In this work, we will examine the concept of intuitionistic fuzzy k-ideals in the context of right k-weakly regular hemirings. We will investigate the properties of these ideals and how they relate to other concepts such as fuzzy prime k-ideals, intuitionistic fuzzy prime k-ideals, intuitionistic fuzzy right pure k-ideals, and purely prime intuitionistic fuzzy k-ideals in hemirings. We will also explore how the regularity of a k-weakly regular hemiring can be characterized through its intuitionistic fuzzy k-ideals.
Citation: Bander Almutairi, Rukhshanda Anjum, Qin Xin, Muhammad Hassan. Intuitionistic fuzzy k-ideals of right k-weakly regular hemirings[J]. AIMS Mathematics, 2023, 8(5): 10758-10787. doi: 10.3934/math.2023546
[1] | Nour Abed Alhaleem, Abd Ghafur Ahmad . Intuitionistic fuzzy normed prime and maximal ideals. AIMS Mathematics, 2021, 6(10): 10565-10580. doi: 10.3934/math.2021613 |
[2] | Faisal Yousafzai, Muhammad Danish Zia, Mohammed M. Khalaf, Rashad Ismail . A new look of interval-valued intuitionistic fuzzy sets in ordered AG-groupoids with applications. AIMS Mathematics, 2023, 8(3): 6095-6118. doi: 10.3934/math.2023308 |
[3] | Abdul Razaq, Ghaliah Alhamzi . On Pythagorean fuzzy ideals of a classical ring. AIMS Mathematics, 2023, 8(2): 4280-4303. doi: 10.3934/math.2023213 |
[4] | Tareq Saeed . Intuitionistic fuzzy variational inequalities and their applications. AIMS Mathematics, 2024, 9(12): 34289-34310. doi: 10.3934/math.20241634 |
[5] | Rana Muhammad Zulqarnain, Xiao Long Xin, Muhammad Saeed . Extension of TOPSIS method under intuitionistic fuzzy hypersoft environment based on correlation coefficient and aggregation operators to solve decision making problem. AIMS Mathematics, 2021, 6(3): 2732-2755. doi: 10.3934/math.2021167 |
[6] | Zhihua Wang . Stability of a mixed type additive-quadratic functional equation with a parameter in matrix intuitionistic fuzzy normed spaces. AIMS Mathematics, 2023, 8(11): 25422-25442. doi: 10.3934/math.20231297 |
[7] | Shahida Bashir, Ahmad N. Al-Kenani, Maria Arif, Rabia Mazhar . A new method to evaluate regular ternary semigroups in multi-polar fuzzy environment. AIMS Mathematics, 2022, 7(7): 12241-12263. doi: 10.3934/math.2022680 |
[8] | Zhuonan Wu, Zengtai Gong . Algebraic structure of some complex intuitionistic fuzzy subgroups and their homomorphism. AIMS Mathematics, 2025, 10(2): 4067-4091. doi: 10.3934/math.2025189 |
[9] | Faiz Muhammad Khan, Weiwei Zhang, Hidayat Ullah Khan . Double-framed soft h-semisimple hemirings. AIMS Mathematics, 2020, 5(6): 6817-6840. doi: 10.3934/math.2020438 |
[10] | Rabia Mazhar, Shahida Bashir, Muhammad Shabir, Mohammed Al-Shamiri . A soft relation approach to approximate the spherical fuzzy ideals of semigroups. AIMS Mathematics, 2025, 10(2): 3734-3758. doi: 10.3934/math.2025173 |
In this work, we will examine the concept of intuitionistic fuzzy k-ideals in the context of right k-weakly regular hemirings. We will investigate the properties of these ideals and how they relate to other concepts such as fuzzy prime k-ideals, intuitionistic fuzzy prime k-ideals, intuitionistic fuzzy right pure k-ideals, and purely prime intuitionistic fuzzy k-ideals in hemirings. We will also explore how the regularity of a k-weakly regular hemiring can be characterized through its intuitionistic fuzzy k-ideals.
In 1934, H. S. Vandiver presented the concept of semiring [1]. In abstract algebra, a semiring is an algebraic structure similar to a ring, but without the requirement that each element must have an additive inverse. Various branches of applied mathematics, formal languages, theory of automata and optimization use distributive lattice in some applications. Hemiring is a special semiring with commutative addition and zero. In applications, hemirings are helpful in formal languages and automata theory [2].
Atanassov gave the idea of intuitionistic fuzzy sets by generalizing the concept of fuzzy sets. In fuzzy sets, the degree of membership of an element in a given set is considered, while in intuitionistic fuzzy sets, both the degree of membership and the degree of non-membership of an element in a given set are taken into account. Decision Making (DM) is regarded as the cognitive process used to solve problems that we face in our daily life. Due to the complexity of the current socio-economic environment, DM is one of the most prominent endeavours, whose aim is to get an optimal or at least satisfactory solution by identifying and choosing alternatives.
Decision making becomes more complicated when uncertainty is involved. Although to handle uncertainty, Zadeh's fuzzy set is a good tool, but as time passes it is observed that it is insufficient. To overcome the problems thus occurred, intuitionistic fuzzy sets (IFS) have proved their effectiveness. In order to handle the information provided without loss and to end up with the optimal alternative, that is, the desirable result in DM process, aggregation operators such as fuzzy weighted arithmetic average operators based on the concepts of t-norm, Einstein operations, and copula are used. In recent years there have appeared many generalizations of IFSs, like Pythagorean fuzzy sets, q-rung orthopair fuzzy sets, picture fuzzy sets, spherical fuzzy sets, T-spherical fuzzy sets, neutrosophic sets, and dual hesitant fuzzy sets. Recent developments in DM can be found in social sciences, computer sciences, biosciences, information sciences, and related fields based on intuitionistic fuzzy sets and their generalizations (IFSGs). Many applications of intuitionistic fuzzy sets are carried out using distance measures approach. Distance measure between intuitionistic fuzzy sets is an important concept in fuzzy mathematics because of its wide applications in real world, such as pattern recognition, machine learning, decision making and market prediction [3,4,5,6].
The concept of semiring was studied in the context of intuitionistic fuzzy sets by many researchers. In[7], authors explained the methods to characterize the intuitionistic fuzzy left k-ideals and also described some techniques to construct the intuitionistic fuzzy sets. They also discussed the division of intuitionistic fuzzy left k-ideals in their natural classification. Pyung Ki Lim and others explained the concept of intuitionistic fuzzy k-ideals in the context of semirings and gave the concept about the intuitionistic fuzzy prime k-ideals of semiring and also described its properties [8]. In [9,10,11], R. Anjum, W. A. Dudek and J. Zhan et al. discussed their properties and connections with chains of left h-ideals of the corresponding hemirings.
In [11], J. Zhan et al. presented the notion of h-hemiring to generalize the ring in its regular form. They also explained hemirings with respect to prime fuzzy h-ideals and also made characterization of prime fuzzy h-ideals of h-hemiregular hemirings by using fuzzy h-ideals. They described the characteristics of hemirings with respect to the normal and maximal fuzzy left h-ideals. In [12], M. Shabir et al. worked on the characterization of hemirings that each k-ideal and each fuzzy k-ideal is idempotent. They provided some basic idea of fuzzy sets and hemiring. They also explained the hemirings in terms of k-sum and k-product of fuzzy sets in a hemiring.
In [13], S. Ghosh explained the concept of fuzzy and prime fuzzy k-ideals and showed that semirings are semiregular. They used fuzzy k-ideals for the characterization of prime fuzzy k-ideals, noetherian semirings, semiregular semiring and artinian semirings. Semirings have received a lot of attention by the researchers [14,15,16]. Ideals of hemi-rings are an important part of the theory of algebraic structures, and many properties of hemi-rings are related to their ideals. In contrast to rings, the ideals in hemi-rings do not generally correspond to ideals in rings. L. A. Zadeh [17] introduced in 1965 fuzzy set theory as an alternative to probability theory. His fundamental idea consists in understanding lattice valued maps as generalized characteristic functions of some new kind of subsets of so-called fuzzy sets of a given universe. Fuzzy sets are very useful in a range of fields, applied mathematics, control engineering, information sciences, expert systems, and automata theory. While there have been many variations of fuzzy sets, none of them address the issue of contradictory characteristics among members with a membership degree of 0. Henriksen [18], defined k-ideals in the context of hemi-rings. Iizuka [19], introduced a type of hemi-ring ideal called h-ideals, which are a more restricted version of k-ideals. According to the new concept of ideals, La Torre [20], thoroughly examined h-ideals and k-ideals in hemi-rings using the new concept of ideals. In 2014, M. Zhou and others [21], explored the use of bipolar fuzzy theory in the context of hemi-rings. The authors introduced basic definitions, theorems, and examples related to bipolar-valued fuzzy h-ideals, and used these ideals to characterize the properties of h-hemi-regular and h-hemi-simple hemi-rings. They also used bipolar-valued h-bi-ideals and bipolar-valued h-quasi-ideals in their analysis. There are many other applications and references available on this topic [22,23,24,25,26].
In this article, after abstract and brief introduction we will move to the section of preliminaries where some definitions will be discussed. The main research work will be presented in the next four sections related to the primeness and pureness of intuitionistic fuzzy k-ideals. Also purely prime intuitionistic fuzzy k-ideal will be discussed. Then we will conclude our research work with the future directions.
In this section, we will review some important definitions that will be used later in the paper.
Definition 2.1. [7] Let (R,+,×) is a semiring if the following conditions are met:
1) R is a semigroup under +
2) R is a semigroup under ×
3) × is distributive with respect to +, i.e., ∀ j,k,l∈R
j×(k+l)=j×k+j×l (Left distributive law)(j+k)×l=j×l+k×l (Right distributive law) |
Definition 2.2. [6] A non-empty set ˇR with two binary operations + and × defined on ˇR is called a hemiring if:
1) (ˇR,+,×) is a commutative semiring
2) 0 element exist in ˇR such that p+0=0+p=p and p×0=0×p=0 ∀ p∈ ˇR.
A hemiring contains an identity element then it is called a hemiring with identity such that 1 ∈ˇR, and 1×p=p×1=p ∀ p∈ˇR.
A hemiring is called a commutative hemiring if × is commutative in ˇR. A non-empty subset A of a hemiring ˇR is called a subhemiring of ˇR if A itself is a hemiring with respect to the induced operations of ˇR.
Definition 2.3. [3] A non-empty subset M of a hemiring ˇR is called a left (right) ideal of ˇR if
1) p+q∈M ∀ p,q∈M and
2) rp∈M (pr∈M) ∀ a∈Mr∈ˇR. Obviously 0 ∈M for any left (right) ideal M of ˇR.
Definition 2.4. [3] A left (right) ideal M of a hemiring ˇR is called a left (right) k−ideal of ˇR if for any p,q ∈M and s ∈ˇR from s+p=q it follows s ∈M.
Definition 2.5. [3] An element b of a hemiring ˇR is called regular if there exist u∈ˇR such that b=bub. A hemiring ˇR is called regular if each element of ˇR is regular.
Definition 2.6. [3] A hemiring ˇR is said to be k−regular hemiring if for each b∈ˇR ∃ u,v∈ˇR such that b+bub=bvb.
If H is not empty set and ϕ″ and ψ′ are fuzzy subsets of H then
ϕ″≦ψ′⇔ϕ″(k⌝)≦ψ′(k⌝)(ϕ″∧ψ′)(k⌝)=ϕ″(k⌝)∧ψ′(k⌝)=min{ϕ″(k⌝),ψ′(k⌝)}(ϕ″∨ψ′)(k⌝)=ϕ″(k⌝)∨ψ′(k⌝)=max{ϕ″(k⌝),ψ′(k⌝)} |
for any k⌝∈H.
More often, if collection {ϕ″:i″∈j}⊂H then union and intersection of fuzzy sets are defined as
(⋀i″∈jϕ″i′′)(k⌝)=⋀i″∈jϕ″i″(k⌝)=infi″∈j{ϕ″i″(k⌝)}(⋁i″∈jϕ″i″)(k⌝)=⋁i″∈jϕ″i″(k⌝)=supi″∈j{ϕ″i″(k⌝)} |
respectively.
Definition 2.7. [3]In a hemiring ˇR, ϕ″is called a fuzzy right (left) ideal of ˇR if ∀ c′,d′∈ˇR we have
1) ϕ″(c′+d′)≧ϕ″(c′)∧ϕ″(d′)
2) ϕ″(c′d′)≧ϕ″(c′), (ϕ″(c′d′)≧ϕ″(d′)).
Note that ϕ″(0)≧ϕ″(x)∀x∈ˇR.
Definition 2.8. [3] A fuzzy right (left) ideal ϕ′ of a hemiring ˇR is called a fuzzy right (left) k−ideal if
u+v=w⟹ϕ′(u)≧ϕ′(v)∧ϕ′(w) holds ∀ u,v,w∈ˇR. |
Definition 2.9. [3] Suppose fuzzy subset ϕ′of a universe X and s∈[0,1]. Then
V(ϕ′;s)={x′∈X:ϕ(x′)≧s} |
is said to be level subset of ϕ′.
As an impotant generalization of the notion of fuzzy sets, Atanassov introduced in [26] the concept of an intuitionistic fuzzy set (IFS) defined as:
J=(μJ,ρJ)={(x,μJ(x),ρJ(x))|x∈R} |
where the fuzzy sets μJ and ρJ denote the degree of membership and the degree of non-membership of each element x∈R to the set J respectively, 0≤μJ(x)+ρJ(x)≤1∀x∈R.
Definition 2.10. Assume that J=(μJ,ρJ) is a non-empty intuitionistic fuzzy set in a hemiring ˇR. Then J is said to be an intuitionistic fuzzy right k−ideal if,
1) μJ(x″+y″)≧min(μJ(x″),μJ(y″))
2) ρJ(x″+y″)≦max(ρJ(x″),ρJ(y″)
3) μJ(x″y″)≧μJ(x″)
4) ρJ(x″y″)≦ρJ(x″)
5) x″+y″=z″⇒μJ(x″)≧min(μJ(y″),μJ(z″))
6) x″+y″=z″⇒ρJ(x″)≦max(ρJ(y″),ρJ(z″))
∀x″,y″,z″∈ˇR.
An IFS J=(μJ,ρJ) satisfies the first four axioms then we said J=(μJ,ρJ) is an intuitionistic fuzzy right ideal.
In hemiring ˇR, IFI(ˇR) denote the familly of all intuitionistic fuzzy right k−ideals.
Now μJ(x″)≦μJ(0) and ρJ(x′′)≧ρJ(0) for each J∈IFI(ˇR) and x′′∈ˇR.
Assume that H is not an empty set. A complex mapping E=(μE,ρE):H→I×I is said to be an intuitionistic fuzzy set (IFS) in H if μE(x″)+ρE≦1 for each x′∈X, where the mapping μE(x′′):H→I (degree of membership (μE)) and ρE:H →I (degree of non-membership (ρE))for each x″∈H to E. In particular, 0∼ and 1∼ are empty set and whole set of the intuitionistic fuzzy in H, respectively, defined by 0∼(x″)=(0,1) and 1∼(x″)=(1,0) for any x″∈H. All IFS in X will be denoted by IFS(X) (IFS stands for intuitionistic fuzzy set).
Lemma 2.11. [11]
Let X be a non-empty set and let U′=(μU′,ρU′) and V′=(μV′,ρV′) be IFSs on X. Then
1) U′⊂V′⟺μU′≦μU′ and ρV′≧ρV′.
2) U′=V′⟺U′⊂V′ and V′⊂U′.
3) V′c=(ρV′,μV′).
4) U′∩V′=(μU′∧μV′ ,ρU′∨ρV′).
5) U′∪V′=(μU′∨ρV′ ,ρU′∧ρV′).
Theorem 2.12. [10] A hemiring H↔ is k-regular hemiring if and only if for any fuzzy right k−ideal L and any fuzzy left k−ideal M, we have ¯LM=L∩M.
