite, Nicola De Nitti, Mauro Garavello, Francesca Marcellini .
Vanishing viscosity for a |
[7] | Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012 |
[8] | Joachim von Below, José A. Lubary . Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks and Heterogeneous Media, 2009, 4(3): 453-468. doi: 10.3934/nhm.2009.4.453 |
[9] | Alessia Marigo . Equilibria for data networks. Networks and Heterogeneous Media, 2007, 2(3): 497-528. doi: 10.3934/nhm.2007.2.497 |
[10] | Gen Qi Xu, Siu Pang Yung . Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks and Heterogeneous Media, 2008, 3(4): 723-747. doi: 10.3934/nhm.2008.3.723 |
For figuring out general variational inequalities, we propose a novel and innovative iterative method. First, we demonstrate that the fixed point formulation and general vaiational inequality are equivalent. The fixed point formulation is used to formulate the explicit and implicit schemes. The general variational inequalities are the basis for the new algorithms. The newly developed algorithm is demonstrated numerically. For figuring out general variational inequalities, these new methods are innovative. Additionally, the convergence analysis is provided under certain favorable conditions.
We consider a family of scalar conservation laws defined on an oriented graph
On the edge
∂tρi+∂xfi(ρi)=0,t>0,x<0,i=1,...,m, | (1) |
and on the outgoing ones
∂tρj+∂xfj(ρj)=0,t>0,x>0,j=m+1,...,m+n. | (2) |
The fluxes
(H.1) for each
(H.2) for any
We augment (1) and (2) with the initial conditions
{ρi(0,x)=ρi,0(x),x<0,i=1,...,m,ρj(0,x)=ρj,0(x),x>0,j=m+1,...,m+n, | (3) |
assuming that
(H.3)
and
Finally, we introduce the necessary conservation assumption at the node, which transforms our family of independent equations into a single problem
m∑i=1fi(ρi(t,0−))=m+n∑j=m+1fj(ρj(t,0+)) for a.e. t≥0. |
Questions related to existence, uniqueness and stability of solutions for problems of this kind have been extensively investigated in recent years, mainly in relation with traffic modeling. The interested reader can refer to [7,13] for an overview of the subject. Here our point of view is different, as we do not focus on a specific model. We consider a parabolic regularization of the problem, similarly to what has been done in [11,10], but instead of enforcing a continuity condition at the node for the regularized solutions, we introduce a more general set of transmission conditions on the parabolic fluxes.
In this work we adopt the following definition of weak solution for the problem (1), (2), and (3). We stress that this definition is for sure not sufficient to ensure uniqueness. On the contrary it fix somehow a minimal set of properties that any reasonable solution is expected to satisfy, see [3] and references therein for a more detailed discussion on this point.
Definition 1.1. Let
(D.1)
(D.2) for every
∫∞0∫0−∞(|ρi−c|∂tφ+sign(ρi−c)(fi(ρi)−fi(c))∂xφ)dtdx+∫0−∞|ρi,0(x)−c|φ(0,x)dx≥0; |
(D.3) for every
∫∞0∫∞0(|ρj−c|∂tφ+sign(ρj−c)(fj(ρR)−fj(c))∂xφ)dtdx+∫∞0|ρj,0(x)−c|φ(0,x)dx≥0; |
(D.4)
In [10] the authors approximated (1), (2), and (3) in the following way
{∂tρi,ε+∂xfi(ρi,ε)=ε∂2xxρi,ε,t>0,x<0,i,∂tρj,ε+∂xfj(ρj,ε)=ε∂2xxρj,ε,t>0,x>0,j,ρi,ε(t,0)=ρj,ε(t,0),t>0,i,j,m∑i=1(fi(ρi,ε(t,0))−ε∂xρi,ε(t,0))=m+n∑j=m+1(fj(ρj,ε(t,0))−ε∂xρj,ε(t,0)),t>0,ρi,ε(0,x)=ρi,0,ε(x),x<0,i,ρj,ε(0,x)=ρj,0,ε(x),x>0,j, | (4) |
where
ρi,ε→ρia.e. in (0,∞)×(−∞,0) andin Lploc((0,∞)×(−∞,0)),1≤p<∞, as ε→0 for every i,ρj,ε→ρja.e. in (0,∞)×(0,∞) and in Lploc((0,∞)×(0,∞)),1≤p<∞, as ε→0 for every j, |
where
In this paper we modify the transmission condition of (4) and inspired by [14] we consider the following viscous approximation of (1), (2), and (3)
{∂tρi,ε+∂xfi(ρi,ε)=ε∂2xxρi,ε,t>0,x<0,i,∂tρj,ε+∂xfj(ρj,ε)=ε∂2xxρj,ε,t>0,x>0,j,fi(ρi,ε(t,0))−ε∂xρi,ε(t,0)=βi(ρ1,ε(t,0),....,ρm+n,ε(t,0)),t>0,i,fj(ρj,ε(t,0))−ε∂xρj,ε(t,0)=βj(ρ1,ε(t,0),....,ρm+n,ε(t,0)),t>0,j,ρi,ε(0,x)=ρi,0,ε(x),x<0,i,ρj,ε(0,x)=ρj,0,ε(x),x>0,j, | (5) |
where, of course,
m∑i=1βi(ρ1,ε(t,0),…,ρm+n,ε(t,0))=m+n∑j=m+1βj(ρ1,ε(t,0),…,ρm+n,ε(t,0)). | (6) |
The additional assumptions we make on the functions
The main result of the paper is the following.
