In this work, we will examine the concept of intuitionistic fuzzy $ k $-ideals in the context of right $ k $-weakly regular hemirings. We will investigate the properties of these ideals and how they relate to other concepts such as fuzzy prime $ k $-ideals, intuitionistic fuzzy prime $ k $-ideals, intuitionistic fuzzy right pure $ k $-ideals, and purely prime intuitionistic fuzzy $ k $-ideals in hemirings. We will also explore how the regularity of a $ k $-weakly regular hemiring can be characterized through its intuitionistic fuzzy $ k $-ideals.
Citation: Bander Almutairi, Rukhshanda Anjum, Qin Xin, Muhammad Hassan. Intuitionistic fuzzy $ k $-ideals of right $ k $-weakly regular hemirings[J]. AIMS Mathematics, 2023, 8(5): 10758-10787. doi: 10.3934/math.2023546
In this work, we will examine the concept of intuitionistic fuzzy $ k $-ideals in the context of right $ k $-weakly regular hemirings. We will investigate the properties of these ideals and how they relate to other concepts such as fuzzy prime $ k $-ideals, intuitionistic fuzzy prime $ k $-ideals, intuitionistic fuzzy right pure $ k $-ideals, and purely prime intuitionistic fuzzy $ k $-ideals in hemirings. We will also explore how the regularity of a $ k $-weakly regular hemiring can be characterized through its intuitionistic fuzzy $ k $-ideals.
[1] | H. S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914–920. |
[2] | W. Wechler, The concept of fuzziness in automata and language theory, Computer Science, 1978 (1978), 118183255. |
[3] | S. Wan, J. Dong, A group decision-making method considering both the group consensus and multiplicative consistency of interval-valued intuitionistic fuzzy preference relations, In: Decision making theories and methods based on interval-valued intuitionistic fuzzy sets, Singapore: Springer, 2020,271–313. http://doi.org/10.1007/978-981-15-1521-7_9 |
[4] | S. P. Wan, F. Wang, J. Y. Dong, Theory and method of intuitionistic fuzzy preference relation group decision making, Comp. Model. Eng., 132 (2022), 881–907. http://doi.org/10.32604/cmes.2022.020598 doi: 10.32604/cmes.2022.020598 |
[5] | S. Wan, J. Dong, Decision making theories and methods based on interval-valued intuitionistic fuzzy sets, Singapore: Springer, 2020. https://doi.org/10.1007/978-981-15-1521-7 |
[6] | S. P. Wan, F. Wang, G. L. Xu, J. Y. Dong, J. Tang, An Atanassov intuitionistic fuzzy programming method for group decision making with interval-valued fuzzy preference relations, Fuzzy Optim. Decis. Ma., 16 (2017), 269–295. https://doi.org/10.1007/s10700-016-9250-z doi: 10.1007/s10700-016-9250-z |
[7] | M. Akram, W. A. Dudek, Intuitionistic fuzzy hypergraphs with applications, Inform. Sciences, 218 (2013), 182–193. https://doi.org/10.1016/j.ins.2012.06.024 doi: 10.1016/j.ins.2012.06.024 |
[8] | K. Hur, R. R. Kim, P. K. Lim, Intuitionistic fuzzy k-ideals of a semiring, Int. J. Fuzzy Log. Inte., 9 (2009), 110–114. http://doi.org/10.5391/IJFIS.2009.9.2.110 doi: 10.5391/IJFIS.2009.9.2.110 |
[9] | M. Shabir, R. Anjum, Right k-weakly regular hemirings, Quasigroups and Related Systems, 20 (2012), 97–112. K. Hur, R. R. Kim, P. K. Lim, Intuitionistic fuzzy k-ideals of a semiring, Int. J. Fuzzy Log. Inte., 9 (2009), 110–114. http://doi.org/10.5391/IJFIS.2009.9.2.110 |
[10] | W. A. Dudek, M. Shabir, R. Anjum, Characterizations of hemirings by their h-ideals, Comput. Math. Appl., 59 (2010), 3167–3179. https://doi.org/10.1016/j.camwa.2010.03.003 doi: 10.1016/j.camwa.2010.03.003 |
[11] | J. Zhan, W. A. Dudek, Fuzzy h-ideals of hemirings, Inform. Sciences, 177 (2007), 876–886. https://doi.org/10.1016/j.ins.2006.04.005 |
[12] | M. Shabir, R. Anjum, Characterizations of hemirings by the properties of their k-ideals, Applied Mathematics, 4 (2013), 753–768. http://doi.org/10.4236/am.2013.45104 doi: 10.4236/am.2013.45104 |
[13] | S. Ghosh, Fuzzy k-ideals of semirings, Fuzzy Set. Syst., 95 (1998), 103–108. https://doi.org/10.1016/S0165-0114(96)00306-5 |
[14] | J. S. Golan, Semirings and their applications, Dordrecht: Springer, 1999. https://doi.org/10.1007/978-94-015-9333-5 |
[15] | K. Głazek, A guide to the literature on semirings and their applications in mathematics and information sciences, Dordrecht: Springer, 2002. https://doi.org/10.1007/978-94-015-9964-1 |
[16] | S. Ghosh, Matrices over semirings, Inform. Sciences, 90 (1996), 221–230. https://doi.org/10.1016/0020-0255(95)00283-9 |
[17] | L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[18] | M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices, 6 (1958), 321. |
[19] | K. Iizuka, On the Jacobson radical of a semiring, Tohoku Math. J., 11 (1959), 409–421. http://doi.org/10.2748/tmj/1178244538 doi: 10.2748/tmj/1178244538 |
[20] | D. R. La Torre, On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen, 12 (1965), 219–226. |
[21] | M. Zhou, S. Li, Applications of bipolar fuzzy theory to hemirings, Computer Science, 2013 (2013), 40261228. |
[22] | S. K. De, R. Biswas, A. R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Set. Syst., 117 (2001), 209–213. https://doi.org/10.1016/S0165-0114(98)00235-8 doi: 10.1016/S0165-0114(98)00235-8 |
[23] | M. Gulzar, M. H. Mateen, D. Alghazzawi, N. Kausar, A novel applications of complex intuitionistic fuzzy sets in group theory, IEEE Access, 8 (2020), 196075–196085. https://doi.org/10.1109/ACCESS.2020.3034626 doi: 10.1109/ACCESS.2020.3034626 |
[24] | M. Gulzar, M. H. Mateen, Y. M. Chu, D. Alghazzawi, G. Abbas, Generalized direct product of complex intuitionistic fuzzy subrings, Int. J. Comput. Int. Sys., 14 (2021), 582–593. https://doi.org/10.2991/ijcis.d.210106.001 doi: 10.2991/ijcis.d.210106.001 |
[25] | P. Mukhopadhyay, Characterization of regular semirings, Mat. Vestn., 48 (1996), 83–85. |
[26] | K. T. Atanassov, Intuitionistic fuzzy sets, In: Intuitionistic fuzzy sets, Heidelberg: Physica, 1999, 1–137. http://doi.org/10.1007/978-3-7908-1870-3_1 |