Definition 2.13. Suppose that L=(μL,ρL) and M=(μM,ρM) be the intuitionistic fuzzy sets on ˇR then L⊙kM is called k−product of intuitionistic fuzzy sets if
(μL′∖⊙kμM′∖)(x′)=⋁x′+p′∑i′=1ai′bi′=q′∑cj′dj′j′=1{p′⋀i′=1(μL(ai′)∧μM(bi′))∧q′⋀j′=1(μL(cj′)∧μM(dj′))}, |
(ρL′∖⊙kρM′∖)(x′)=⋀x′+p′∑i′=1ai′bi′=q′∑cj′dj′j′=1{p′⋁i′=1(ρL(ai′)∨ρM(bi′))∨q′⋁j′=1(ρL(cj′)∨ρM(dj′))} |
Theorem 2.14. If L′∖=(μL′∖,ρL′∖) and M′∖=(μM′∖,ρM′∖) are intuitionistic fuzzy k−ideals of H↔ then μL′∖⊙kμM′∖,ρL′∖⊙kρM′∖ are intuitionistic fuzzy k−ideal of H↔ and μL′∖⊙kμ≦μL′∖∧μM′∖, and ρL′∖⊙kρM′∖≧ρL′∖∨ρM′∖.
Proof. Suppose L′∖=(μL′∖,ρL′∖), M′∖=(μM′∖,ρM′∖) be the intuitionistic fuzzy k−ideals of H↔. Suppose u,v∈H↔ then we have
(μL′∖⊙kμM′∖)(u)=⋁u+Ω∑σ=1cσdσ=Δ∑ϱ=1c′ϱd′ϱ{Ω⋀σ=1(μL′∖(cσ)∧μM′∖(dσ))∧Δ⋀ϱ=1(μL′∖(c′ϱ)∧μM′∖(d′ϱ))}, |
(ρL′∖⊙kρM′∖)(u)=⋀u+Ω∑σ=1cσdσ=Δ∑ϱ=1c′ϱd′ϱ{Ω⋁σ=1(ρL′∖(cσ)∨ρM′∖(dσ))∨Δ⋁ϱ=1(ρL′∖(c′ϱ)∨ρM′∖(d′ϱ))} |
(μL′∖⊙kμM′∖)(v)=⋁v+p"∑ε=1aεbε=q"∑l"=1a′l"b′l"{p"⋀ε=1(μL′∖(aε)∧μM′∖(bε))∧q"⋀l"=1(μL′∖(a′l")∧μM′∖(b′l"))}, |
(ρL′∖⊙kρM′∖)(v)=⋀v+p"∑ε=1aεbε=q"∑τ=1a′τb′τ{p"⋁ε=1(ρL′∖(aε)∨ρM′∖(bε))∨q"⋁τ=1(ρL′∖(a′τ)∨ρM′∖(b′τ))} |
Now
(μL′∖⊙kμM′∖)(u)∧(μL′∖⊙kμM′∖)(v)=⋁u+Ω∑σ=1cσdσ=Δ∑ϱ=1c′ϱd′ϱ{Ω⋀σ=1(μL′∖(cσ)∧μM′∖(dσ))∧Δ⋀ϱ=1(μL′∖(c′ϱ)∧μM′∖(d′ϱ)}∧⋁v+p"∑ε=1aεbε=q"∑τ=1a′τb′τ{p"⋀ε=1(μL′∖(aε)∧μM′∖(bε))∧q"⋀τ=1(μL′∖(a′τ)∧μM′∖(b′τ))} |
(ρL′∖⊙kρM′∖)(u)∨(ρL′∖⊙kρM′∖)(v)=⋀u+Ω∑σ=1cσdσ=Δ∑ϱ=1c′ϱd′ϱ{Ω⋁σ=1(ρL′∖(cσ)∨ρM′∖(dσ))∨Δ⋁ϱ=1(ρL′∖(c′ϱ)∨ρM′∖(d′ϱ))}∨⋀v+p"∑ε=1aεbε=q"∑τ=1a′τb′τ{p"⋁ε=1(ρL′∖(aε)∨ρM′∖(bε))∨q"⋁τ=1(ρL′∖(a′τ)∨ρM′∖(b′τ))} |
(μL′∖⊙kμM′∖)(u)∧(μL′∖⊙kμM′∖)(v)=⋁u+Ω∑σ=1cσdσ=Δ∑ϱ=1c′ϱd′ϱ[⋁v+p"∑ε=1aεbε=q"∑τ=1a′τb′τ{Ω⋀σ=1(μL′∖(cσ)∧μM′∖(dσ))∧Δ⋀ϱ=1(μL′∖(c′ϱ)∧μM′∖(d′ϱ))∧p"⋀ε=1(μL′∖(aε)∧μM′∖(bε))∧q"⋀τ=1(μ(a′τ)∧μM′∖(b′τ))}] |
and
(ρL′∖⊙kρM′∖)(u)∨(ρL′∖⊙kρM′∖)(v)=⋀u+Ω∑σ=1cσdσ=Δ∑ϱ=1c′ϱd′ϱ[⋀v+p"∑ε=1aεbε=q"∑τ=1a′τb′τ{Ω⋁σ=1(ρL′∖(cσ)∨ρM′∖(dσ))∨Δ⋁ϱ=1(ρL′∖(c′ϱ)∨ρM′∖(d′ϱ))∨p"⋁ε=1(ρL′∖(aε)∨ρM′∖(bε))∨q⋁τ=1(ρL′∖(a′τ)∨ρM′∖(b′τ))}] |
Since for each expression u+Ω∑σ=1cσdσ=Δ∑ϱ=1c′ϱd′ϱ and v+p"∑ε=1aεbε=q"∑τ=1a′τb′τ we have
u+v+Ω∑σ=1cσdσ+p"∑ε=1aεbε=Δ∑ϱ=1c′ϱd′ϱ+q"∑τ=1a′τb′τ |
So
(μL′∖⊙kμM′∖)(u)∧(μL′∖⊙kμM′∖)(v)≦⋁u+v+q∑s=1gshs=r∑t=1g′th′t{q⋀s=1(μL′∖(gs)∧μM′∖(hs))∧r⋀t=1(μL′∖(g′t)∧μM′∖(h′t))}, |
(ρL′∖⊙kρM′∖)(u)∨(ρL′∖⊙kρM′∖)(v)≧⋀u+v+q∑s=1gshs=r∑t=1g′th′t{q⋁s=1(ρL′∖(gs)∨ρM′∖(hs))∨r⋁t=1(ρL′∖(g′t)∨ρM′∖(h′t))} |
Again
(μL′∖⊙kμM′∖)(u)=⋁u+Ω∑σ=1cσdσ=Δ∑ϱ=1c′ϱd′ϱ{Ω⋀σ=1(μL′∖(cσ)∧μM′∖(dσ))∧Δ⋀ϱ=1(μL′∖(c′ϱ)∧μM′∖(d′ϱ))},(ρL′∖⊙kρM′∖)(u)=⋀u+Ω∑σ=1cσdσ=Δ∑ϱ=1c′ϱd′ϱ{Ω⋁σ=1(ρL′∖(cσ)∨ρM′∖(dσ))∨Δ⋁ϱ=1(ρL′∖(c′ϱ)∨ρM′∖(d′ϱ))} |
implies that
(μL′∖⊙kμM′∖)(u)≦⋁u+Ω∑σ=1cσdσ=Δ∑ϱ=1c′ϱd′ϱ{Ω⋀σ=1(μL′∖(cσ)∧μM′∖(dσr))∧Δ⋀ϱ=1(μL′∖(c′ϱ)∧μM′∖(d′ϱr))},(ρL′∖⊙kρM′∖)(u)≧⋀u+Ω∑σ=1cidi=Δ∑ϱ=1c′jd′j{Ω⋁σ=1(ρL′∖(cσ)∨ρM′∖(dσr))∨Δ⋁ϱ=1(ρL′∖(c′ϱ)∨ρM′∖(d′ϱr))} |
So we get
(μL′∖⊙kμM′∖)(u)≦⋁ur+k"∑s′=1gs′hs′=l"∑t′=1g′t′h′t′{k"⋀s′=1(μL′∖(gs′)∧μM′∖(hs′))∧l"⋀t′=1(μL′∖(g′t′)∧μM′∖(h′t′))} |
Which implies that
(μL′∖⊙kμM′∖)(u)≦(μL′∖⊙kμM′∖)(ur) |
and
(ρL′∖⊙kρM′∖)(u)≧⋀ur+k"∑s′=1gs′hs′=l"∑t′=1g′t′h′t′{k"⋁s′=1(ρL′∖(gs′)∨ρM′∖(hs′))∨l"⋁t′=1(ρL′∖(g′t′)∨ρM′∖(h′t′))} |
implies that
(ρL′∖⊙kρM′∖)(u)≧(ρL′∖⊙kρM′∖)(ur). |
This means that μL′∖⊙kμM′∖,ρL′∖⊙kρM′∖ are intuitionistic fuzzy ideal of H↔. Now will prove that
u+b″=a″⟹(ρL′∖⊙kρM′∖)(u)≦(ρL′∖⊙kρM′∖)(b″)∨(ρL′∖⊙kρM′∖)(a″) |
observe that
b″+Ω∑σ=1cσdσ=Δ∑ϱ=1c′ϱd′ϱ and a′′+l"∑φ=1aφbφ=p"∑π=1a′πb′π |
together with u+b″=a″ gives u+b″+Ω∑σ=1cσdσ=a″+Ω∑σ=1cσdσ thus
u+Δ∑ϱ=1c′ϱd′ϱ=a″+Ω∑σ=1cσdσ |
and accordingly
u+Δ∑ϱ=1c′ϱd′ϱ+l"∑φ=1aφbφ=a″+l"∑φ=1aφbφ+Ω∑σ=1cσdσ=p"∑π=1a′πb′π+Ω∑σ=1cσdσ |
Therefore
u+Δ∑ϱ=1c′ϱd′ϱ+l"∑π=1aφbφ=Ω∑σ=1cσdσ+p"∑π=1a′πb′π |
(μL′∖⊙kμM′∖)(b″)∧(μL′∖⊙kμM′∖)(a″)=⋁b″+e′∑σ=1cσdσ=f′∑ϱ=1c′ϱd′ϱ{e′⋀σ=1(μL′∖(cσ)∧μM′∖(dσ))∧Δ⋀ϱ=1(μL′∖(c′ϱ)∧μM′∖(d′ϱ))}∧⋁a″+l"∑φ=1aφbφ=p"∑π=1a′πb′π{l"⋀φ=1(μL′∖(aφ)∧μM′∖(bφ))∧p"⋀π=1(μL′∖(a′π)∧μM′∖(b′π))} |
(ρL′∖⊙kρM′∖)(b″)∨(ρL′∖⊙kρM′∖)(a″)=⋀b″+e′∑σ=1cσdσ=f′∑ϱ=1c′ϱd′ϱ{Ω⋁σ=1(ρL′∖(cσ)∨ρM′∖(dσ))∨Δ⋁ϱ=1(ρL′∖(c′ϱ)∨ρM′∖(d′ϱ))}∨⋀a″+l"∑φ=1aφbφ=p"∑π=1a′πb′π{l"⋁φ=1(ρL′∖(aφ)∨ρM′∖(bφ))∨p"⋁π=1(ρL′∖(a′π)∨ρM′∖(b′π))} |
(μL′∖⊙kμM′∖)(b″)∧(μL′∖⊙kμM′∖)(a″)=⋀b″+e′∑σ=1cσdσ=f′∑ϱ=1c′ϱd′ϱ[⋀a″+l"∑φ=1aφbφ=p"∑π=1a′πb′π{Ω⋀σ=1(μL′∖(cσ)∧μM′∖(dσ))∧Δ⋀ϱ=1(μL′∖(c′ϱ)∧μM′∖(d′ϱ))∧l"⋀φ=1(μL′∖(aφ)∧μM′∖(bφ))∧p"⋀π=1(μL′∖(a′π)∧μM′∖(b′π))}] |
and
\begin{align*} (\rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{M^{^{\prime}\backslash} })(b'')\vee(\rho_{L^{^{\prime}\backslash}}\odot_{k} \rho_{M^{^{\prime}\backslash}})(a'') & = \underset {b''+\underset{\sigma = 1}{\overset{e'}{ { \sum\limits} }}c_{\sigma}d_{\sigma} = \overset{f'}{\underset{\varrho = 1}{ { \sum\limits} }}c_{\varrho}'d_{\varrho}'}{ { \bigwedge\limits} }{ [}\underset{a''+\underset{\varphi = 1}{\overset{l^{"}}{ { \sum\limits} }}a_{\varphi}b_{\varphi} = \overset{p^{"}}{\underset{\pi = 1}{ { \sum\limits} }}a_{\pi}'b_{\pi}'}{ { \bigwedge\limits} }{ \{}\underset{\sigma = 1}{\overset{\Omega}{ { \bigvee\limits} }}\left( \rho_{L^{^{\prime}\backslash}}(c_{\sigma})\vee\rho_{M^{^{\prime }\backslash}}(d_{\sigma})\right) \\ & \vee\underset{\varrho = 1}{\overset{\Delta}{ { \bigvee\limits} }}(\rho_{L^{^{\prime}\backslash}}(c_{\varrho}')\vee\rho _{M^{^{\prime}\backslash}}(d_{\varrho}'))\vee\underset {k'' = 1}{\overset{l''}{ { \bigvee\limits} }}\left( \rho_{L^{^{\prime}\backslash}}(a_{k''})\vee \rho_{M^{^{\prime}\backslash}}(b_{k''})\right) \\ & \vee\underset{q'' = 1}{\overset{p''}{ { \bigvee\limits} }}(\rho_{L^{^{\prime}\backslash}}(a_{q''}')\vee \rho_{M^{^{\prime}\backslash}}(b_{q''}^{^{\prime} })){ \}]} \end{align*} |
\begin{align*} (\mu_{L^{^{\prime}\backslash}}\odot_{k}\mu_{M^{^{\prime}\backslash} })(b'')\wedge(\mu_{L^{^{\prime}\backslash}}\odot_{k} \mu_{M^{^{\prime}\backslash}})(a'') & \leqq\underset {u+ \mathop {\mathop \sum \limits^q }\limits_{t = 1} h_{t}g_{t} = \mathop {\mathop \sum \limits_{{s^ * } = 1} }\limits^r h_{s^{\ast}}'g_{s^{\ast}}'}{ { \bigvee\limits} }\left\{ \begin{array} [c]{c} \underset{t = 1}{\overset{q}{ { \bigwedge\limits} }}(\mu_{L^{^{\prime}\backslash}}(h_{t})\wedge\mu_{M^{^{\prime}\backslash} }(g_{t}))\wedge\\ \underset{s^{\ast} = 1}{\overset{r}{ { \bigwedge\limits} }}(\mu_{L^{^{\prime}\backslash}}(h_{s^{\ast}}')\wedge \mu_{M^{^{\prime}\backslash}}(g_{s^{\ast}}')) \end{array} \right\} \\ & \leqq(\mu_{L^{^{\prime}\backslash}}\odot_{k}\mu_{M^{^{\prime}\backslash} })(u) \end{align*} |
\begin{align*} (\rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{M^{^{\prime}\backslash} })(b'')\vee(\rho_{L^{^{\prime}\backslash}}\odot_{k} \rho_{M^{^{\prime}\backslash}})(a'') & \geqq\underset {u+ \mathop {\mathop \sum \limits^q }\limits_{t = 1} h_{t}g_{t} = \mathop {\mathop \sum \limits_{{s^ * } = 1} }\limits^r h_{s^{\ast}}'g_{s^{\ast}}'}{ { \bigwedge\limits} }\left\{ \begin{array} [c]{c} \mathop {\mathop {\bigvee\limits}\limits^q }\limits_{t = 1} (\left( \rho_{L^{^{\prime}\backslash}}(h_{t})\vee\rho_{M^{^{\prime }\backslash}}(g_{t})\right) \vee\\ \mathop {\mathop {\bigvee\limits}\limits^r }\limits_{{s^ * } = 1} (\rho_{L^{^{\prime}\backslash}}(h_{s^{\ast}}')\vee\rho _{M^{^{\prime}\backslash}}(g_{s^{\ast}}')) \end{array} \right\} \\ & \geqq(\rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{M^{^{\prime}\backslash} })(u). \end{align*} |
Thus (\mu_{L^{^{\prime}\backslash}}\odot_{k}\mu_{M^{^{\prime}\backslash} }), (\rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{M^{^{\prime}\backslash}}) are intuitionistic fuzzy k- ideal of \underleftrightarrow{H} .