Theorem 1.2. Assume(H.1), (H.2), and (H.3). There exist a sequence
ρi,εk⟶ρi,a.e.andinLploc((0,∞)×(−∞,0)), | (7) |
ρj,εk⟶ρj,a.e.andinLploc((0,∞)×(0,∞)), | (8) |
f1(ρ1),...,fm(ρm)∈BV((0,∞)×(−∞,0)),fm+1(ρm+1),...,fm+n(ρm+n)∈BV((0,∞)×(0,∞)), | (9) |
for every
It worth mentioning that a complete characterization of the limit solution obtained from (4) as
At the moment we are not able to formulate a similar characterization of the limit of (5). In general, however, the limits coming from parabolic regularization subject to the two different kinds of transmission conditions are different.
To show this consider the simple case of a junction with one incoming and one outgoing edges. So we have the conservation law
∂tρ1+∂xf1(ρ1)=0,t>0,x<0, | (10) |
on the incoming edge and
∂tρ2+∂xf2(ρ2)=0,t>0,x>0, | (11) |
on the outgoing one. Assume that
f1(0)=f1(1)=f2(0)=f2(1)=0,f″1,f″2<0,there exists 0<ˇρ<ˆρ<1 and G>0 such that f1(ˆρ)=f2(ˇρ)=G(ˆρ−ˇρ). | (12) |
Consider the simplified version of (5)
{∂tρ1,ε+∂xf1(ρ1,ε)=ε∂2xxρ1,ε,t>0,x<0,∂tρ2,ε+∂xf2(ρ2,ε)=ε∂2xxρ2,ε,t>0,x>0,f1(ρ1,ε(t,0))−ε∂xρ1,ε(t,0)=f2(ρ2,ε(t,0))−ε∂xρ2,ε(t,0)=G(ρ1,ε−ρ2,ε),t>0,ρ1,ε(0,x)=ˆρ,x<0,ρ2,ε(0,x)=ˇρ,x>0. | (13) |
The unique solution of (13) is
ρ1,ε(⋅,⋅)=ˆρ,ρ2,ε(⋅,⋅)=ˇρ,ε>0. | (14) |
Therefore, as
ρ1(⋅,⋅)=ˆρ,ρ2(⋅,⋅)=ˇρ. | (15) |
This stationary solution is not admissible in the sense of the classical vanishing viscosity germ, see [5,Sec. 5], as it consists of a nonclassical shock. However, when dealing with conservation laws with discontinuous flux, it is well known that infinitely many
It is worth noticing that entropy solutions admissible in the sense of a
It is difficult, however, to establish a direct equivalence between the aforementioned results and the one we put forward in this paper. In particular, in the present case we miss information on the boundary layers at the parabolic level and we do not know how the transmission conditions we impose on the parabolic fluxes translates into a condition for the hyperbolic problem.
This means in particular that we have little information on the germ associated to the family of limit solutions obtained in Theorem 1.2 and, so far, we have not been able to prove that this germ is
The paper is organized as follows: Section 2 contains the precise list of assumptions on the initial and transmission conditions in the parabolic problem (5). In Section 3 we present the proofs of all necessary a priori estimates on (5). Finally, in Section 4 we detail the proof of Theorem 1.2.
The initial conditions
Once the functions
ρi,0,ε∈C∞((−∞,0])∩L1(−∞,0),ρj,0,ε∈C∞([0,∞))∩L1(0,∞),ε>0,ρi,0,ε→ρi,0a.e. in (−∞,0) and in Lploc(−∞,0),1≤p<∞, as ε→0,ρj,0,ε→ρj,0a.e. in (0,∞) and in Lploc(0,∞),1≤p<∞, as ε→0,0≤ρi,0,ε,ρj,0,ε≤1,ε>0,‖ρi,0,ε‖L1(−∞,0)≤‖ρi,0‖L1(−∞,0),‖ρj,0,ε‖L1(0,∞)≤‖ρj,0‖L1(0,∞),ε>0,‖ρi,0,ε‖L2(−∞,0)≤‖ρi,0‖L2(−∞,0),‖ρj,0,ε‖L2(0,∞)≤‖ρj,0‖L2(0,∞),ε>0,‖∂xρi,0,ε‖L1(−∞,0)≤TV(ρi,0),‖∂xρj,0,ε‖L1(0,∞)≤TV(ρj,0),ε>0,ε‖∂xρi,0,ε‖L1(−∞,0),ε‖∂2xxρj,0,ε‖L1(0,∞)≤C,ε>0, | (16) |
for some constant