Definition 3.1. [3] For every \acute{z}\in\underleftrightarrow{H}, x^{^{\prime \prime\prime}}\in\overline{(\acute{z}r) {{}^2} } \left(x^{^{\prime\prime\prime}}\in\overline{(r\acute{z}) {{}^2} }\right) the hemiring \underleftrightarrow{H} is called right (left) k-weakly regular if for \acute{z}\in\underleftrightarrow{H} we have p_{i}, q_{i}, u_{j}, v_{j} \in\underleftrightarrow{H} such that
\acute{z}+ \mathop {\mathop \sum \limits^m }\limits_{p'' = 1} x^{^{\prime\prime\prime}}p_{i}x^{^{\prime\prime\prime}}q_{i} = \mathop {\mathop \sum \limits^n }\limits_{q'' = 1} x^{^{\prime\prime\prime}}u_{j}x^{^{\prime\prime\prime}}v_{j}\text{ }{\LARGE (}\acute{z}+ \mathop {\mathop \sum \limits^m }\limits_{p'' = 1} p_{i}x^{^{\prime\prime\prime}}q_{i}x^{^{\prime\prime\prime}} = \mathop {\mathop \sum \limits^n }\limits_{q'' = 1} u_{j}x^{^{\prime\prime\prime}}v_{j}x^{^{\prime\prime\prime}}{\LARGE ).} |
Thus every k-regular hemiring with identity is right k-weakly regular but not conversely true. However both the concepts coincide for a commutative hemiring.
Definition 3.2. Suppose that intuitionistic fuzzy sets U'' = (\mu _{U''}, \rho_{U''}) and V^{'' } = (\mu_{V''}, \rho_{V''}) of \underleftrightarrow{H} then U''+_{k}V'' is called k-sum of intuitionistic fuzzy sets if
\mu_{U''}+_{k}\mu_{V''} = \underset{x^{^{\prime }}+(a'+b') = (c'+d')}{ { \bigvee\limits} }[\mu_{U''}(a'')\wedge\mu_{U^{'' }}(c'')\wedge\mu_{V''}(b^{'' })\wedge\mu_{V''}(d'')], |
\rho_{U''}+_{k}\rho_{V''} = \underset {x''+(a''+b'') = (c^{^{\prime \prime}}+d'')}{ { \bigwedge\limits} }[\rho_{U''}(a'')\vee\rho_{U^{'' }}(c'')\vee\rho_{V''}(b'' )\vee\rho_{V''}(d'')] |
where x'', a'', b'', c'', d''\in\underleftrightarrow{H}.
Theorem 3.3. The k-sum of intuitionistic fuzzy k- ideals of hemiring \underleftrightarrow{H} is also a intuitionistic fuzzy k- ideal of \underleftrightarrow{H} .
Proof. Suppose G^{^{\prime}\backslash} = (\mu_{G^{^{\prime}\backslash}}, \rho _{G^{^{\prime}\backslash}}), \; H^{^{\prime}\backslash} = (\mu_{H^{^{\prime }\backslash}}, \rho_{H^{^{\prime}\backslash}}) are intuitionistic fuzzy k- ideals of \underleftrightarrow{H} . Therefore y^{'' }, z'', r''\in\underleftrightarrow{H} we have
\begin{align*} (\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}} )(y'')\wedge(\mu_{G^{^{\prime}\backslash}}+_{k}\mu _{H^{^{\prime}\backslash}})(z'') & = { [}\underset {y''+(c_{11}+d_{11}) = (c_{22}+d_{22})}{ { \bigvee\limits} }\{\mu_{G^{^{\prime}\backslash}}(c_{11})\wedge\mu_{G^{^{\prime}\backslash} }(c_{22})\\ & \wedge\mu_{H^{^{\prime}\backslash}}(d_{11})\wedge\mu_{H^{^{\prime} \backslash}}(d_{22})\}{ ]}\wedge\\ & { [}\underset{z''+(c_{1}'+d_{1}^{^{\prime} }) = (c_{2}'+d_{2}')}{ { \bigvee\limits} }\{\mu_{G^{^{\prime}\backslash}}(c_{1}')\wedge\mu_{G^{^{\prime }\backslash}}(c_{2}')\\ & \wedge\mu_{H^{^{\prime}\backslash}}(d_{1}')\wedge\mu _{H^{^{\prime}\backslash}}(d_{2}')\}{ ]}, \end{align*} |
and
\begin{align*} (\rho_{G^{^{\prime}\backslash}}+_{k}\rho_{H^{^{\prime}\backslash} })(y'')\vee(\rho_{G^{^{\prime}\backslash}}+_{k}\rho _{H^{^{\prime}\backslash}})(z'') & = { [}\underset {y''+(c_{11}+d_{11}) = (c_{22}+d_{22})}{ { \bigwedge\limits} }\{\rho_{G^{^{\prime}\backslash}}(c_{11})\vee\rho_{G^{^{\prime}\backslash} }(c_{22})\\ & \vee\rho_{H^{^{\prime}\backslash}}(d_{11})\vee\rho_{H^{^{\prime}\backslash} }(d_{22})\}{ ]}\vee\\ & { [}\underset{z'+(c_{1}'+d_{1}^{^{\prime} }) = (c_{2}'+d_{2}')}{ { \bigwedge\limits} }\{\rho_{G^{^{\prime}\backslash}}(c_{1}')\vee\rho_{G^{^{\prime }\backslash}}(c_{2}')\vee\\ & \rho_{H^{^{\prime}\backslash}}(d_{1}')\vee\rho_{H^{^{\prime }\backslash}}(d_{2}')\}{ ]} \end{align*} |
Now
\begin{align*} (\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}} )(y'')\wedge(\mu_{G^{^{\prime}\backslash}}+_{k}\mu _{H^{^{\prime}\backslash}})(z'') & = \underset{z^{^{\prime \prime}}+(c_{1}'+d_{2}') = (c_{2}' +d_{2}')}{\underset{y''+(c_{11}+d_{11} ) = (c_{22}+d_{22})}{ { \bigvee\limits} }}\{\mu_{G^{^{\prime}\backslash}}(c_{11})\wedge\mu_{G^{^{\prime }\backslash}}(c_{22})\wedge\mu_{H^{^{\prime}\backslash}}(d_{11})\wedge\\ & \mu_{H^{^{\prime}\backslash}}(d_{22})\wedge\mu_{G^{^{\prime}\backslash} }(c_{1}')\wedge\mu_{G^{^{\prime}\backslash}}(c_{2}^{^{\prime} })\wedge\mu_{H^{^{\prime}\backslash}}(d_{1}')\wedge\mu _{H^{^{\prime}\backslash}}(d_{2}')\}, \end{align*} |
and
\begin{align*} (\rho_{G^{^{\prime}\backslash}}+_{k}\rho_{H^{^{\prime}\backslash} })(y'')\vee(\rho_{G^{^{\prime}\backslash}}+_{k}\rho _{H^{^{\prime}\backslash}})(z'') & = \underset{z^{^{\prime \prime}}+(c_{1}'+d_{1}') = (c_{2}' +d_{2}')}{\underset{y''+(c_{11}+d_{11} ) = (c_{22}+d_{22})}{ { \bigwedge\limits} }}\{\rho_{G^{^{\prime}\backslash}}(c_{11})\vee\rho_{G^{^{\prime}\backslash} }(c_{22})\vee\rho_{H^{^{\prime}\backslash}}(d_{11})\vee\\ & \rho_{H^{^{\prime}\backslash}}(d_{22})\vee\rho_{G^{^{\prime}\backslash} }(c_{1}')\vee\rho_{G^{^{\prime}\backslash}}(c_{2}' )\vee\rho_{H^{^{\prime}\backslash}}(d_{1}')\vee\rho_{H^{^{\prime }\backslash}}(d_{2}')\} \end{align*} |
This implies that
\begin{align*} (\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}} )(y'')\wedge(\mu_{G^{^{\prime}\backslash}}+_{k}\mu _{H^{^{\prime}\backslash}})(z'') & = \underset{z^{^{\prime \prime}}+(c_{1}'+d_{1}') = (c_{2}' +d_{2}')}{\underset{y''+(c_{11}+d_{11} ) = (c_{21}+d_{22})}{ { \bigvee\limits} }}\{\mu_{G^{^{\prime}\backslash}}(c_{11}+c_{1}')\wedge \mu_{G^{^{\prime}\backslash}}(c_{22}+c_{2}')\wedge\\ & \mu_{H^{^{\prime}\backslash}}(d_{11}+d_{1}')\wedge\mu _{H^{^{\prime}\backslash}}(d_{22}+d_{2}')\}, \end{align*} |
and
\begin{align*} (\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime}\backslash}})(y^{^{\prime \prime}})\vee(\rho_{G^{^{\prime}\backslash}}+_{k}\rho_{H^{^{\prime}\backslash }})(z'') & = \underset{z''+(c_{1}^{^{\prime} }+d_{1}') = (c_{2}'+d_{2}')}{\underset {y''+(c_{11}+d_{11}) = (c_{22}+d_{22})}{ { \bigwedge\limits} }}\{\rho_{G^{^{\prime}\backslash}}(c_{11}+c_{1}')\vee \rho_{G^{^{\prime}\backslash}}(c_{22}+c_{2}')\vee\\ & \rho_{H^{^{\prime}\backslash}}(d_{11}+d_{1}')\vee\rho _{H^{^{\prime}\backslash}}(d_{22}+d_{2}')\} \end{align*} |
This implies that
(\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}} )(y'')\wedge(\mu_{G^{^{\prime}\backslash}}+_{k}\mu _{H^{^{\prime}\backslash}})(z'')\leqq\underset{y^{^{\prime \prime}}+z''+(a_{1}'+b_{1}' ) = (a_{2}'+b_{2}')}{ { \bigvee\limits} }\{\mu_{G^{^{\prime}\backslash}}(a_{1}')\wedge\mu_{G^{^{\prime }\backslash}}(a_{2}')\wedge\mu_{H^{^{\prime}\backslash}} (b_{1}')\wedge\mu_{H^{^{\prime}\backslash}}(b_{2}')\}, |
and
(\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime}\backslash}})(y^{^{\prime \prime}})\vee(\rho_{G^{^{\prime}\backslash}}+_{k}\rho_{H^{^{\prime}\backslash }})(z'')\geqq\underset{y''+z^{'' }+(a_{1}'+b_{1}') = (a_{2}'+b_{2}' )}{ { \bigwedge\limits} }\{\rho_{G^{^{\prime}\backslash}}(a_{1}')\vee\rho_{G^{^{\prime }\backslash}}(a_{2}')\vee\rho_{H^{^{\prime}\backslash}} (b_{1}')\vee\rho_{H^{^{\prime}\backslash}}(b_{2}')\} |
Hence
(\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}} )(y'')\wedge(\mu_{G^{^{\prime}\backslash}}+_{k}\mu _{H^{^{\prime}\backslash}})(z'')\leqq(\mu_{G^{^{\prime }\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}})(y^{'' }+z''), |
(\rho_{G^{^{\prime}\backslash}}+_{k}\rho_{H^{^{\prime}\backslash} })(y'')\vee(\rho_{G^{^{\prime}\backslash}}+_{k}\rho _{H^{^{\prime}\backslash}})(z'')\geqq(\rho_{G^{^{\prime }\backslash}}+_{k}\rho_{H^{^{\prime}\backslash}})(y^{'' }+z''). |
Similarly
\begin{align*} (\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}} )(y'') & = \underset{y''+(c_{11} +d_{11}) = (c_{22}+d_{22})}{ { \bigvee\limits} }\{\mu_{G^{^{\prime}\backslash}}(c_{11})\wedge\mu_{G^{^{\prime}\backslash} }(c_{22})\wedge\mu_{H^{^{\prime}\backslash}}(d_{11})\wedge\mu_{H^{^{\prime }\backslash}}(d_{22})\}\\ & \leqq\underset{y''+(c_{11}+d_{11}) = (c_{22}+d_{22})}{ { \bigvee\limits} }\{\mu_{G^{^{\prime}\backslash}}(r'c_{11})\wedge\mu_{G^{^{\prime }\backslash}}(r'c_{22})\wedge\mu_{H^{^{\prime}\backslash} }(r'd_{11})\wedge\mu_{H^{^{\prime}\backslash}}(r' d_{22})\}\\ & \leqq\underset{r'y''+(c_{1}^{'' }+d_{1}'') = (c_{2}''+d_{2}'')}{ { \bigvee\limits} }\{\mu_{G^{^{\prime}\backslash}}(c_{1}'')\wedge\mu _{G^{^{\prime}\backslash}}(c_{2}'')\wedge\mu_{H^{^{\prime }\backslash}}(d_{1}'')\wedge\mu_{H^{^{\prime}\backslash} }(d_{2}'')\}, \end{align*} |
and
\begin{align*} (\rho_{G^{^{\prime}\backslash}}+_{k}\rho_{H^{^{\prime}\backslash} })(y'') & = \underset{y''+(c_{11} +d_{11}) = (c_{22}+d_{22})}{ { \bigwedge\limits} }\{\rho_{G^{^{\prime}\backslash}}(c_{11})\vee\rho_{G^{^{\prime}\backslash} }(c_{22})\vee\rho_{H^{^{\prime}\backslash}}(d_{11})\vee\rho_{H^{^{\prime }\backslash}}(d_{22})\}\\ & \geqq\underset{y''+(c_{11}+d_{11}) = (c_{22}+d_{22})}{ { \bigwedge\limits} }\{\rho_{G^{^{\prime}\backslash}}(r'c_{11})\vee\rho_{G^{^{\prime }\backslash}}(r'c_{22})\vee\rho_{H^{^{\prime}\backslash} }(r'd_{11})\vee\rho_{H^{^{\prime}\backslash}}(r' d_{22})\}\\ & \geqq\underset{r'y''+(c_{1}^{'' }+d_{1}'') = (c_{2}''+d_{2}'')}{ { \bigwedge\limits} }\{\rho_{G^{^{\prime}\backslash}}(c_{1}'')\vee\rho _{G^{^{\prime}\backslash}}(c_{2}'')\vee\rho_{H^{^{\prime }\backslash}}(d_{1}'')\vee\rho_{H^{^{\prime}\backslash}} (d_{2}'')\} \end{align*} |
So we get
(\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}} )(y'')\leqq(\mu_{G^{^{\prime}\backslash}}+_{k}\mu _{H^{^{\prime}\backslash}})(r'y''), |
(\rho_{G^{^{\prime}\backslash}}+_{k}\rho_{H^{^{\prime}\backslash} })(y'')\geqq(\rho_{G^{^{\prime}\backslash}}+_{k} \rho_{H^{^{\prime}\backslash}})(r'y''). |
Analogously
(\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}} )(y'')\leqq(\mu_{G^{^{\prime}\backslash}}+_{k}\mu _{H^{^{\prime}\backslash}})(y''r'), |
(\rho_{G^{^{\prime}\backslash}}+_{k}\rho_{H^{^{\prime}\backslash} })(y'')\geqq(\rho_{G^{^{\prime}\backslash}}+_{k} \rho_{H^{^{\prime}\backslash}})(y''r'). |
Hence we have proved that (\mu_{G^{^{\prime}\backslash}}+_{k}\mu _{H^{^{\prime}\backslash}}), (\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime }\backslash}}) is an intuitionistic fuzzy ideal of \underleftrightarrow{H} . Next we show that
\begin{align*} y''+p^{"} & = q^{"}\Longrightarrow(\mu_{G^{^{\prime} \backslash}}+_{k}\mu_{H^{^{\prime}\backslash}})(y'')\geqq (\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}})(p^{"} )\wedge(\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash} })(q''), \\ (\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime}\backslash}})(y^{^{\prime \prime}}) & \leqq(\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime} \backslash}})(p'')\vee(\rho_{G^{^{\prime}\backslash}} +\rho_{H^{^{\prime}\backslash}})(q''). \end{align*} |
Suppose that
p''+(c_{1}'+d_{1}') = (c_{2}^{^{\prime} }+d_{2}')\text{ and }q''+(a_{1}' +b_{1}') = (a_{2}'+b_{2}') |
then
y''+p''+(a_{1}'+b_{1}^{^{\prime} }) = (a_{2}'+b_{2}') |
Now
y''+p''+(a_{1}'+b_{1}^{^{\prime} })+(c_{1}'+d_{1}') = (a_{2}'+b_{2}^{^{\prime} })+(c_{1}'+d_{1}') |
y''+(p''+c_{1}'+d_{1}^{^{\prime} })+(a_{1}'+b_{1}') = (c_{1}'+d_{1}^{^{\prime} })+(a_{2}'+b_{2}') |
y''+(c_{2}'+d_{2}')+(a_{1}^{^{\prime} }+b_{1}') = (c_{1}'+d_{1}')+(a_{2}^{^{\prime} }+b_{2}') |
Thus
y''+(c_{2}'+a_{1}')+(d_{2}^{^{\prime} }+b_{1}') = (c_{1}'+a_{2}')+(d_{1}^{^{\prime} }+b_{2}'). |
Therefore
\begin{align*} (\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}} )(p'')\wedge(\mu_{G^{^{\prime}\backslash}}+_{k}\mu _{H^{^{\prime}\backslash}})(q'') & = { [}\underset {p''+(c_{1}'+d_{1}') = (c_{2}^{^{\prime} }+d_{2}')}{ { \bigvee\limits} }\{\mu_{G^{^{\prime}\backslash}}(c_{1}')\wedge\mu_{G^{^{\prime }\backslash}}(c_{2}')\\ & \wedge\mu_{H^{^{\prime}\backslash}}(d_{1}')\wedge\mu _{H^{^{\prime}\backslash}}(d_{2}')\}{ ]}\wedge\\ & { [}\underset{q''+(a_{1}'+b_{1}^{^{\prime} }) = (a_{2}'+b_{2}')}{ { \bigvee\limits} }\{\mu_{G^{^{\prime}\backslash}}(a_{1}')\wedge\mu_{G^{^{\prime }\backslash}}(a_{2}')\\ & \wedge\mu_{H^{^{\prime}\backslash}}(b_{1}')\wedge\mu _{H^{^{\prime}\backslash}}(b_{2}')\}{ ]}, \end{align*} |
\begin{align*} (\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime}\backslash}})(p^{^{\prime \prime}})\vee(\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime}\backslash} })(q'') & = { [}\underset{p'' +(c_{1}'+d_{1}') = (c_{2}'+d_{2}')}{ { \bigwedge\limits} }\{\rho_{G^{^{\prime}\backslash}}(c_{1}')\vee\rho_{G^{^{\prime }\backslash}}(c_{2}')\\ & \vee\rho_{H^{^{\prime}\backslash}}(d_{1}')\vee\rho_{H^{^{\prime }\backslash}}(d_{2}')\}{ ]}\vee\\ & { [}\underset{q''+(a_{1}'+b_{1}^{^{\prime} }) = (a_{2}'+b_{2}')}{ { \bigwedge\limits} }\{\rho_{G^{^{\prime}\backslash}}(a_{1}')\vee\rho_{G^{^{\prime }\backslash}}(a_{2}')\\ & \vee\rho_{H^{^{\prime}\backslash}}(b_{1}')\vee\rho_{H^{^{\prime }\backslash}}(b_{2}')\}{ ]} \end{align*} |
\begin{align*} (\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}} )(p'')\wedge(\mu_{G^{^{\prime}\backslash}}+_{k}\mu _{H^{^{\prime}\backslash}})(q'') & = \underset{q^{^{\prime \prime}}+(a_{1}'+b_{1}') = (a_{2}' +b_{2}')}{\underset{p''+(c_{1}' +d_{1}') = (c_{2}'+d_{2}')}{ { \bigwedge\limits} }}\{\mu_{G^{^{\prime}\backslash}}(c_{1}')\wedge\mu_{G^{^{\prime }\backslash}}(c_{2}')\wedge\mu_{H^{^{\prime}\backslash}} (d_{1}')\wedge\\ & \mu_{H^{^{\prime}\backslash}}(d_{2}')\wedge\mu_{G^{^{\prime }\backslash}}(a_{1}')\wedge\mu_{G^{^{\prime}\backslash}} (a_{2}')\wedge\mu_{H^{^{\prime}\backslash}}(b_{1}^{^{\prime} })\wedge\mu_{H^{^{\prime}\backslash}}(b_{2}')\}, \end{align*} |
\begin{align*} (\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime}\backslash}})(p^{^{\prime \prime}})\vee(\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime}\backslash} })(q'') & = \underset{q''+(a_{1}^{^{\prime} }+b_{1}') = (a_{2}'+b_{2}')}{\underset {p''+(c_{1}'+d_{1}') = (c_{2}^{^{\prime} }+d_{2}')}{ { \bigwedge\limits} }}\{\rho_{G^{^{\prime}\backslash}}(c_{1}')\vee\rho_{G^{^{\prime }\backslash}}(c_{2}')\vee\rho_{H^{^{\prime}\backslash}} (d_{1}')\vee\\ & \rho_{H^{^{\prime}\backslash}}(d_{2}')\vee\rho_{G^{^{\prime }\backslash}}(a_{1}')\vee\rho_{G^{^{\prime}\backslash}} (a_{2}')\vee\rho_{H^{^{\prime}\backslash}}(b_{1}' )\vee\rho_{H^{^{\prime}\backslash}}(b_{2}')\} \end{align*} |
\begin{align*} (\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}} )(p'')\wedge(\mu_{G^{^{\prime}\backslash}}+_{k}\mu _{H^{^{\prime}\backslash}})(q'') & = \underset{q^{^{\prime \prime}}+(a_{1}'+b_{1}') = (a_{2}' +b_{2}')}{\underset{p''+(c_{1}' +d_{1}') = (c_{2}'+d_{2}')}{ { \bigvee\limits} }}\{\mu_{G^{^{\prime}\backslash}}(c_{2}'+a_{1}' )\wedge\mu_{G^{^{\prime}\backslash}}(c_{1}'+a_{2}')\\ & \wedge\mu_{H^{^{\prime}\backslash}}(d_{2}'+b_{1}^{^{\prime} })\wedge\mu_{H^{^{\prime}\backslash}}(d_{1}'+b_{2}')\} \end{align*} |
\begin{align*} (\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime}\backslash}})(p^{^{\prime \prime}})\vee(\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime}\backslash} })(q'') & = \underset{q''+(a_{1}^{^{\prime} }+b_{1}') = (a_{2}'+b_{2}')}{\underset {p''+(c_{1}'+d_{1}') = (c_{2}^{^{\prime} }+d_{2}')}{ { \bigwedge\limits} }}\{\rho_{G^{^{\prime}\backslash}}(c_{2}'+a_{1}' )\vee\rho_{G^{^{\prime}\backslash}}(c_{1}'+a_{2}')\\ & \vee\rho_{H^{^{\prime}\backslash}}(d_{2}'+b_{1}' )\vee\rho_{H^{^{\prime}\backslash}}(d_{1}'+b_{2}')\} \end{align*} |
(\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}} )(p'')\wedge(\mu_{G^{^{\prime}\backslash}}+_{k}\mu _{H^{^{\prime}\backslash}})(q'')\leqq{ [}\underset {y''+(c''+d'') = (c^{^{\prime \prime\prime}}+d^{^{\prime\prime\prime}})}{ { \bigvee\limits} }\{\mu_{G^{^{\prime}\backslash}}(c'')\wedge\mu_{G^{^{\prime }\backslash}}(c^{^{\prime\prime\prime}})\wedge\mu_{H^{^{\prime}\backslash} }(d'')\wedge\mu_{H^{^{\prime}\backslash}}(d^{^{\prime \prime\prime}})\}{ ]} |
(\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime}\backslash}})(p^{^{\prime \prime}})\vee(\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime}\backslash} })(q'')\geqq{ [}\underset{y^{'' }+(c''+d'') = (c^{^{\prime\prime\prime} }+d^{^{\prime\prime\prime}})}{ { \bigwedge\limits} }\{\rho_{G^{^{\prime}\backslash}}(c'')\vee\rho_{G^{^{\prime }\backslash}}(c^{^{\prime\prime\prime}})\vee\rho_{H^{^{\prime}\backslash} }(d'')\vee\rho_{H^{^{\prime}\backslash}}(d^{^{\prime \prime\prime}})\}{ ]} |
So
(\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}} )(p'')\wedge(\mu_{G^{^{\prime}\backslash}}+_{k}\mu _{H^{^{\prime}\backslash}})(q'')\leqq(\mu_{G^{^{\prime }\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}})(y''), |
(\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime}\backslash}})(p^{^{\prime \prime}})\vee(\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime}\backslash} })(q'')\geqq(\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime }\backslash}})(y''). |
Thus (\mu_{G^{^{\prime}\backslash}}+_{k}\mu_{H^{^{\prime}\backslash}}), (\rho_{G^{^{\prime}\backslash}}+\rho_{H^{^{\prime}\backslash}}) are intuitionistic fuzzy k- ideals of \underleftrightarrow{H}.
Lemma 3.4. [4] Suppose \underleftrightarrow{H} be a hemiring and S'', T''\subseteq\underleftrightarrow{H}. Then the following is true,
N_{1} S''\subseteq T'' \Longleftrightarrow\chi_{S''}\subseteq\chi_{T^{^{\prime\prime }}}
N _{2} \chi_{S''}\cap\chi_{T''} = \chi_{S''\cap T''}
N _{3} \chi_{S''}\odot_{k}\chi_{T'' } = \chi_{\overline{S''T''}}.
Proposition 3.5. [3] For a hemiring \underleftrightarrow{H} including indentity given statements are equivalent:
N_{1} \underleftrightarrow{H} is a right k-weakly regular hemiring.
N_{2} every right k- ideal of \underleftrightarrow{H} is k-idempotent .
N_{3} \overline{C^{^{\prime}\backslash}D^{^{\prime}\backslash} } = C^{^{\prime}\backslash}\cap D^{^{\prime}\backslash} for every right k- ideal C^{^{\prime}\backslash} and two-sided k -ideal D^{^{\prime }\backslash} .
Theorem 3.6. For a hemiring \underleftrightarrow{H} including indentity given statements are equivalent:
N_{1} \underleftrightarrow{H} is right k-weakly regular hemiring.
N_{2} every intuitionistic fuzzy right k- ideals of \underleftrightarrow{H} is idempotent.
N_{3} \mu_{G^{^{\prime}\backslash}}\odot_{k}\mu_{H^{^{\prime }\backslash}} = \mu_{G^{^{\prime}\backslash}}\wedge\mu_{H^{^{\prime}\backslash} } , \rho_{G^{^{\prime}\backslash}}\odot_{k}\rho_{H^{^{\prime}\backslash} } = \rho_{G^{^{\prime}\backslash}}\vee\rho_{H^{^{\prime}\backslash}}\ for every intuitionistic fuzzy right k- ideal G^{^{\prime}\backslash} = (\mu _{G^{^{\prime}\backslash}}, \rho_{G^{^{\prime}\backslash}}) and every two sided intuitionistic fuzzy k- ideal H^{^{\prime}\backslash} = (\mu _{H^{^{\prime}\backslash}}, \rho_{H^{^{\prime}\backslash}}) of \underleftrightarrow{H} .