The functions
βi(ρ1,ε(t,0),....,ρm+n,ε(t,0))=m+n∑j=m+1Gi,j(ρi,ε(t,0),ρj,ε(t,0))+ε(m∑h=1Ki,h(ρi,ε(t,0),ρh,ε(t,0))−m+n∑h=1Kh,i(ρh,ε(t,0),ρi,ε(t,0))); | (17) |
for
βj(ρ1,ε(t,0),....,ρm+n,ε(t,0))=m∑i=1Gi,j(ρi,ε(t,0),ρj,ε(t,0))+ε(m+n∑h=m+1Kh,j(ρh,ε(t,0),ρj,ε(t,0))−m+n∑h=1Kj,h(ρj,ε(t,0),ρh,ε(t,0))). | (18) |
The functions
∂vGi,j(⋅,⋅)≤0≤∂uGi,j(⋅,⋅),Gi,j(0,0)=Gi,j(1,1)=0,∂uKh,ℓ(⋅,⋅)≤0≤∂vKh,ℓ(⋅,⋅),Kh,ℓ(0,0)=Kh,ℓ(1,1)=0. | (19) |
In particular, (19) implies
(sign(u)−sign(v))∇Gi,j(⋅,⋅)⋅(u,v)≥0,u,v∈R,(sign(u)−sign(v))∇Kh,ℓ(⋅,⋅)⋅(u,v)≤0,u,v∈R,(sign(u−u′)−sign(v−v′))(Gi,j(u,v)−Gi,j(u′,v′))≥0,u,u′,v,v′∈R,(sign(u−u′)−sign(v−v′))(Kh,ℓ(u,v)−Kh,ℓ(u′,v′))≤0,u,u′,v,v′∈R,(χ(−∞,0)(u)−χ(−∞,0)(v))Gi,j(u,v)≤0,u,v∈R,(χ(−∞,0)(u)−χ(−∞,0)(v))Kh,ℓ(u,v)≥0,u,v∈R, | (20) |
where
This specific form of transmission conditions is reminiscent of the parabolic transmission conditions considered in [14,8], which were originally inspired from the Kedem-Katchalsky conditions for membrane permeability introduced in [16]
Gh,ℓ(u,v)=ch,ℓ(u−v), | (21) |
for some constants
Gh,ℓ(u,v)(u−v)≥0, | (22) |
that allows the authors in [14] to get the
We can observe that the equality (6) holds as
m∑i=1βi(ρ1,ε(t,0),....,ρm+n,ε(t,0))=m∑i=1m+n∑j=m+1Gi,j(ρi,ε(t,0),ρj,ε(t,0))+εm∑i=1(m∑h=1Ki,h(ρi,ε(t,0),ρh,ε(t,0))−m+n∑h=1Kh,i(ρh,ε(t,0),ρi,ε(t,0)))=m∑i=1m+n∑j=m+1(Gi,j(ρi,ε(t,0),ρj,ε(t,0))−εKj,i(ρj,ε(t,0),ρi,ε(t,0))) | (23) |
and analogously
m+n∑j=m+1βj(ρ1,ε(t,0),....,ρm+n,ε(t,0))=m+n∑j=m+1m∑i=1(Gi,j(ρi,ε(t,0),ρj,ε(t,0))−εKj,i(ρj,ε(t,0),ρi,ε(t,0))). | (24) |
This section is devoted to establish a priori estimates, uniform with respect to
For every
Lemma 3.1 (
0≤ρi,ε,ρj,ε≤1,i,j. | (25) |
Proof. Consider the function
η(ξ)=−ξχ(−∞,0)(ξ). |
Since
η′(ξ)=−χ(−∞,0)(ξ), |
using (19) we obtain
ddt(m∑i=1∫0−∞η(ρi,ε)dx+m+n∑j=m+1∫∞0η(ρj,ε)dx)=m∑i=1∫0−∞η′(ρi,ε)∂tρi,εdx+m+n∑j=m+1∫∞0η′(ρj,ε)∂tρj,εdx=−m∑i=1∫0−∞χ(−∞,0)(ρi,ε)∂tρi,εdx−m+n∑j=m+1∫∞0χ(−∞,0)(ρj,ε)∂tρj,εdx=m∑i=1∫0−∞χ(−∞,0)(ρi,ε)∂x(fi(ρi,ε)−ε∂xρi,ε)dx+m+n∑j=m+1∫∞0χ(−∞,0)(ρj,ε)∂x(fj(ρj,ε)−ε∂xρj,ε)dx=m∑i=1χ(−∞,0)(ρi,ε(t,0))(fi(ρi,ε(t,0))−ε∂xρi,ε(t,0))−m+n∑j=m+1χ(−∞,0)(ρj,ε(t,0))(fj(ρj,ε(t,0))−ε∂xρj,ε(t,0))+m∑i=1∫0−∞∂xρi,ε(fi(ρi,ε)−ε∂xρi,ε)dδ{ρi,ε=0}⏟≤0+m+n∑j=m+1∫∞0∂xρj,ε(fj(ρj,ε)−ε∂xρj,ε)dδ{ρj,ε=0}⏟≤0≤m+n∑j=m+1m∑i=1(χ(−∞,0)(ρi,ε(t,0))−χ(−∞,0)(ρj,ε(t,0)))⋅⋅(Gi,j(ρi,ε(t,0),ρj,ε(t,0))−εKj,i(ρj,ε(t,0),ρi,ε(t,0)))≤0, |
where
0≤m∑i=1∫0−∞η(ρi,ε(t,x))dx+m+n∑j=m+1∫∞0η(ρj,ε(t,x))dx≤m∑i=1∫0−∞η(ρi,0,ε)dx+m+n∑j=m+1∫∞0η(ρj,0,ε)dx=0 |
and then
ρi,ε,ρj,ε≥0,i,j, |
that proves the lower bounds in (25). The upper bounds in (25) can be proved in the same way using the function
Lemma 3.2 (
m∑i=1‖ρi,ε(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖ρj,ε(t,⋅)‖L1(0,∞)≤m∑i=1‖ρi,0‖L1(−∞,0)+m+n∑j=m+1‖ρj,0‖L1(0,∞),t≥0. | (26) |
Proof. Thanks to (5), (23), (24), and (25), we have that
ddt(m∑i=1∫0−∞|ρi,ε|dx+m+n∑j=m+1∫∞0|ρj,ε|dx)=ddt(m∑i=1∫0−∞ρi,εdx+m+n∑j=m+1∫∞0ρj,εdx)=m∑i=1∫0−∞∂tρi,εdx+m+n∑j=m+1∫∞0∂tρj,εdx=−m∑i=1∫0−∞∂x(fi(ρi,ε)−ε∂xρi,ε)dx−m+n∑j=m+1∫∞0∂x(fj(ρj,ε)−ε∂xρj,ε)dx=−m∑i=1βi(ρ1,ε(t,0),…,ρm+n,ε(t,0))+m+n∑j=m+1βj(ρ1,ε(t,0),…,ρm+n,ε(t,0))=0. |