Proof. N_{1}\Longrightarrow N_{2}
Suppose G^{^{\prime}\backslash} = (\mu_{G^{^{\prime}\backslash}}, \rho _{G^{^{\prime}\backslash}}) and H^{^{\prime}\backslash} = (\mu_{H^{^{\prime }\backslash}}, \rho_{H^{^{\prime}\backslash}}) are two intuitionistic fuzzy sets of \underleftrightarrow{H}.\ Then
\mu_{G^{^{\prime}\backslash}}\odot_{k}\mu_{G^{^{\prime}\backslash}}\leqq \mu_{G^{^{\prime}\backslash}}and\rho_{G^{^{\prime}\backslash}}\odot_{k} \rho_{G^{^{\prime}\backslash}}\geqq\rho_{G^{^{\prime}\backslash}}. |
Assume that y''\in\underleftrightarrow{H} and \underleftrightarrow{H} is a right k-weakly regular then \exists a_{i}, b_{i}, c_{j}, d_{j}\in\underleftrightarrow{H} such that
y''+\underset{\sigma = 1}{\overset{p''}{ { \sum\limits} }}y''a_{\sigma}y''b_{\sigma} = \underset {\varrho = 1}{\overset{q''}{ { \sum\limits} }}y''c_{\varrho}y''d_{\varrho}. |
Hence
\mu_{G^{^{\prime}\backslash}}(y'') = \mu_{G^{^{\prime} \backslash}}(y'')\wedge\mu_{G^{^{\prime}\backslash} }(y'')\leqq\underset{\sigma = 1}{\overset{p''}{ { \bigwedge\limits} }}(\mu_{G^{^{\prime}\backslash}}(y''a_{\sigma})\wedge \mu_{G^{^{\prime}\backslash}}(y''b_{\sigma})), |
\rho_{G^{^{\prime}\backslash}}(y'') = \rho_{G^{^{\prime }\backslash}}(y'')\vee\rho_{G^{^{\prime}\backslash} }(y'')\geqq\underset{\sigma = 1}{\overset{p''}{ { \bigvee\limits} }}(\mu_{G^{^{\prime}\backslash}}(y''a_{\sigma})\vee \mu_{G^{^{\prime}\backslash}}(y''b_{\sigma})) |
Also
\mu_{G^{^{\prime}\backslash}}(y'') = \mu_{G^{^{\prime} \backslash}}(y'')\wedge\mu_{G^{^{\prime}\backslash} }(y'')\leqq\underset{\varrho = 1}{\overset{q''}{ { \bigwedge\limits} }}(\mu_{G^{^{\prime}\backslash}}(y''c_{\varrho})\wedge \mu_{G^{^{\prime}\backslash}}(y''d_{\varrho})), |
\rho_{G^{^{\prime}\backslash}}(y'') = \rho_{G^{^{\prime }\backslash}}(y'')\vee\rho_{G^{^{\prime}\backslash} }(y'')\geqq\underset{\varrho = 1}{\overset{q''}{ { \bigvee\limits} }}(\mu_{G^{^{\prime}\backslash}}(y''c_{\varrho})\vee \mu_{G^{^{\prime}\backslash}}(y''d_{\varrho})) |
Therefore
\mu_{G^{^{\prime}\backslash}}(y'')\leqq\underset{\sigma = 1}{\overset{p''}{ { \bigwedge\limits} }}(\mu_{G^{^{\prime}\backslash}}(y''a_{\sigma})\wedge \mu(y''b_{\sigma}))\wedge\underset{\varrho = 1}{\overset {q''}{ { \bigwedge\limits} }}(\mu_{G^{^{\prime}\backslash}}(y''c_{\varrho})\wedge \mu_{G^{^{\prime}\backslash}}(y''d_{\varrho})), |
\rho_{G^{^{\prime}\backslash}}(y'')\geqq\underset{\sigma = 1}{\overset{p''}{ { \bigvee\limits} }}(\mu_{G^{^{\prime}\backslash}}(y''a_{\sigma})\vee \mu_{G^{^{\prime}\backslash}}(y''b_{\sigma}))\vee \underset{\varrho = 1}{\overset{q''}{ { \bigvee\limits} }}(\mu_{G^{^{\prime}\backslash}}(y''c_{\varrho})\vee \mu_{G^{^{\prime}\backslash}}(y''d_{\varrho})) |
\mu_{G^{^{\prime}\backslash}}(y'')\leqq\underset {y''+\underset{\sigma = 1}{\overset{p''}{ { \sum\limits} }}y''a_{\sigma}y''b_{\sigma} = \overset {q''}{\underset{\varrho = 1}{ { \sum\limits} }}y''c_{j^{\prime}}y''d_{\varrho}}{ { \bigvee\limits} }\left[ \underset{\sigma = 1}{\overset{p''}{ { \bigwedge\limits} }}(\mu_{G^{^{\prime}\backslash}}(y''a_{\sigma})\wedge \mu_{G^{^{\prime}\backslash}}(y''b_{\sigma}))\wedge \underset{\varrho = 1}{\overset{q''}{ { \bigwedge\limits} }}(\mu_{G^{^{\prime}\backslash}}(y''c_{\varrho})\wedge \mu_{G^{^{\prime}\backslash}}(y''d_{\varrho}))\right] , |
\rho_{G^{^{\prime}\backslash}}(y'')\geqq\underset {y''+\underset{\sigma = 1}{\overset{p''}{ { \sum\limits} }}y''a_{\sigma}y''b_{\sigma} = \overset {q''}{\underset{\varrho = 1}{ { \sum\limits} }}y''c_{j^{\prime}}y''d_{\varrho}}{ { \bigwedge\limits} }\left[ \underset{\sigma = 1}{\overset{p''}{ { \bigvee\limits} }}(\mu_{G^{^{\prime}\backslash}}(y''a_{\sigma})\vee \mu_{G^{^{\prime}\backslash}}(y''b_{\sigma}))\vee \underset{\varrho = 1}{\overset{q''}{ { \bigvee\limits} }}(\mu_{G^{^{\prime}\backslash}}(y''c_{\varrho})\vee \mu_{G^{^{\prime}\backslash}}(y''d_{\varrho}))\right] |
\mu_{G^{^{\prime}\backslash}}(y'')\leqq(\mu_{G^{^{\prime }\backslash}}\odot_{k}\mu_{G^{^{\prime}\backslash}})(y''), |
\rho_{G^{^{\prime}\backslash}}(y'')\geqq(\rho_{G^{^{\prime }\backslash}}\odot_{k}\rho_{G^{^{\prime}\backslash}})(y''). |
Hence
\mu_{G^{^{\prime}\backslash}} = \mu_{G^{^{\prime}\backslash}}\odot_{k} \mu_{G^{^{\prime}\backslash}}, |
\rho_{G^{^{\prime}\backslash}} = \rho_{G^{^{\prime}\backslash}}\odot_{k} \rho_{G^{^{\prime}\backslash}}. |
N_{2}\Longrightarrow N_{3} Assume that P^{^{\prime}\backslash} = (\mu_{P^{^{\prime}\backslash}}, \rho_{P^{^{\prime}\backslash}}) and Q^{^{\prime}\backslash} = (\mu_{Q^{^{\prime}\backslash}}, \rho_{Q^{^{\prime }\backslash}}) be the intuitionistic fuzzy right and two sided k- ideal of \underleftrightarrow{H} . Since for \mu_{P^{^{\prime}\backslash}}\wedge \mu_{Q^{^{\prime}\backslash}}, \rho_{P^{^{\prime}\backslash}}\vee \rho_{Q^{^{\prime}\backslash}}
\mu_{P^{^{\prime}\backslash}}\wedge\mu_{Q^{^{\prime}\backslash}}\geqq \mu_{P^{^{\prime}\backslash}}\odot_{k}\mu_{Q^{^{\prime}\backslash}} , \rho_{P^{^{\prime}\backslash}}\vee\rho_{Q^{^{\prime}\backslash}}\leqq \rho_{P^{^{\prime}\backslash}}\odot_{k}\rho_{Q^{^{\prime}\backslash}}. |
By assumption,
\begin{align*} \mu_{P^{^{\prime}\backslash}}\wedge\mu_{Q^{^{\prime}\backslash}} & = (\mu_{P^{^{\prime}\backslash}}\wedge\mu_{Q^{^{\prime}\backslash}})\odot _{k}(\mu_{P^{^{\prime}\backslash}}\wedge\mu_{Q^{^{\prime}\backslash}})\leqq \mu_{P^{^{\prime}\backslash}}\odot_{k}\mu_{Q^{^{\prime}\backslash}}\\ \rho_{P^{^{\prime}\backslash}}\vee\rho_{Q^{^{\prime}\backslash}} & = (\rho_{P^{^{\prime}\backslash}}\vee\rho_{Q^{^{\prime}\backslash}})\odot _{k}(\rho_{P^{^{\prime}\backslash}}\vee\rho_{Q^{^{\prime}\backslash}} )\geqq\rho_{P^{^{\prime}\backslash}}\odot_{k}\rho_{Q^{^{\prime}\backslash}}. \end{align*} |
Hence
\mu_{G^{^{\prime}\backslash}}\wedge\mu_{H^{^{\prime}\backslash}} = \mu_{G^{^{\prime}\backslash}}\odot_{k}\mu_{H^{^{\prime}\backslash}} , \rho_{G^{^{\prime}\backslash}}\vee\rho_{H^{^{\prime}\backslash}} = \rho_{G^{^{\prime}\backslash}}\odot_{k}\rho_{H^{^{\prime}\backslash}}. |
N_{3}\Longrightarrow N_{1} Assume L and M are right k- ideal and two sided k- ideal of \underleftrightarrow{H} respectively. Then the characteristic functions \chi_{L} and \chi_{M} of L and M are intuitionistic fuzzy right and intuitionistic fuzzy two sided k- ideal of \underleftrightarrow{H} (resp.). Accordingly the assumption and Lemma \ 3.4\ we get \chi_{L}\odot_{k}\chi_{M} = \chi_{L}\wedge \chi_{M} i.e., \chi_{\overline{LM}} = \chi_{L\cap M}, which implies that \overline{LM} = L\cap M.
Theorem 3.7. For a hemiring \underleftrightarrow{H} including indentity given statements are equivalent:
N_{1} \underleftrightarrow{H} is right k-weakly regular hemiring.
N_{2} every right k- ideal of \underleftrightarrow{H} is k-idempotent .
N_{3} \overline{C^{^{\prime}\backslash}D^{^{\prime}\backslash} } = C^{^{\prime}\backslash}\cap D^{^{\prime}\backslash} for every right k- ideals C^{^{\prime}\backslash} and D^{^{\prime}\backslash} .
N_{4} every intuitionistic fuzzy right k- ideals of \underleftrightarrow{H} is idempotent.
N_{5} \mu_{A^{^{\prime}\backslash}}\odot_{k} \mu_{B^{^{\prime }\backslash}} = \mu_{A^{^{\prime}\backslash}}\wedge\mu_{B^{^{\prime}\backslash} } , \rho_{A^{^{\prime}\backslash}}\odot_{k} \rho_{B^{^{\prime}\backslash} } = \rho_{A^{^{\prime}\backslash}}\vee\rho_{B^{^{\prime}\backslash}}\ for every intuitionistic fuzzy right k- ideal A^{^{\prime}\backslash} = (\mu _{A^{^{\prime}\backslash}}, \rho_{A^{^{\prime}\backslash}}) and every two sided intuitionistic fuzzy k- ideal B^{^{\prime}\backslash} = (\mu _{B^{^{\prime}\backslash}}, \rho_{B^{^{\prime}\backslash}}) of \underleftrightarrow{H}.
Equivalent to the above statements.
N_{6} If commutative property hold in \underleftrightarrow{H} then \underleftrightarrow{H} is k-regular.
Proof. By proposition 3.5, \ (N_{1}), (N_{2}), (N_{3}) are equivalent and by theorem 2.14, (N_{1}), (N_{4}), (N_{5}) are equivalent. If commutative property holds in \underleftrightarrow{H} then (N_{1}) and (N_{6}) are equivalent.
Theorem 3.8. The set _{r} of all intuitionistic fuzzy k- ideals of \underleftrightarrow{H} (odered by \leqq) is a distributive lattice if \underleftrightarrow{H} is a right k-weakly regular hemiring.
Proof. It is clear the set _{r} of all intuitionistic fuzzy k- ideals of \underleftrightarrow{H} (oderded by \leqq) is lattice with operation +_{k} and \wedge of intuitionistic fuzzy k- ideals. Now we will prove _{r} is distributive lattice for any intuitionistic fuzzy k- ideals S^{^{\prime}\backslash} = (\mu_{S^{^{\prime}\backslash}}, \rho_{S^{^{\prime}\backslash}}), T^{^{\prime}\backslash} = (\mu_{T^{^{\prime }\backslash}}, \rho_{T^{^{\prime}\backslash}}) and U^{^{\prime}\backslash } = (\mu_{U^{^{\prime}\backslash}}, \rho_{U^{^{\prime}\backslash}}) of \underleftrightarrow{H} , then
(\mu_{S^{^{\prime}\backslash}}\wedge\mu_{T^{^{\prime}\backslash}} )+\mu_{U^{^{\prime}\backslash}} = (\mu_{S^{^{\prime}\backslash}}+\mu _{U^{^{\prime}\backslash}})\wedge(\mu_{T^{^{\prime}\backslash}}+\mu _{U^{^{\prime}\backslash}}), |
(\rho_{S^{^{\prime}\backslash}}\vee\rho_{T^{^{\prime}\backslash}} )+\rho_{U^{^{\prime}\backslash}} = (\rho_{S^{^{\prime}\backslash}} +\rho_{U^{^{\prime}\backslash}})\vee(\rho_{T^{^{\prime}\backslash}} +\rho_{U^{^{\prime}\backslash}}) |
for any y\in\underleftrightarrow{H}
\lbrack(\mu_{S^{^{\prime}\backslash}}\wedge\mu_{T^{^{\prime}\backslash}} )+\mu_{U^{^{\prime}\backslash}}](y) = \underset{y+(a^{\prime\prime} +b^{\prime\prime}) = (c^{\prime\prime}+d^{\prime\prime})}{ { \bigvee\limits} }\left[ (\mu_{S^{^{\prime}\backslash}}\wedge\mu_{T^{^{\prime}\backslash} })(a'')\wedge(\mu_{S^{^{\prime}\backslash}}\wedge \mu_{T^{^{\prime}\backslash}})(c'')\wedge\mu_{U^{^{\prime }\backslash}}(b'')\wedge\mu_{U^{^{\prime}\backslash} }(d'')\right] , |
\lbrack(\rho_{S^{^{\prime}\backslash}}\vee\rho_{T^{^{\prime}\backslash}} )+\rho_{U^{^{\prime}\backslash}}](y) = \underset{y+(a^{\prime\prime} +b^{\prime\prime}) = (c^{\prime\prime}+d^{\prime\prime})}{ { \bigwedge\limits} }\left[ (\rho_{S^{^{\prime}\backslash}}\vee\rho_{T^{^{\prime}\backslash} })(a'')\vee(\rho_{S^{^{\prime}\backslash}}\vee\rho _{T^{^{\prime}\backslash}})(c'')\vee\rho_{U^{^{\prime }\backslash}}(b'')\wedge\rho_{U^{^{\prime}\backslash} }(d'')\right] |
\lbrack(\mu_{S^{^{\prime}\backslash}}\wedge\mu_{T^{^{\prime}\backslash}} )+\mu_{U^{^{\prime}\backslash}}](y) = \underset{y+(a^{\prime\prime} +b^{\prime\prime}) = (c^{\prime\prime}+d^{\prime\prime})}{ { \bigvee\limits} }\left[ \begin{array} [c]{c} \mu_{S^{^{\prime}\backslash}}(a'')\wedge\mu_{S^{^{\prime }\backslash}}(c'')\wedge\mu_{U^{^{\prime}\backslash} }(b')\wedge\mu_{U^{^{\prime}\backslash}}(d'' )\wedge\\ \mu_{T^{^{\prime}\backslash}}(a'')\wedge\mu_{T^{^{\prime }\backslash}}(c'')\wedge\mu_{U^{^{\prime}\backslash} }(b'')\wedge\mu_{U^{^{\prime}\backslash}}(d'') \end{array} \right] , |
\lbrack(\rho_{S^{^{\prime}\backslash}}\vee\rho_{T^{^{\prime}\backslash}} )+\rho_{U^{^{\prime}\backslash}}](y) = \underset{y+(a^{\prime\prime} +b^{\prime\prime}) = (c^{\prime\prime}+d^{\prime\prime})}{ { \bigwedge\limits} }\left[ \begin{array} [c]{c} \rho_{S^{^{\prime}\backslash}}(a'')\vee\rho_{S^{^{\prime }\backslash}}(c'')\vee\rho_{U^{^{\prime}\backslash} }(b'')\vee\rho_{U^{^{\prime}\backslash}}(d^{'' })\vee\\ \rho_{T^{^{\prime}\backslash}}(a'')\vee\rho_{T^{^{\prime }\backslash}}(c'')\vee\rho_{U^{^{\prime}\backslash} }(b'')\vee\rho_{U^{^{\prime}\backslash}}(d'') \end{array} \right] |
\lbrack(\mu_{S^{^{\prime}\backslash}}\wedge\mu_{T^{^{\prime}\backslash}} )+\mu_{U^{^{\prime}\backslash}}](y) = (\mu_{S^{^{\prime}\backslash}} +\mu_{U^{^{\prime}\backslash}})(y)\wedge(\mu_{T^{^{\prime}\backslash}} +\mu_{U^{^{\prime}\backslash}})(y) = \left[ (\mu_{S^{^{\prime}\backslash}} +\mu_{U^{^{\prime}\backslash}})\wedge(\mu_{T^{^{\prime}\backslash}} +\mu_{U^{^{\prime}\backslash}})\right] (y), |
\lbrack(\rho_{S^{^{\prime}\backslash}}\vee\rho_{T^{^{\prime}\backslash}} )+\rho_{U^{^{\prime}\backslash}}](y) = \ (\rho_{S^{^{\prime}\backslash}} +\rho_{U^{^{\prime}\backslash}})(y)\vee(\rho_{T^{^{\prime}\backslash}} +\rho_{U^{^{\prime}\backslash}})(y) = \left[ (\rho_{S^{^{\prime}\backslash} }+\rho_{U^{^{\prime}\backslash}})\vee(\rho_{T^{^{\prime}\backslash}} +\rho_{U^{^{\prime}\backslash}})\right] (y). |
Hence proved.
Definition 4.1. In a hemiring \underleftrightarrow{H} an intuitionistic fuzzy k- ideal S^{^{\prime}\backslash} = (\mu_{S^{^{\prime}\backslash}}, \rho_{S^{^{\prime }\backslash}}) of \underleftrightarrow{H} is called an intuitionistic fuzzy k-prime (k-semiprime) if we take two intuitionistic fuzzy right k- ideals T^{^{\prime}\backslash} = (\mu_{T^{^{\prime}\backslash}}, \rho_{T^{^{\prime }\backslash}}), U^{^{\prime}\backslash} = (\mu_{U^{^{\prime}\backslash}}, \rho_{U^{^{\prime}\backslash}}) of \underleftrightarrow{H} then
\mu_{T^{^{\prime}\backslash}}\odot_{k}\mu_{U^{^{\prime}\backslash}}\leqq \mu_{S^{^{\prime}\backslash}}\implies\mu_{T^{^{\prime}\backslash}}\leqq \mu_{S^{^{\prime}\backslash}}\text{ }or\text{ }\mu_{U^{^{\prime}\backslash} }\leqq\mu_{S^{^{\prime}\backslash}}\text{ }(\mu_{T^{^{\prime}\backslash}} \odot_{k}\mu_{T^{^{\prime}\backslash}}\leqq\mu_{S^{^{\prime}\backslash} }\implies\mu_{T^{^{\prime}\backslash}}\leqq\mu_{S^{^{\prime}\backslash}}), |
\rho_{T^{^{\prime}\backslash}}\odot_{k}\rho_{U^{^{\prime}\backslash}}\geqq \rho_{S^{^{\prime}\backslash}}\implies\rho_{T^{^{\prime}\backslash}}\geqq \rho_{S^{^{\prime}\backslash}}\text{ }or\text{ }\rho_{U^{^{\prime}\backslash} }\geqq\rho_{S^{^{\prime}\backslash}}\text{ }(\rho_{T^{^{\prime}\backslash} }\odot_{k}\rho_{T^{^{\prime}\backslash}}\geqq\rho_{S^{^{\prime}\backslash} }\implies\rho_{T^{^{\prime}\backslash}}\geqq\rho_{S^{^{\prime}\backslash}}). |
Proposition 4.2. Suppose \underleftrightarrow{H} is a right k-weakly regular hemiring. If J = (\mu_{J}, \rho_{J}) is a intuitionistic fuzzy right k-ideal of \underleftrightarrow{H} with \mu_{J}(b') = \beta, \rho _{J}(b') = \beta, where b' is any element of \underleftrightarrow{H} and \beta\in\left(0, 1\right], then \exists an intuitionistic fuzzy k-irreducible right k- ideal K = (\mu_{K}, \rho_{K}) of \underleftrightarrow{H} such that \mu_{J}\leqq\mu_{K}, \rho_{J} \geqq\rho_{K} and \mu_{K}(a') = \alpha, \rho_{K}(a^{^{\prime} }) = \alpha.
Proof. Suppose
Y = \{H = (\mu_{H}, \rho_{H}):\mu_{H}(b') = \beta, \; \rho_{H}(b^{^{\prime} }) = \beta\And\mu_{J}\leqq\mu_{H}, \; \rho_{J}\geqq\rho_{H}\} |
where H is an intuitionistic fuzzy k- ideal of \underleftrightarrow{H}. Then Y\neq\{\}, since J\in Y. Suppose F\subseteq Y, F be a totally odered set such that F = \{J_{t''} = (\mu_{J_{t^{'' }}}, \rho_{J_{t''}}):t''\in T^{'' }\}. We prove that \bigvee\nolimits_{t^{\prime}\in T''} \mu_{J_{t''}}, \bigwedge\nolimits_{t''\in T^{^{\prime \prime}}}\rho_{J_{t''}} is an intuitionistic fuzzy right k- ideal of \underleftrightarrow{H}. For any y^{\upsilon}, s^{\upsilon} \in\underleftrightarrow{H}, we have
(\bigvee\limits_{t''\in T''}\mu_{Jt^{'' }})(y^{\upsilon}) = \bigvee\limits_{t''\in T''} (\mu_{Jt''}(y^{\upsilon}))\leqq\bigvee\limits_{t''\in T''}(\mu_{Jt''}(y^{\upsilon}s^{\upsilon })) = (\bigvee\limits_{t''\in T''}\mu_{Jt^{^{\prime \prime}}})(y^{\upsilon}s^{\upsilon}), |
(\bigwedge\limits_{t''\in T''}\rho_{Jt^{^{\prime \prime}}})(y^{\upsilon}) = \bigwedge\limits_{t''\in T^{'' }}(\rho_{Jt''}(y^{\upsilon}))\geqq\bigwedge\limits_{t^{^{\prime \prime}}\in T''}(\rho_{J't}(y^{\upsilon} s^{\upsilon})) = (\bigwedge\limits_{t''\in T''} \rho_{Jt''})(y^{\upsilon}s^{\upsilon}). |
Suppose y^{\upsilon}, z^{\upsilon}\in\underleftrightarrow{H},
(\bigvee\limits_{t''\in T''}\mu_{Jt^{'' }})(y^{\upsilon})\wedge(\bigvee\limits_{k^{"}\in T''}\mu_{J_{k^{"}} })(z^{\upsilon}) = (\bigvee\limits_{t''\in T''} \mu_{Jt''}(y^{\upsilon})\wedge(\bigvee\limits_{k^{"}\in T''}\mu_{J_{k^{"}}}(z^{\upsilon})) |
(\bigvee\limits_{t''\in T''}\mu_{Jt^{'' }})(y^{\upsilon})\wedge(\bigvee\limits_{k^{"}\in T''}\mu_{J_{k^{"}} })(z^{\upsilon}) = \bigvee\limits_{k^{"}\in T''}(\bigvee\limits_{t^{^{\prime \prime}}\in T''}(\mu_{Jt''}(y^{\upsilon })\wedge\mu_{J_{k^{"}}}(z^{\upsilon}))) |
(\bigvee\limits_{t''\in T''}\mu_{Jt^{'' }})(y^{\upsilon})\wedge(\bigvee\limits_{k^{"}\in T''}\mu_{J_{k^{"}} })(z^{\upsilon})\leqq\bigvee\limits_{k^{"}\in T''}(\bigvee _{t''\in T''}(\max\{\mu_{Jt'' }(y^{\upsilon}), \mu_{J_{k^{"}}}(y^{\upsilon})\}\wedge\max\{\mu_{Jt^{^{\prime \prime}}}(z^{\upsilon}), \mu_{J_{k^{"}}}(z^{\upsilon})\}) |
(\bigvee\limits_{t''\in T''}\mu_{Jt^{'' }})(y^{\upsilon})\wedge(\bigvee\limits_{k^{"}\in T''}\mu_{J_{k^{"}} })(z^{\upsilon})\leqq\bigvee\limits_{k^{"}\in T''}(\bigvee _{t''\in T''}(\max\{\mu_{Jt'' }(y^{\upsilon}+z^{\upsilon}), \mu_{J_{k^{"}}}(y^{\upsilon}+z^{\upsilon})\}) |
(\bigvee\limits_{t''\in T''}\mu_{Jt^{'' }})(y^{\upsilon})\wedge(\bigvee\limits_{k^{"}\in T''}\mu_{J_{k^{"}} })(z^{\upsilon})\leqq\bigvee\limits_{t'', k^{"}\in T^{'' }}\max\{\mu_{Jt''}(y^{\upsilon}+z^{\upsilon}), \mu_{J_{k^{"}} }(y^{\upsilon}+z^{\upsilon})\} |
(\bigvee\limits_{t''\in T''}\mu_{Jt^{'' }})(y^{\upsilon})\wedge(\bigvee\limits_{k^{"}\in T''}\mu_{J_{k^{"}} })(z^{\upsilon})\leqq(\bigvee\limits_{t''\in T''} \mu_{Jt''})(y^{\upsilon}+z^{\upsilon}) |
and
(\bigwedge\limits_{t''\in T''}\rho_{J_{t^{^{\prime \prime}}}})(y^{\upsilon})\vee(\bigwedge\limits_{k^{"}\in T''} \rho_{J_{k^{"}}})(z^{\upsilon}) = (\bigwedge\limits_{t''\in T''}\rho_{J_{t''}}(y^{\upsilon}))\vee (\bigwedge\limits_{k^{"}\in T''}\rho_{J_{k^{"}}}(z^{\upsilon})) |
(\bigwedge\limits_{t''\in T''}\rho_{J_{t^{^{\prime \prime}}}})(y^{\upsilon})\vee(\bigwedge\limits_{k^{"}\in T''} \rho_{J_{k^{"}}})(z^{\upsilon}) = \bigwedge\limits_{k^{"}\in T'' }(\bigwedge\limits_{t''\in T''}(\rho_{J_{t^{^{\prime \prime}}}}(y^{\upsilon})\vee\rho_{J_{k^{"}}}(z^{\upsilon}))) |
(\bigwedge\limits_{t''\in T''}\rho_{J_{t^{^{\prime \prime}}}})(y^{\upsilon})\vee(\bigwedge\limits_{k^{"}\in T''} \rho_{J_{k^{"}}})(z^{\upsilon})\geqq\bigwedge\limits_{k^{"}\in T'' }(\bigwedge\limits_{t''\in T''}(\min\{\rho _{J_{t''}}(y^{\upsilon}), \rho_{J_{k^{"}}}(y^{\upsilon} )\}\vee\min\{\rho_{J_{t''}}(z^{\upsilon}), \rho_{J_{k^{"}} }(z^{\upsilon})\}) |
(\bigwedge\limits_{t''\in T''}\rho_{J_{t^{^{\prime \prime}}}})(y^{\upsilon})\vee(\bigwedge\limits_{k^{"}\in T''} \rho_{J_{k^{"}}})(z^{\upsilon})\geqq\bigwedge\limits_{k^{"}\in T'' }(\bigwedge\limits_{t''\in T''}(\min\{\rho _{J_{t''}}(y^{\upsilon}+z^{\upsilon}), \rho_{J_{k^{"}} }(y^{\upsilon}+z^{\upsilon})\}) |
(\bigwedge\limits_{t''\in T''}\rho_{J_{t^{^{\prime \prime}}}})(y^{\upsilon})\vee(\bigwedge\limits_{k^{"}\in T''} \rho_{J_{k^{"}}})(z^{\upsilon})\geqq\bigwedge\limits_{t'', k^{"}\in T''}\min\{\rho_{J_{t''}}(y^{\upsilon }+z^{\upsilon}), \rho_{J_{k^{"}}}(y^{\upsilon}+z^{\upsilon})\} |
(\bigwedge\limits_{t''\in T''}\rho_{J_{t^{^{\prime \prime}}}})(y^{\upsilon})\vee(\bigwedge\limits_{k^{"}\in T''} \rho_{J_{k^{"}}})(z^{\upsilon})\geqq(\bigwedge\limits_{t''\in T''}\rho_{J_{t''}})(y^{\upsilon}+z^{\upsilon }). |
Now Let y^{\upsilon}+c = d for c, d\in\underleftrightarrow{H} then
(\bigvee\limits_{t''\in T''}\mu_{J_{t^{^{\prime \prime}}}})(c)\wedge(\bigvee\limits_{k^{"}\in T''}\mu_{J_{k^{"}} })(d) = (\bigvee\limits_{t''\in T''}\mu_{J_{t^{^{\prime \prime}}}}(c))\wedge(\bigvee\limits_{k^{"}\in T''}\mu_{J_{k^{"}}}(d)) |
(\bigvee\limits_{t''\in T''}\mu_{J_{t^{^{\prime \prime}}}})(c)\wedge(\bigvee\limits_{k^{"}\in T''}\mu_{J_{k^{"}} })(d) = \bigvee\limits_{k^{"}\in T''}(\bigvee\limits_{t''\in T''}(\mu_{J_{t''}}(c)\wedge\mu_{J_{k^{"}} }(d))) |
(\bigvee\limits_{t''\in T''}\mu_{J_{t^{^{\prime \prime}}}})(c)\wedge(\bigvee\limits_{k^{"}\in T''}\mu_{J_{k^{"}} })(d)\leqq\bigvee\limits_{k^{"}\in T''}(\bigvee\limits_{t^{'' }\in T''}(\max\{\mu_{J_{t''}}(c), \mu _{J_{k^{"}}}(c)\}\wedge\max\{\mu_{J_{t''}}(d), \mu_{J_{k^{"}} }(d)\}) |
(\bigvee\limits_{t''\in T''}\mu_{J_{t^{^{\prime \prime}}}})(c)\wedge(\bigvee\limits_{k^{"}\in T''}\mu_{J_{k^{"}} })(d)\leqq\bigvee\limits_{t'', k^{"}\in T''}\max \{\mu_{J_{t''}}(y^{\upsilon}), \mu_{J_{k^{"}}}(y^{\upsilon})\} |
(\bigvee\limits_{t''\in T''}\mu_{J_{t^{^{\prime \prime}}}})(c)\wedge(\bigvee\limits_{k^{"}\in T''}\mu_{J_{k^{"}} })(d)\leqq\bigvee\limits_{t''\in T''}\mu _{J_{t''}}(y^{\upsilon}) |
and
(\bigwedge\limits_{t''\in T''}\rho_{J_{t^{^{\prime \prime}}}})(c)\vee(\bigwedge\limits_{k\in T''}\rho_{J_{k} })(d) = (\bigwedge\limits_{t''\in T''}\rho _{J_{t''}}(c))\vee(\bigwedge\limits_{k\in T''} \rho_{J_{k}}(d)) |
(\bigwedge\limits_{t''\in T''}\rho_{J_{t^{^{\prime \prime}}}})(c)\vee(\bigwedge\limits_{k\in T''}\rho_{J_{k^{"}} })(d) = \bigwedge\limits_{k^{"}\in T''}(\bigwedge\limits_{t^{'' }\in T''}(\rho_{J_{t''}}(c)\vee\rho_{J_{k^{"} }}(d))) |
(\bigwedge\limits_{t''\in T''}\rho_{J_{t^{^{\prime \prime}}}})(c)\vee(\bigwedge\limits_{k^{"}\in T''}\rho_{J_{k^{"}} })(d)\geqq\bigwedge\limits_{k^{"}\in T''}(\bigwedge\limits_{t^{^{\prime \prime}}\in T''}(\min\{\rho_{J_{t''}} (c), \rho_{J_{k^{"}}}(c)\}\vee\min\{\rho_{J_{t''}} (d), \rho_{J_{k^{"}}}(d)\}) |
(\bigwedge\limits_{t''\in T''}\rho_{J_{t^{^{\prime \prime}}}})(c)\vee(\bigwedge\limits_{k^{"}\in T''}\rho_{J_{k^{"}} })(d)\geqq\bigwedge\limits_{t'', k^{"}\in T''} \min\{\rho_{J_{t''}}(y^{\upsilon}), \rho_{J_{k^{"}} }(y^{\upsilon})\} |
(\bigwedge\limits_{t''\in T''}\rho_{J_{t^{^{\prime \prime}}}})(c)\vee(\bigwedge\limits_{k^{"}\in T''}\rho_{J_{k^{"}} })(d)\geqq\bigwedge\limits_{t''\in T''} \rho_{J_{t''}})(y^{\upsilon}). |
Thus \bigvee\limits_{t''\in T''}\mu_{J_{t^{^{\prime \prime}}}}, \bigwedge\limits_{t''\in T''} \rho_{J_{t''}} is an intuitionistic fuzzy right k- ideal of \underleftrightarrow{H}. Clearly
\mu_{J}\leqslant\mu_{J_{t''}}, \rho_{J}\geqq\bigwedge \limits_{t''\in T''}\rho_{J_{t''} }\text{ and }\bigvee\limits_{t''\in T''} \mu_{J_{t''}}(a) = \alpha, \bigwedge\limits_{t''\in T''}\rho_{J_{t''}}(a) = \alpha. |
Thus \bigvee\nolimits_{t''\in T''}\mu_{J_{t^{^{\prime \prime}}}} is the least upper bound, \bigwedge\nolimits_{t''\in T''}\rho_{J_{t''}} is the greatest lower bound. Hence by Zorn' s lemma there exists an intuitionistic fuzzy right k- ideal K^{^{\prime}\backslash} = (\mu_{K^{^{\prime}\backslash}}, \rho_{K^{^{\prime}\backslash}}) of \underleftrightarrow{H}. By the property that \mu_{J\text{ }}\leqq\mu_{K^{^{\prime}\backslash}\text{ }}, \rho_{J\text{ }}\geqq\rho_{K^{^{\prime}\backslash}\text{ }} and \mu_{K^{^{\prime}\backslash}\text{ }}(b') = \beta, \rho_{K^{^{\prime }\backslash}\text{ }}(b') = \beta, K^{^{\prime}\backslash} = (\mu_{K^{^{\prime}\backslash}\text{ }}, \rho_{K^{^{\prime}\backslash}\text{ } }) is maximal.