Integrating over
Lemma 3.3 (
m∑i=1‖ρi,ε(t,⋅)‖2L2(−∞,0)+m+n∑j=m+1‖ρj,ε(t,⋅)‖2L2(0,∞)+2ε∫t0(m∑i=1‖∂xρi,ε(s,⋅)‖2L2(−∞,0)+m+n∑j=m+1‖∂xρj,ε(s,⋅)‖2L2(0,∞))ds≤m∑i=1‖ρi,0‖2L2(−∞,0)+m+n∑j=m+1‖ρj,0‖2L2(0,∞)+2(m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1))t, | (27) |
for every
Proof. Thanks to (5), we have that
ddt(m∑i=1∫0−∞ρ2i,ε2dx+m+n∑j=m+1∫∞0ρ2j,ε2dx)=m∑i=1∫0−∞ρi,ε∂tρi,εdx+m+n∑j=m+1∫∞0ρj,ε∂tρj,εdx=−m∑i=1∫0−∞ρi,ε∂x(fi(ρi,ε)−ε∂xρi,ε)dx−m+n∑j=m+1∫∞0ρj,ε∂x(fj(ρj,ε)−ε∂xρj,ε)dx=−m∑i=1ρi,ε(t,0)(fi(ρi,ε(t,0))−ε∂xρi,ε(t,0))+m+n∑j=m+1ρj,ε(t,0)(fj(ρj,ε(t,0))−ε∂xρj,ε(t,0))+m∑i=1∫0−∞∂x(∫ρi,ε(t,x)0fi(ξ)dξ)dx+m+n∑j=m+1∫∞0∂x(∫ρj,ε(t,x)0fj(ξ)dξ)dx−εm∑i=1∫0−∞(∂xρi,ε)2dx−εm+n∑j=m+1∫∞0(∂xρj,ε)2dx=m∑i=1ρj,ε(t,0)βi(ρ1,ε(t,0),....,ρm+n,ε(t,0))−m+n∑j=m+1ρi,ε(t,0))βj(ρ1,ε(t,0),....,ρm+n,ε(t,0))+m∑i=1∫ρi,ε(t,0)0fi(ξ)dξ−m+n∑j=m+1∫ρj,ε(t,0)0fj(ξ)dξ⏟≤0−εm∑i=1∫0−∞(∂xρi,ε)2dx−εm+n∑j=m+1∫∞0(∂xρj,ε)2dx≤m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1)−εm∑i=1∫0−∞(∂xρi,ε)2dx−εm+n∑j=m+1∫∞0(∂xρj,ε)2dx. |
Integrating over
Lemma 3.4 (
m∑i=1‖∂tρi,ε(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖∂tρj,ε(t,⋅)‖L1(0,∞)≤(m+n)C+m∑i=1‖f′i‖L∞(0,1)TV(ρi,0)+m+n∑j=m+1‖f′j‖L∞(0,1)TV(ρj,0), | (28) |
for every
Proof. From (5) we get
∂2ttρi,ε+∂x(f′i(ρi,ε)∂tρi,ε)=ε∂3txxρi,ε,∂2ttρj,ε+∂x(f′j(ρj,ε)∂tρj,ε)=ε∂3txxρj,ε,f′i(ρi,ε(t,0))∂tρi,ε(t,0)−ε∂2txρi,ε(t,0)=m+n∑j=m+1∇Gi,j(ρi,ε(t,0),ρj,ε(t,0))⋅(∂tρi,ε(t,0),∂tρj,ε(t,0))+εm∑h=1∇Ki,h(ρi,ε(t,0),ρh,ε(t,0))⋅(∂tρi,ε(t,0),∂tρh,ε(t,0))−εm+n∑h=1∇Kh,i(ρh,ε(t,0),ρi,ε(t,0))⋅(∂tρh,ε(t,0),∂tρi,ε(t,0)),f′j(ρj,ε(t,0))∂tρj,ε(t,0)−ε∂2txρj,ε(t,0)=m∑i=1∇Gi,j(ρi,ε(t,0),ρj,ε(t,0))⋅(∂tρi,ε(t,0),∂tρj,ε(t,0))+εm+n∑h=m+1∇Kh,j(ρh,ε(t,0),ρj,ε(t,0))⋅(∂tρh,ε(t,0),∂tρj,ε(t,0))−εm+n∑h=1∇Kj,h(ρj,ε(t,0),ρh,ε(t,0))⋅(∂tρi,ε(t,0),∂tρh,ε(t,0)). |
Thanks to (20), we have that
ddt(m∑i=1∫0−∞|∂tρi,ε|dx+m+n∑j=m+1∫∞0|∂tρj,ε|dx)=m∑i=1∫0−∞∂2ttρi,εsign(∂tρi,ε)dx+m+n∑j=m+1∫∞0∂2ttρj,εsign(∂tρj,ε)dx=−m∑i=1∫0−∞sign(∂tρi,ε)∂x(f′i(ρi,ε)∂tρi,ε−ε∂2txρi,ε)dx−m+n∑j=m+1∫∞0sign(∂tρj,ε)∂x(f′j(ρj,ε)∂tρj,ε−ε∂2txρj,ε)dx=−m∑i=1sign(∂tρi,ε(t,0))(f′i(ρi,ε(t,0))∂tρi,ε(t,0)−ε∂2txρi,ε(t,0))+m+n∑j=m+1sign(∂tρj,ε(t,0))(f′j(ρj,ε(t,0))∂tρj,ε(t,0)−ε∂2txρj,ε(t,0))+2m∑i=1∫0−∞∂2txρi,ε(f′i(ρi,ε)∂tρi,ε−ε∂2txρi,ε)dδ{∂tρi,ε=0}⏟≤0+2m+n∑j=m+1∫0−∞∂2txρj,ε(f′j(ρj,ε)∂tρj,ε−ε∂2txρj,ε)dδ{∂tρj,ε=0}⏟≤0≤−m∑i=1m+n∑j=m+1(sign(∂tρi,ε(t,0))−sign(∂tρj,ε(t,0)))××∇Gi,j(ρi,ε(t,0),ρj,ε(t,0))⋅(∂tρi,ε(t,0),∂tρj,ε(t,0))+εm∑i=1m+n∑j=m+1(sign(∂tρi,ε(t,0))−sign(∂tρj,ε(t,0)))××∇Kj,i(ρi,ε(t,0),ρj,ε(t,0))⋅(∂tρi,ε(t,0),∂tρj,ε(t,0))≤0, |
where
Integrating over
m∑i=1‖∂tρi,ε(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖∂tρj,ε(t,⋅)‖L1(0,∞)≤m∑i=1‖∂tρi,ε(0,⋅)‖L1(−∞,0)+m+n∑j=m+1‖∂tρj,ε(0,⋅)‖L1(0,∞)=m∑i=1‖ε∂2xxρi,0,ε−∂xfi(ρi,0,ε)‖L1(−∞,0)+m+n∑j=m+1‖ε∂2xxρj,0,ε−∂xfj(ρj,0,ε)‖L1(0,∞)≤m∑i=1(ε‖∂2xxρi,0,ε‖L1(−∞,0)+‖f′i(ρi,0,ε)‖L∞(−∞,0)‖∂xρi,0,ε‖L1(−∞,0))+m+n∑j=m+1(ε‖∂2xxρj,0,ε‖L1(0,∞)+‖f′j(ρj,0,ε)‖L∞(0,∞)‖∂xρj,0,ε‖L1(0,∞))≤(m+n)C+m∑i=1‖f′i‖L∞(0,1)TV(ρi,0)+m+n∑j=m+1‖f′j‖L∞(0,1)TV(ρj,0), |
that is (28).