Now we prove that K^{^{\prime}\backslash} = (\mu_{K^{^{\prime}\backslash}\text{ }}, \rho_{K^{^{\prime}\backslash}\text{ }}) is an intuitionistic fuzzy k-irreducible right k- ideal of \underleftrightarrow{H}. Suppose E^{^{\prime}\backslash} = (\mu_{E^{^{\prime}\backslash}\text{ }}, \rho _{E^{^{\prime}\backslash}\text{ }}) and F^{^{\prime}\backslash} = (\mu_{F^{^{\prime}\backslash}\text{ }}, \rho_{F^{^{\prime}\backslash}\text{ } }) are intuitionistic fuzzy k-ideals of \underleftrightarrow{H}. Let \mu_{K^{^{\prime}\backslash}\text{ }} = \mu_{E^{^{\prime}\backslash}\text{ } }\wedge\mu_{F^{^{\prime}\backslash}\text{ }} and \rho_{K^{^{\prime }\backslash}\text{ }} = \rho_{E^{^{\prime}\backslash}\text{ }}\vee \rho_{F^{^{\prime}\backslash}\text{ }} . Thus \mu_{K^{^{\prime}\backslash }\text{ }}\leqq\mu_{E\text{ }'}, \mu_{K^{^{\prime}\backslash }\text{ }} = \mu_{F^{^{\prime}\backslash}\text{ }} and \rho_{K^{^{\prime }\backslash}\text{ }}\geqq\rho_{E^{^{\prime}\backslash}\text{ }}, \rho_{K^{^{\prime}\backslash}\text{ }}\geqq\rho_{F^{^{\prime}\backslash }\text{ }}. We claim that either \mu_{K^{^{\prime}\backslash}\text{ }} = \mu_{E^{^{\prime}\backslash}\text{ }} or \mu_{K^{^{\prime}\backslash }\text{ }} = \mu_{F^{^{\prime}\backslash}\text{ }} and \rho_{K^{^{\prime }\backslash}\text{ }} = \rho_{E^{^{\prime}\backslash}\text{ }} or \rho_{K^{^{\prime}\backslash}\text{ }} = \rho_{F^{^{\prime}\backslash}\text{ } } . Suppose \mu_{K^{^{\prime}\backslash}\text{ }}\neq\mu_{E^{^{\prime }\backslash}\text{ }}\And\mu_{K^{^{\prime}\backslash}\text{ }}\neq \mu_{F^{^{\prime}\backslash}\text{ }} and \rho_{K^{^{\prime}\backslash}\text{ }}\neq\rho_{E^{^{\prime}\backslash}\text{ }}\And\rho_{K^{^{\prime}\backslash} }\neq\rho_{F^{^{\prime}\backslash}\text{ }} . By the property that \mu_{J\text{ }}(b') = \beta, \rho_{J\text{ }}(b') = \beta, \; K^{^{\prime}\backslash} is maximal and since \mu_{K^{^{\prime }\backslash}\text{ }}\lvertneqq\mu_{E^{^{\prime}\backslash}\text{ }}, \mu_{K^{^{\prime}\backslash}\text{ }}\lvertneqq\mu_{F^{^{\prime}\backslash }\text{ }} and \rho_{K^{^{\prime}\backslash}\text{ }}\gvertneqq \rho_{E^{^{\prime}\backslash}\text{ }}, \rho_{K^{^{\prime}\backslash}\text{ } }\gvertneqq\rho_{F^{^{\prime}\backslash}\text{ }}, so \mu_{E^{^{\prime }\backslash}\text{ }}(b')\neq\beta, \rho_{E^{^{\prime}\backslash }\text{ }}(b')\neq\beta and \mu_{F^{^{\prime}\backslash}\text{ } }(b')\neq\beta, \rho_{F^{^{\prime}\backslash}\text{ }}(b^{^{\prime} })\neq\beta . Hence
\beta = \mu_{K^{^{\prime}\backslash}\text{ }}(b') = \left( \mu_{E^{^{\prime}\backslash}\text{ }}\wedge\text{ }\mu_{F^{^{\prime} \backslash}\text{ }}\right) \left( b'\right) = \left( \mu_{E^{^{\prime}\backslash}\text{ }}\right) \left( b'\right) \wedge\left( \mu_{F^{^{\prime}\backslash}\text{ }}\right) \left( b'\right) \neq\beta, |
and
\beta = \rho_{K^{^{\prime}\backslash}\text{ }}(b') = \left( \rho_{E^{^{\prime}\backslash}\text{ }}\vee\text{ }\rho_{F^{^{\prime} \backslash}\text{ }}\right) \left( b'\right) = \left( \rho_{E^{^{\prime}\backslash}\text{ }}\right) \left( b'\right) \vee\left( \rho_{F^{^{\prime}\backslash}\text{ }}\right) \left( b'\right) \neq\beta |
contradiction. Hence \mu_{K^{^{\prime}\backslash}\text{ }} = \mu_{E^{^{\prime }\backslash}\text{ }} or \mu_{K^{^{\prime}\backslash}\text{ }} = \mu_{F^{^{\prime}\backslash}\text{ }} and \rho_{K^{^{\prime}\backslash }\text{ }} = \rho_{E^{^{\prime}\backslash}\text{ }} or \rho_{K^{^{\prime }\backslash}\text{ }} = \rho_{F^{^{\prime}\backslash}\text{ }} .
Theorem 4.3. Every intuitionistic fuzzy right k- ideal in a hemiring \underleftrightarrow{H} is contained in the intersection of all intuitionistic fuzzy right k- ideals of \underleftrightarrow{H} .
Proof. Suppose that the intuitionistic fuzzy right k- ideal of \underleftrightarrow {H} is J^{^{\prime}\backslash} = (\mu_{J^{^{\prime}\backslash}}, \rho _{J^{^{\prime}\backslash}}) and assume that \{J_{\alpha' }^{^{\prime}\backslash}:\alpha'\in\Omega\} be the family of all intuitionistic fuzzy right k- ideals of \underleftrightarrow{H} . Clearly
\mu_{J^{^{\prime}\backslash}}\leqq\underset{\alpha'\in\Omega }{\bigwedge\limits}\mu_{J_{\alpha'}^{^{\prime}\backslash}}, \rho _{J^{^{\prime}\backslash}}\geqq\underset{\alpha'\in\Omega }{\bigwedge\limits}\rho_{J_{\alpha'}^{^{\prime}\backslash}}. |
We show that
\mu_{J^{^{\prime}\backslash}}\geqq\underset{\alpha'\in\Omega }{\bigwedge\limits}\mu_{J_{\alpha'}^{^{\prime}\backslash}}, \rho _{J^{^{\prime}\backslash}}\leqq\underset{\alpha'\in\Omega }{\bigwedge\limits}\rho_{J_{\alpha'}^{^{\prime}\backslash}}. |
Suppose a be any element of \underleftrightarrow{H}\; \exists , K^{^{\prime}\backslash} = (\mu_{K^{^{\prime}\backslash}}, \rho_{K^{^{\prime }\backslash}})
\mu_{J^{^{\prime}\backslash}}\leqq\mu_{K^{^{\prime}\backslash}}, \; \rho _{J^{^{\prime}\backslash}}\geqq\rho_{K^{^{\prime}\backslash}}\And \mu_{J^{^{\prime}\backslash}}(a'') = \mu_{K^{^{\prime} \backslash}}(a''), \; \rho_{J^{^{\prime}\backslash}} (a'') = \rho_{K^{^{\prime}\backslash}}(a''). |
Hence
k\in\{A_{\alpha'}:\alpha'\in\Omega\}. |
Hence
\mu_{K^{^{\prime}\backslash}}\geqq\underset{\alpha'\in\Omega }{\bigwedge\limits}\mu_{J_{\alpha'}^{^{\prime}\backslash}}, \; \rho _{K^{^{\prime}\backslash}}\leqq\underset{\alpha'\in\Omega }{\bigwedge\limits}\rho_{J_{\alpha'}^{^{\prime}\backslash}} |
So
\mu_{J^{^{\prime}\backslash}}(a'') = \mu_{K^{^{\prime} \backslash}}(a'')\geqq\underset{\alpha'\in\Omega }{\bigwedge\limits}\mu_{J_{\alpha'}^{^{\prime}\backslash}}(a^{^{\prime \prime}}), \; \rho_{J^{^{\prime}\backslash}}(a'') = \rho _{K^{^{\prime}\backslash}}(a'')\leqq\underset{\alpha '\in\Omega}{\bigwedge\limits}\rho_{J_{\alpha'}^{^{\prime }\backslash}}(a''), |
i.e.,
\mu_{J^{^{\prime}\backslash}}\geqq\underset{\alpha'\in\Omega }{\bigwedge\limits}\mu_{J_{\alpha'}^{^{\prime}\backslash}}, \; \rho _{J^{^{\prime}\backslash}}\leqq\underset{\alpha'\in\Omega }{\bigwedge\limits}\rho_{J_{\alpha'}^{^{\prime}\backslash}}. |
Hence
\mu_{J^{^{\prime}\backslash}} = \underset{\alpha'\in\Omega} {\bigwedge\limits}\mu_{J_{\alpha'}^{^{\prime}\backslash}}, \; \rho _{J^{^{\prime}\backslash}} = \underset{\alpha'\in\Omega}{\bigwedge }\rho_{J_{\alpha'}^{^{\prime}\backslash}}. |
Theorem 4.4. For a hemiring \underleftrightarrow{H} including indentity given statements are equivalent:
N_{1} \underleftrightarrow{H} is right k-weaky regular hemiring,
N_{2} Intuitionistic fuzzy right k- ideals in a hemiring \underleftrightarrow{H} are all k-idempotent,
N_{3} \mu_{K^{^{\prime}\backslash}} \odot_{k} \mu_{L^{^{\prime }\backslash}} = \mu_{K^{^{\prime}\backslash}}\wedge\mu_{L^{^{\prime}\backslash} }, \; \rho_{K^{^{\prime}\backslash}}\odot_{k}\rho_{L^{^{\prime}\backslash}} = \rho_{K^{^{\prime}\backslash}}\vee\rho_{L^{^{\prime}\backslash}} for all intuitionistic fuzzy right k- ideals K^{^{\prime}\backslash} = (\mu _{K^{^{\prime}\backslash}}, \rho_{K^{^{\prime}\backslash}}) and all intuitionistic fuzzy two sided k- ideals L^{^{\prime}\backslash} = (\mu_{L^{^{\prime}\backslash}}, \rho_{L^{^{\prime}\backslash}}) of \underleftrightarrow{H} .
N_{4} Each intuitionistic fuzzy right k- ideal of \underleftrightarrow{H} is also intuitionistic fuzzy k-semiprime.
Proof. By theorem 3.6, (N_{1}), (N_{2}), (N_{3}) are equivalent. If L^{^{\prime}\backslash} = (\mu_{L^{^{\prime}\backslash}\text{ }}, \rho _{L^{^{\prime}\backslash}}) is an intuitionistic fuzzy right k- ideal of \underleftrightarrow{H}, then \mu_{K^{^{\prime}\backslash}}\odot_{k} \mu_{K^{^{\prime}\backslash}}\leqq\mu_{L^{^{\prime}\backslash}\text{ }}, \; \rho_{K^{^{\prime}\backslash}}\odot_{k}\rho_{K^{^{\prime}\backslash}} \geqq\rho_{L^{^{\prime}\backslash}}, where K^{^{\prime}\backslash} = (\mu_{K^{^{\prime}\backslash}}, \rho_{K^{^{\prime}\backslash}}) is an intuitionistic fuzzy right k- ideal of \underleftrightarrow{H}. By (2) \mu_{K^{^{\prime}\backslash}}\odot_{k}\mu_{K^{^{\prime}\backslash}} = \mu_{K^{^{\prime}\backslash}}, \rho_{K^{^{\prime}\backslash}}\odot_{k} \rho_{K^{^{\prime}\backslash}} = \rho_{K^{^{\prime}\backslash}} therefore \mu_{K^{^{\prime}\backslash}}\leqq\mu_{L^{^{\prime}\backslash}\text{ }}, \rho_{K^{^{\prime}\backslash}}\geqq\rho_{L^{^{\prime}\backslash}}. So L^{^{\prime}\backslash} = (\mu_{L^{^{\prime}\backslash}\text{ }}, \rho _{L^{^{\prime}\backslash}}) .
Conversely, if L^{^{\prime}\backslash} = (\mu_{L^{^{\prime}\backslash}\text{ } }, \rho_{L^{^{\prime}\backslash}}) is an intuitionistic fuzzy right k- ideal of \underleftrightarrow{H}, \mu_{L^{^{\prime}\backslash}\text{ }}\odot _{k}\mu_{L^{^{\prime}\backslash}\text{ }}, \; \rho_{L^{^{\prime}\backslash}} \odot_{k}\rho_{L^{^{\prime}\backslash}} are intuitionistic fuzzy right k- ideals of \underleftrightarrow{H} and by (N_{4}) \mu_{L^{^{\prime }\backslash}\text{ }}\odot_{k}\mu_{L^{^{\prime}\backslash}\text{ }}, \; \rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{L^{^{\prime}\backslash}} are intuitionistic fuzzy k-semiprime right k- ideal of \underleftrightarrow {H}. As \mu_{L^{^{\prime}\backslash}\text{ }}\odot_{k}\mu_{L^{^{\prime }\backslash}\text{ }}\leqq\mu_{L^{^{\prime}\backslash}\text{ }}\odot_{k} \mu_{L^{^{\prime}\backslash}\text{ }}, \; \rho_{L^{^{\prime}\backslash}}\odot _{k}\rho_{L^{^{\prime}\backslash}}\geqq\rho_{L^{^{\prime}\backslash}}\odot _{k}\rho_{L^{^{\prime}\backslash}} we have \mu_{L^{^{\prime}\backslash }\text{ }}\leqq\mu_{L^{^{\prime}\backslash}\text{ }}\odot_{k}\mu_{L^{^{\prime }\backslash}\text{ }}, \; \rho_{L^{^{\prime}\backslash}}\geqq\rho_{L^{^{\prime }\backslash}}\odot_{k}\rho_{L^{^{\prime}\backslash}} . But \mu_{L^{^{\prime }\backslash}\text{ }}\odot_{k}\mu_{L^{^{\prime}\backslash}\text{ }}\leqq \mu_{L^{^{\prime}\backslash}\text{ }}, \; \rho_{L^{^{\prime}\backslash}}\odot _{k}\rho_{L^{^{\prime}\backslash}}\geqq\rho_{L^{^{\prime}\backslash}} always. Hence \mu_{L^{^{\prime}\backslash}\text{ }}\odot_{k}\mu _{L^{^{\prime}\backslash}\text{ }} = \mu_{L^{^{\prime}\backslash}\text{ }}, \; \rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{L^{^{\prime}\backslash}} = \rho_{L^{^{\prime}\backslash}}.
Theorem 4.5. If every intuitionistic fuzzy right k- ideal of a hemiring \underleftrightarrow{H} is an intuitionistic fuzzy k-prime right k- ideal. Then \underleftrightarrow{H} is a right k-weakly regular hemiring and the set of intuitionistic fuzzy k- ideals of \underleftrightarrow{H} is totally ordered.
Proof. Let \underleftrightarrow{H} be a hemiring in which each intuitionistic fuzzy right k- ideal is intuitionistic fuzzy prime. Suppose L^{^{\prime} \backslash} = (\mu_{L^{^{\prime}\backslash}\text{ }}, \rho_{L^{^{\prime }\backslash}}) be an intuitionistic fuzzy right k- ideal of \underleftrightarrow{H} . Then \mu_{L^{^{\prime}\backslash}\text{ }} \odot_{k}\mu_{L^{^{\prime}\backslash}\text{ }}, \; \rho_{L^{^{\prime}\backslash} }\odot_{k}\rho_{L^{^{\prime}\backslash}} are also intuitionistic fuzzy right k- ideal of \underleftrightarrow{H}.