Lemma 3.5 (Stability estimate). Let
m∑i=1‖ρi,ε(t,⋅)−¯ρi,ε(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖ρj,ε(t,⋅)−¯ρj,ε(t,⋅)‖L1(0,∞)≤m∑i=1‖ρi,0,ε−¯ρi,0,ε‖L1(−∞,0)+m+n∑j=m+1‖ρj,0,ε−¯ρj,0,ε‖L1(0,∞),t≥0. | (29) |
Proof. From (5) we get
∂t(ρi,ε−¯ρi,ε)+∂x(fi(ρi,ε)−fi(¯ρi,ε))=ε∂2xx(ρi,ε−¯ρi,ε),∂t(ρj,ε−¯ρj,ε)+∂x(fj(ρj,ε)−fj(¯ρj,ε))=ε∂2xx(ρj,ε−¯ρj,ε). |
Thanks to (5), (20), and (25), we have that
ddt(m∑i=1∫0−∞|ρi,ε−¯ρi,ε|dx+m+n∑j=m+1∫∞0|ρj,ε−¯ρj,ε|dx)=m∑i=1∫0−∞sign(ρi,ε−¯ρi,ε)∂t(ρi,ε−¯ρi,ε)dx+m+n∑j=m+1∫∞0sign(ρj,ε−¯ρj,ε)∂t(ρj,ε−¯ρj,ε)dx=−m∑i=1∫0−∞sign(ρi,ε−¯ρi,ε)∂x((fi(ρi,ε)−fi(¯ρi,ε))−ε∂x(ρi,ε−¯ρi,ε))dx−m+n∑j=m+1∫∞0sign(ρj,ε−¯ρj,ε)∂x((fj(ρj,ε)−fj(¯ρj,ε))−ε∂x(ρj,ε−¯ρj,ε))dx=−m∑i=1m+n∑j=m+1[sign(ρi,ε(t,0)−¯ρi,ε(t,0))−sign(ρj,ε(t,0)−¯ρj,ε(t,0))]××[Gi,j(ρi,ε(t,0),ρj,ε(t,0))−Gi,j(¯ρi,ε(t,0),¯ρj,ε(t,0))]+εm∑i=1m+n∑j=m+1[sign(ρi,ε(t,0)−¯ρi,ε(t,0))−sign(ρj,ε(t,0)−¯ρj,ε(t,0))]××[Kj,i(ρi,ε(t,0),ρj,ε(t,0))−Gi,j(¯ρi,ε(t,0),¯ρj,ε(t,0))]+2m∑i=1∫0−∞∂x(ρi,ε−¯ρi,ε)((fi(ρi,ε)−fi(¯ρi,ε))−ε∂x(ρi,ε−¯ρi,ε))dδ{ρi,ε=¯ρi,ε}⏟≤0+2m+n∑j=m+1∫∞0∂x(ρj,ε−¯ρj,ε)((fi(ρj,ε)−fi(¯ρj,ε))−ε∂x(ρj,ε−¯ρj,ε))dδ{ρj,ε=¯ρj,ε}⏟≤0≤0, |
where we use [6,Lemma 2] and we denote by
Integrating over
The well-posedness of smooth solutions for (5) can be proved following the argument used in [10,Theorem 1.2] to establish the well-posedness of smooth solutions for (4). Indeed, the existence of a linear semigroup of solutions in the linear case (i.e., when
The main result of this section is the following.
Lemma 4.1. Let
ρ1,...,ρm∈L1((0,∞)×(−∞,0))∩L∞((0,∞)×(−∞,0)), | (30) |
ρm+1,...,ρm+n∈L1((0,∞)×(0,∞))∩L∞((0,∞)×(0,∞)), | (31) |
0≤ρℓ≤1,ℓ∈{1,...,m+n}, | (32) |
ρi,εk⟶ρi,a.e.andinLploc((0,∞)×(−∞,0)), | (33) |
ρj,εk⟶ρj,a.e.andinLploc((0,∞)×(0,∞)), | (34) |
for every
m∑i=1‖ρi(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖ρj(t,⋅)‖L1(0,∞) | (35) |
≤m∑i=1‖ρi,0‖L1(−∞,0)+m+n∑j=m+1‖ρj,0‖L1(0,∞),m∑i=1‖ρi(t,⋅)‖2L2(−∞,0)+m+n∑j=m+1‖ρj(t,⋅)‖2L2(0,∞) | (36) |
≤m∑i=1‖ρi,0‖2L2(−∞,0)+m+n∑j=m+1‖ρj,0‖2L2(0,∞)+2(m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1))t,m∑i=1TV(fi(ρi(t,⋅)))+m+n∑j=m+1TV(fj(ρj(t,⋅)))=m∑i=1‖∂tρi(t,⋅)‖M(−∞,0)+m+n∑j=m+1‖∂tρj(t,⋅)‖M(0,∞)≤(m+n)C+m∑i=1‖f′i‖L∞(0,1)TV(ρi,0)+m+n∑j=m+1‖f′j‖L∞(0,1)TV(ρj,0). | (37) |
Thanks to the genuine nonlinearity of
Theorem 4.2 (Tartar). Let
‖vν‖L∞((0,T)×R)≤MT,T,ν>0, |
and the family
{∂tη(vν)+∂xqℓ(vν)}ν>0 |
is compact in
vνn⟶va.e.andinLploc((0,∞)×R),1≤p<∞. |
The following compact embedding of Murat [17] is useful.
Theorem 4.3 (Murat). Let
Ln=L1,n+L2,n, |
where
Proof of Lemma 4.1. Let us fix
Let
∂tη(ρi,ε)+∂xqi(ρi,ε)=ε∂2xxη(ρi,ε)⏟L1,ε−εη″(ρi,ε)(∂xρi,ε)2⏟L2,ε. | (38) |
We claim that
L1,ε⟶0inH−1((0,T)×(−∞,0)),T>0,asε→0,{L2,ε}εisuniformlyboundedinL1((0,T)×(−∞,0)),T>0. | (39) |
Indeed, (25) and (27) imply
‖ε∂xη(ρi,ε)‖L2((0,T)×(−∞,0))≤√ε‖η′‖L∞(0,1)‖√ε∂xρi,ε‖L2((0,∞)×(−∞,0))≤√ε‖η′‖L∞(0,1)(m∑i=1‖ρi,ε,0‖L2(−∞,0)+m+n∑j=m+1‖ρj,ε,0‖L2(0,∞)+√2(m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1))T)→0,‖εη″(ρi,ε)(∂xρi,ε)2‖L1((0,T)×(−∞,0))≤‖η″‖L∞(0,1)(m∑i=1‖ρi,ε,0‖2L2(−∞,0)+m+n∑j=m+1‖ρj,ε,0‖2L2(0,∞)+2(m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1))T). |
Due to (16), (39) follows. Therefore, Theorems 4.3 and 4.2 give the existence of a subsequence
ρi,εk⟶ρiinLploc((0,∞)×(−∞,0))foranyp∈[1,∞),ρi,εk⟶ρia.e.in(0,∞)×(−∞,0), | (40) |
that guarantees (32) and (33).
Finally, thanks to Lemmas 3.2, 3.3, and 3.4 we have (35), (36), and (37).
Proof of Theorem 1.2.. The first part of the statement related to the convergence of vanishing viscosity approximations has been proved in Lemma 4.1.
Let us fix
Thanks to (3.4) and (33), for all
∫∞0∫0−∞ρi∂tφdxdt=limk∫∞0∫0−∞ρi,εk∂tφdxdt=−limk∫∞0∫0−∞∂tρi,εkφdxdt≤‖φ‖L∞((0,∞)×(−∞,0))((m+n)C+m∑i=1‖f′i‖L∞(0,1)TV(ρi,0)+m+n∑j=m+1‖f′j‖L∞(0,1)TV(ρj,0)), |
therefore
∂tρi∈M((0,∞)×(−∞,0)), | (41) |
where
∂xfi(ρi)∈M((0,∞)×(−∞,0)). | (42) |
Clearly (41) and (42) give (9) and so the trace at the junction
We prove now that the identity
m∑i=1fi(ρi(t,0−))=n+m∑j=m+1fj(ρj(t,0+)) | (43) |
holds for a.e.
Let
0≤rν(x)≤1,rν(0)=1,supp(rν)⊆[0,1ν], | (44) |
for every
From (5) we have that
0=m∑i=1∫∞0∫0−∞(∂tρi,εk+∂xfi(ρi,εk)−εk∂2xxρi,εk)φ(t)˜rν(x)dxdt+m+n∑j=m+1∫∞0∫∞0(∂tρj,εk+∂xfj(ρj,εk)−εk∂2xxρj,εk)φ(t)rν(x)dxdt=−m∑i=1∫∞0∫0−∞(ρi,εkφ′(t)˜rν(x)+fi(ρi,εk)φ(t)˜r′ν(x)−εk∂xρi,εkφ(t)˜r′ν(x))dxdt−m+n∑j=m+1∫∞0∫∞0(ρj,εkφ′(t)rν(x)+fj(ρj,εk)φ(t)r′ν(x)−εk∂xρj,εkφ(t)r′ν(x))dxdt+m∑i=1∫∞0(fi(ρi,εk(t,0))−εk∂xρi,εk(t,0))φ(t)dt−m+n∑j=m+1∫∞0(fj(ρj,εk(t,0))−εk∂xρj,εk(t,0))φ(t)dt=−m∑i=1∫∞0∫0−∞(ρi,εkφ′(t)˜rν(x)+fi(ρi,εk)φ(t)˜r′ν(x)−εk∂xρi,εkφ(t)˜r′ν(x))dxdt−m+n∑j=m+1∫∞0∫∞0(ρj,εkφ′(t)rν(x)+fj(ρj,εk)φ(t)r′ν(x)−εk∂xρj,εkφ(t)r′ν(x))dxdt. |
As
0=−m∑i=1∫∞0∫0−∞(ρiφ′(t)˜rν(x)+fi(ρi)φ(t)˜r′ν(x))dxdt−m+n∑j=m+1∫∞0∫∞0(ρjφ′(t)rν(x)+fj(ρj)φ(t)r′ν(x))dxdt. |
Finally, sending
0=−m∑i=1∫∞0fi(ρi(t,0−))φ(t)dt+m+n∑j=m+1∫∞0fj(ρj(t,0+))φ(t)dt, |
that gives (43).
[1] |
A. Bnouhachem, K. I Noor, M. A Noor, On a unified implicit method for variational inequalities, J. Comput. Appl. Math., 249 (2013), 69–73. https://doi.org/10.1016/j.cam.2013.02.011 doi: 10.1016/j.cam.2013.02.011
![]() |
[2] | H. Brezis, Operateurs maximaux monotone et semigroups de contraction dan les espaces de hilbert, Ameterdam: North-Holland, 1973. |
[3] |
A. Bnouhachem, M. A. Noor, A new iterative method for variational inequalities, Appl. Math. Comput., 182 (2006), 1673–1682. https://doi.org/10.1016/j.amc.2006.06.007 doi: 10.1016/j.amc.2006.06.007
![]() |
[4] |
A. Bnouhachem, M. A. Noor, Numerical method for general mixed quasi-variational inequalities, App. Math. Comput., 204 (2008), 27–36. https://doi.org/10.1016/j.amc.2008.05.134 doi: 10.1016/j.amc.2008.05.134
![]() |
[5] |
J. Y. Bello Cruz, A. N. Iusem, Full convergence of an approximate projection method for nonsmooth variational inequalities, Math. Comput. Simulat., 114 (2015), 2–13. https://doi.org/10.1016/j.matcom.2010.05.026 doi: 10.1016/j.matcom.2010.05.026
![]() |
[6] |
L. C. Ceng, L. J. Zhu, T. C. Yin, Modified subgradient extragradient algorithms for systems of generalized equilibria with constraints, AIMS Math., 8 (2023), 2961–2994. https://doi.org/10.3934/math.2023154 doi: 10.3934/math.2023154
![]() |
[7] |
L. C. Ceng, L. J. Zhu, T. C. Yin, On generalized extragradient implicit method for systems of variational inequalities with constraints of variational inclusion and fixed point problems, Open Math., 20 (2022), 1770–1784. https://doi.org/10.1515/math-2022-0536 doi: 10.1515/math-2022-0536
![]() |
[8] |
L. C. Ceng, E. Köbis, X. P. Zhao, On general implicit hybrid iteration method for triple hierarchical variational inequalities with hierarchical variational inequality constraints, Optimization, 69 (2020), 1961–1986. https://doi.org/10.1080/02331934.2019.1703978 doi: 10.1080/02331934.2019.1703978
![]() |
[9] |
L. C. Ceng, J. C. Yao, Y. Shehu, On Mann implicit composite subgradient extragradient methods for general systems of variational inequalities with hierarchical variational inequality constraints, J. Inequal. Appl., 2022 (2022), 78. https://doi.org/10.1186/s13660-022-02813-0 doi: 10.1186/s13660-022-02813-0
![]() |
[10] | L. C. Ceng, A. Petruşel, X. Qin, J. C. Yao, Pseudomonotone variational inequalities and fixed points, Fixed Point Theory, 22 (2021), 543–558. |
[11] |
L. C. Ceng, A. Petruşel, X. Qin, J. C. Yao, Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints, Optimization, 70 (2021), 1337–1358. https://doi.org/10.1080/02331934.2020.1858832 doi: 10.1080/02331934.2020.1858832
![]() |
[12] |
L. C. Ceng, M. J. Shang, Hybrid inertial subgradient extragradient methods for variational inequalities and fixed point problems involving asymptotically nonexpansive mappings, Optimization, 70 (2021), 715–740. https://doi.org/10.1080/02331934.2019.1647203 doi: 10.1080/02331934.2019.1647203
![]() |
[13] | L. C. Ceng, A. Petruşel, X. Qin, J. C. Yao, A modified inertial subgradient extragradient method for solving pseudomonotone variational inequalities and common fixed point problems, Fixed Point Theory, 21 (2020), 93–108. |
[14] |
S. Dafermos, Traffic equilibrium and variational inequalities, Transport. Sci., 14 (1980), 42–54. https://doi.org/10.1287/trsc.14.1.42 doi: 10.1287/trsc.14.1.42
![]() |
[15] | R. Glowinski, J. L. Lions, R. Tremolieres, Numerical analysis of variational inequalities, Amsterdam: North Holland, 1981. |
[16] |
B. S. He, Z. H. Yang, X. M. Yuan, An approximate proximal-extragradient type method for monotone variational inequalities, J. Math. Anal. Appl., 300 (2004), 362–374. https://doi.org/10.1016/j.jmaa.2004.04.068 doi: 10.1016/j.jmaa.2004.04.068
![]() |
[17] | L. He, Y. L. Cui, L. C Ceng, T. Y. Zhao, D. Q. Wang, H. Y. Hu, Strong convergence for monotone bilevel equilibria with constraints of variational inequalities and fixed points using subgradient extragradient implicit rule, J. Inequal. Appl., 2021 (2021), 146. |
[18] | S. Jabeen, M. A. Noor, K. I. Noor, Inertial iterative methods for general quasi variational inequalities and dynamical systems, J. Math. Anal., 11 (2020), 14–29. |
[19] | G. M. Korpelevich, The extragradiend method for finding saddle points and other problems, Ekonomika Mat. Metody, 12 (1976), 747–756. |
[20] | D. Kindrlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Philadelphia: SIAM, 2000. |
[21] |
M. B. Khan, G. Santos-García, S. Treat, M. A. Noor, M. S. Soliman, Perturbed mixed variational-like inequalities and auxiliary principle pertaining to a fuzzy environment, Symmetry, 14 (2022), 2503. https://doi.org/10.3390/sym14122503 doi: 10.3390/sym14122503
![]() |
[22] |
M. B. Khan, G. Santos-García, M. A. Noor, M. S.Soliman, Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities, Chaos Solitons Fract., 164 (2022), 112692. https://doi.org/10.1016/j.chaos.2022.112692 doi: 10.1016/j.chaos.2022.112692
![]() |
[23] |
M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational-like inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1856–1870. https://doi.org/10.2991/ijcis.d.210616.001 doi: 10.2991/ijcis.d.210616.001
![]() |
[24] | J. Lions, G. Stampaachia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493–519. https://doi.org/10.1002/cpa.3160200302 |
[25] |
M. A. Noor, Proximal method for mixed variational inequalities, J. Optim. Theory Appl., 115 (2002), 447–451. https://doi.org/10.1023/A:1020848524253 doi: 10.1023/A:1020848524253
![]() |
[26] |
M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput., 152 (2004), 199–277. https://doi.org/10.1016/S0096-3003(03)00558-7 doi: 10.1016/S0096-3003(03)00558-7
![]() |
[27] |
M. A. Noor, K.I. Noor, A. Bnouhachem, On a unified implicit method for variational inequalities, J. Comput. Appl. Math., 249 (2013), 69–73. https://doi.org/10.1016/j.cam.2013.02.011 doi: 10.1016/j.cam.2013.02.011
![]() |
[28] |
M. A. Noor, K.I. Noor, E. Al-Said, On new proximal point method for solving the variational inequalities, J. Appl. Math., 2012 (2012), 412413. https://doi.org/10.1155/2012/412413 doi: 10.1155/2012/412413
![]() |
[29] |
M. A. Noor, General variational inequalities, Appl. Math. Lett., 1 (1988), 119–122. https://doi.org/10.1016/0893-9659(88)90054-7 doi: 10.1016/0893-9659(88)90054-7
![]() |
[30] | M.A. Noor, K.I. Noor, A. Bnouchachem, Some new iterative methods for solving variational inequalities, Canad. J. Appl. Math., 2 (2020), 1–17. |
[31] |
M. A. Noor, K. I. Noor, M. T. Rassias, New trends in general variational inequalities, Acta Appl. Math., 170 (2020), 981–1064. https://doi.org/10.1007/s10440-020-00366-2 doi: 10.1007/s10440-020-00366-2
![]() |
[32] | M. A. Noor, K. I. Noor, M. T. Rassias,, General variational inequalities and optimization, Berlin: Springer, 2022. |
[33] |
M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Trans. Res., 133 (1979), 295–304. https://doi.org/10.1016/0191-2615(79)90022-5 doi: 10.1016/0191-2615(79)90022-5
![]() |
[34] |
C. F. Shi, A self-adaptive method for solving a system of nonlinear variational inequalities, Math. Prob. Eng., 2007 (2007), 23795. https://doi.org/10.1155/2007/23795 doi: 10.1155/2007/23795
![]() |
[35] |
S. Treanţă, M. B. Khan, T. Saeed, On some variational inequalities involving second-order partial derivatives, Fractal Fract., 6 (2022), 236. https://doi.org/10.3390/fractalfract6050236 doi: 10.3390/fractalfract6050236
![]() |
[36] | K. Tu, F. Q. Xia, A projection type algorithm for solving generalized mixed variational inequalities, Act. Math. Sci., 36 (2016), 1619–1630. https://doi.org/10.1016/S0252-9602(16)30094-7 |
[37] |
D. Q. Wang, T. Y. Zhao, L. C. Ceng, J. Yin, L. He, Y. X. Fu, Strong convergence results for variational inclusions, systems of variational inequalities and fixed point problems using composite viscosity implicit methods, Optimization, 71 (2022), 4177–4212. https://doi.org/10.1080/02331934.2021.1939338 doi: 10.1080/02331934.2021.1939338
![]() |
[38] |
T. Y. Zhao, D. Q. Wang, L. C. Ceng, L. He, C. Y. Wang, H. L. Fan, Quasi-inertial Tseng's extragradient algorithms for pseudomonotone variational inequalities and fixed point problems of quasi-nonexpansive operators, Numer. Funct. Anal. Optim., 42 (2020), 69–90. https://doi.org/10.1080/01630563.2020.1867866 doi: 10.1080/01630563.2020.1867866
![]() |
1. | Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro, Well-posedness theory for nonlinear scalar conservation laws on networks, 2022, 17, 1556-1801, 101, 10.3934/nhm.2021025 | |
2. | Francesca R. Guarguaglini, Roberto Natalini, Vanishing viscosity approximation for linear transport equations on finite star-shaped networks, 2021, 21, 1424-3199, 2413, 10.1007/s00028-021-00688-0 | |
3. | John D. Towers, An explicit finite volume algorithm for vanishing viscosity solutions on a network, 2022, 17, 1556-1801, 1, 10.3934/nhm.2021021 | |
4. | Ulrik S. Fjordholm, Markus Musch, Nils H. Risebro, Well-Posedness and Convergence of a Finite Volume Method for Conservation Laws on Networks, 2022, 60, 0036-1429, 606, 10.1137/21M145001X | |
5. | Jon Asier Bárcena-Petisco, Márcio Cavalcante, Giuseppe Maria Coclite, Nicola De Nitti, Enrique Zuazua, Control of hyperbolic and parabolic equations on networks and singular limits, 2024, 0, 2156-8472, 0, 10.3934/mcrf.2024015 | |
6. | Dilip Sarkar, Shridhar Kumar, Pratibhamoy Das, Higinio Ramos, Higher-order convergence analysis for interior and boundary layers in a semi-linear reaction-diffusion system networked by a k-star graph with non-smooth source terms, 2024, 19, 1556-1801, 1085, 10.3934/nhm.2024048 |