As
\mu_{L^{^{\prime}\backslash}}\odot_{k}\mu_{L^{^{\prime}\backslash}}\leqq \mu_{L^{^{\prime}\backslash}}\odot_{k}\mu_{L^{^{\prime}\backslash}}\implies \mu_{L^{^{\prime}\backslash}}\leqq\mu_{L^{^{\prime}\backslash}}\odot_{k} \mu_{L^{^{\prime}\backslash}}, |
\rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{L^{^{\prime}\backslash}}\geqq \rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{L^{^{\prime}\backslash}} \implies\rho_{L^{^{\prime}\backslash}}\geqq\rho_{L^{^{\prime}\backslash}} \odot_{k}\rho_{L^{^{\prime}\backslash}} |
But
\mu_{L^{^{\prime}\backslash}}\geqq\mu_{L^{^{\prime}\backslash}}\odot_{k} \mu_{L^{^{\prime}\backslash}}, \rho_{L^{^{\prime}\backslash}}\geqq \rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{L^{^{\prime}\backslash}}\text{ always.} |
Hence
\mu_{L^{^{\prime}\backslash}} = \mu_{L^{^{\prime}\backslash}}\odot_{k} \mu_{L^{^{\prime}\backslash}}, \rho_{L^{^{\prime}\backslash}} = \rho _{L^{^{\prime}\backslash}}\odot_{k}\rho_{L^{^{\prime}\backslash}}. |
So \underleftrightarrow{H} is a right k-weakly regular hemiring.
Suppose A = (\mu_{L^{^{\prime}\backslash}}, \rho_{L^{^{\prime}\backslash} }), \; M^{^{\prime}\backslash} = (\mu_{M^{^{\prime}\backslash}}, \rho_{M^{^{\prime }\backslash}}) are intuitionistic fuzzy k- ideals of \underleftrightarrow {H} . Subsequently
\mu_{L^{^{\prime}\backslash}}\odot_{k}\mu_{M^{^{\prime}\backslash}}\leqq \mu_{L^{^{\prime}\backslash}}\wedge\mu_{M^{^{\prime}\backslash}} , \; \rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{M^{^{\prime}\backslash}} \geqq\rho_{L^{^{\prime}\backslash}}\vee\rho_{M^{^{\prime}\backslash}}. |
As \mu_{L^{^{\prime}\backslash}}\wedge\mu_{M^{^{\prime}\backslash}}, \; \rho_{L^{^{\prime}\backslash}}\vee\rho_{M^{^{\prime}\backslash}} are intuitionistic fuzzy k- ideal of \underleftrightarrow{H} . Consequently
\mu_{L^{^{\prime}\backslash}}\leqq\mu_{L^{^{\prime}\backslash}}\wedge \mu_{M^{^{\prime}\backslash}}\text{ }or\text{ }\mu_{M^{^{\prime}\backslash} }\leqq\mu_{L^{^{\prime}\backslash}}\wedge\mu_{M^{^{\prime}\backslash}}, |
\rho_{L^{^{\prime}\backslash}}\geqq\rho_{L^{^{\prime}\backslash}}\vee \rho_{M^{^{\prime}\backslash}}\text{ }or\text{ }\rho_{M^{^{\prime}\backslash} }\geqq\rho_{L^{^{\prime}\backslash}}\vee\rho_{M^{^{\prime}\backslash}}. |
Hence
\mu_{L^{^{\prime}\backslash}}\leqq\mu_{M^{^{\prime}\backslash}}\text{ }or\text{ }\mu_{M^{^{\prime}\backslash}}\leqq\mu_{L^{^{\prime}\backslash}}, |
\rho_{L^{^{\prime}\backslash}}\geqq\rho_{M^{^{\prime}\backslash}}\text{ }or\text{ }\rho_{M^{^{\prime}\backslash}}\geqq\rho_{L^{^{\prime}\backslash}}. |
Theorem 4.6. If the set of all intuitionistic fuzzy right k- ideals of a right k-weakly regular hemiring \underleftrightarrow{H} is totally ordered, then every intuitionistic fuzzy right k- ideal of \underleftrightarrow{H} is an intuitionistic fuzzy k-prime right k- ideal of \underleftrightarrow{H}.
Proof. Suppose L^{^{\prime}\backslash} = (\mu_{L^{^{\prime}\backslash}}, \rho _{L^{^{\prime}\backslash}}), \; M^{^{\prime}\backslash} = (\mu_{M^{^{\prime }\backslash}}, \rho_{M^{^{\prime}\backslash}}), \; N^{^{\prime}\backslash} = (\mu_{N^{^{\prime}\backslash}}, \rho_{N^{^{\prime}\backslash}}) are intuitionistic fuzzy right k- ideals of \underleftrightarrow{H} as \mu_{L^{^{\prime}\backslash}}\odot_{k}\mu_{M^{^{\prime}\backslash}}\leqq \mu_{N^{^{\prime}\backslash}}, \rho_{M^{^{\prime}\backslash}}\odot_{k} \rho_{M^{^{\prime}\backslash}}\geqq\rho_{N^{^{\prime}\backslash}}. Therefore the set of all intuitionistic fuzzy right k- ideals of a right k-weakly regular hemiring \underleftrightarrow{H} is totally ordered, since \mu_{L^{^{\prime}\backslash}}\leqq\mu_{M^{^{\prime}\backslash}} or \mu_{M^{^{\prime}\backslash}}\leqq\mu_{L^{^{\prime}\backslash}}, \rho_{L^{^{\prime}\backslash}}\geqq\rho_{M^{^{\prime}\backslash}} or \rho_{M^{^{\prime}\backslash}}\geqq\rho_{L^{^{\prime}\backslash}}. Case 1, \mu_{L^{^{\prime}\backslash}}\leqq\mu_{M^{^{\prime}\backslash}} then \mu_{L^{^{\prime}\backslash}} = \mu_{L^{^{\prime}\backslash}}\odot_{k} \mu_{L^{^{\prime}\backslash}}\leqq\mu_{L^{^{\prime}\backslash}}\odot_{k} \mu_{M^{^{\prime}\backslash}}\leqq\mu_{N^{^{\prime}\backslash}} and \rho_{L^{^{\prime}\backslash}}\geqq\rho_{M^{^{\prime}\backslash}} then \rho_{l} = \rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{L^{^{\prime}\backslash }}\geqq \rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{M^{^{\prime}\backslash }}\geqq\rho_{N^{^{\prime}\backslash}}.
Case 2, \mu_{M^{^{\prime}\backslash}}\leqq\mu_{L^{^{\prime}\backslash}} then \mu_{M^{^{\prime}\backslash}} = \mu_{M^{^{\prime}\backslash}}\odot_{k} \mu_{M^{^{\prime}\backslash}}\leqq\mu_{L^{^{\prime}\backslash}}\odot_{k} \mu_{M^{^{\prime}\backslash}}\leqq\mu_{N^{^{\prime}\backslash}} and \rho_{M^{^{\prime}\backslash}}\geqq\rho_{L^{^{\prime}\backslash}} then \rho_{M^{^{\prime}\backslash}} = \rho_{M^{^{\prime}\backslash}}\odot_{k} \rho_{M^{^{\prime}\backslash}}\geqq \rho_{L^{^{\prime}\backslash}}\odot _{k}\rho_{M^{^{\prime}\backslash}}\geqq\rho_{N^{^{\prime}\backslash}}.
Hence N^{^{\prime}\backslash} = (\mu_{N^{^{\prime}\backslash}}, \rho _{N^{^{\prime}\backslash}}) is an intuitionistic fuzzy k-prime right k-ideal of \underleftrightarrow{H}.
Definition 5.1. An intuitionistic fuzzy k-ideal N^{^{\prime}\backslash} = (\mu_{N^{^{\prime }\backslash}}, \rho_{N^{^{\prime}\backslash}}) of a hemiring \underleftrightarrow{H} is called right pure if and only if \mu _{Y^{^{\prime}\backslash}}\wedge\mu_{N^{^{\prime}\backslash}} = \mu _{Y^{^{\prime}\backslash}}\odot_{k}\mu_{N^{^{\prime}\backslash}}, \; \rho_{Y^{^{\prime}\backslash}}\vee\rho_{N^{^{\prime}\backslash}} = \rho_{Y^{^{\prime}\backslash}}\odot_{k}\rho_{N^{^{\prime}\backslash}} for every intuitionistic fuzzy right k- ideal Y^{^{\prime}\backslash} = (\mu_{Y^{^{\prime}\backslash}}, \rho_{Y^{^{\prime}\backslash}}) of \underleftrightarrow{H}.
Proposition 5.2. The characteristic function of a nonempty subset Z^{^{\prime }\backslash} of a hemiring \underleftrightarrow{H} is its right pure intuitutionistic fuzzy k- ideal if and only if Z^{^{\prime}\backslash} is a right pure k- ideal of \underleftrightarrow{H}.
Proof. Suppose Z^{^{\prime}\backslash} be a right pure k- ideal of \underleftrightarrow{H}. Then \chi_{Z^{^{\prime}\backslash}} is an intuitionistic fuzzy k- ideal of \underleftrightarrow{H}. To show that \chi_{Z^{^{\prime}\backslash}} is a right pure we have to prove that for any intuitionistic fuzzy k- ideal L^{^{\prime}\backslash} = (\mu_{L^{^{\prime }\backslash}}, \rho_{L^{^{\prime}\backslash}}) of \underleftrightarrow{H},
\mu_{L^{^{\prime}\backslash}}\wedge\chi_{Z^{^{\prime}\backslash}} = \mu_{A} \odot_{k}\chi_{Z^{^{\prime}\backslash}}, \; \rho_{L^{^{\prime}\backslash}} \vee\chi_{Z^{^{\prime}\backslash}} = \rho_{L^{^{\prime}\backslash}}\odot_{k} \chi_{Z^{^{\prime}\backslash}}. |
Case (1), u^{^{\prime\prime\prime}}\notin Z^{^{\prime}\backslash}, then
(\mu_{L^{^{\prime}\backslash}}\wedge\chi_{Z^{^{\prime}\backslash} })(u^{^{\prime\prime\prime}}) = \mu_{L^{^{\prime}\backslash}}(u^{^{\prime \prime\prime}})\wedge\chi_{Z^{^{\prime}\backslash}}(u^{^{\prime\prime\prime} }) = 0\leqq(\mu_{L^{^{\prime}\backslash}}\odot_{k}\chi_{Z^{^{\prime}\backslash} })(u^{^{\prime\prime\prime}}) |
(\rho_{L^{^{\prime}\backslash}}\vee\chi_{Z^{^{\prime}\backslash}} )(u^{^{\prime\prime\prime}}) = \rho_{L^{^{\prime}\backslash}}(u^{^{\prime \prime\prime}})\wedge\chi_{Z^{^{\prime}\backslash}}(u^{^{\prime\prime\prime} }) = 0\geqq(\rho_{L^{^{\prime}\backslash}}\odot_{k}\chi_{Z^{^{\prime}\backslash }})(u^{^{\prime\prime\prime}}) |
Case (2), u^{^{\prime\prime\prime}}\in Z^{^{\prime}\backslash}, since Z^{^{\prime}\backslash} is right pure k- ideal of \underleftrightarrow {H}, \exists c, d\in Z^{^{\prime}\backslash}, such that u^{^{\prime \prime\prime}}+u^{^{\prime\prime\prime}}c = u^{^{\prime\prime\prime}}d. As u^{^{\prime\prime\prime}}, c, d\in Z^{^{\prime}\backslash}, \implies \chi_{Z^{^{\prime}\backslash}}(u^{^{\prime\prime\prime}}) = \chi_{Z^{^{\prime }\backslash}}(u^{^{\prime\prime\prime}}) = \chi_{Z^{^{\prime}\backslash} }(u^{^{\prime\prime\prime}}) = 1.
\begin{align*} (\mu_{L^{^{\prime}\backslash}}\odot_{k}\chi_{Z^{^{\prime}\backslash} })(u^{^{\prime\prime\prime}}) & = \underset{u^{^{\prime\prime\prime} }+\underset{_{\ast}\sigma = 1}{\overset{\kappa}{ { \sum\limits} }}c_{_{\ast}\sigma}d_{_{\ast}\sigma} = \overset{\tau}{\underset{_{\ast} \varrho = 1}{ { \sum\limits} }}c_{_{\ast}\varrho}'d_{_{\ast}\varrho}'}{ { \bigvee\limits} }\left\{ \begin{array} [c]{c} \underset{_{\ast}\sigma = 1}{\overset{\kappa}{ { \bigwedge\limits} }}\left( \mu_{L^{^{\prime}\backslash}}(c_{_{\ast}\sigma})\wedge \chi_{Z^{^{\prime}\backslash}}(d_{_{\ast}\sigma})\right) \\ \wedge\underset{_{\ast}\varrho = 1}{\overset{\tau}{ { \bigwedge\limits} }}(\mu_{L^{^{\prime}\backslash}}(c_{_{\ast}\varrho}')\wedge \chi_{Z^{^{\prime}\backslash}}(d_{_{\ast}\varrho}')) \end{array} \right\} \\ & \geqq\min\left[ \mu_{L^{^{\prime}\backslash}}(u^{^{\prime\prime\prime} })\wedge\chi_{Z^{^{\prime}\backslash}}(c)\wedge\mu_{L^{^{\prime}\backslash} }(u^{^{\prime\prime\prime}})\wedge\chi_{Z^{^{\prime}\backslash}}(d)\right] \\ & \geqq\min\left[ \mu_{L^{^{\prime}\backslash}}(u^{^{\prime\prime\prime} })\wedge\chi_{Z^{^{\prime}\backslash}}(u^{^{\prime\prime\prime}})\wedge \mu_{L^{^{\prime}\backslash}}(u^{^{\prime\prime\prime}})\wedge\chi _{Z^{^{\prime}\backslash}}(u^{^{\prime\prime\prime}})\right] \\ & \geqq\mu_{L^{^{\prime}\backslash}}(u^{^{\prime\prime\prime}})\wedge \chi_{Z^{^{\prime}\backslash}}(u^{^{\prime\prime\prime}}) = (\mu_{L^{^{\prime }\backslash}}\wedge\chi_{Z^{^{\prime}\backslash}})(u^{^{\prime\prime\prime}}) \end{align*} |
and
\begin{align*} (\rho_{L^{^{\prime}\backslash}}\odot_{k}\chi_{Z^{^{\prime}\backslash} })(u^{^{\prime\prime\prime}}) & = \underset{u^{^{\prime\prime\prime} }+\underset{_{\ast}\sigma = 1}{\overset{\kappa}{ { \sum\limits} }}c_{_{\ast}\sigma}d_{_{\ast}\sigma} = \overset{b}{\underset{_{\ast}\varrho = 1}{ { \sum\limits} }}c_{_{\ast}\varrho}'d_{_{\ast}\varrho}'}{ { \bigwedge\limits} }\left\{ \begin{array} [c]{c} \underset{_{\ast}\sigma = 1}{\overset{\kappa}{ { \bigvee\limits} }}\left( \rho_{L^{^{\prime}\backslash}}(c_{_{\ast}\sigma})\vee\chi _{Z^{^{\prime}\backslash}}(d_{_{\ast}\sigma})\right) \\ \vee\underset{_{\ast}\varrho = 1}{\overset{\tau}{ { \bigvee\limits} }}(\rho_{L^{^{\prime}\backslash}}(c_{_{\ast}\varrho}')\vee \chi_{Z^{^{\prime}\backslash}}(d_{_{\ast}\varrho}')) \end{array} \right\} \\ & \leqq\max\left[ \rho_{L^{^{\prime}\backslash}}(u^{^{\prime\prime\prime} })\vee\chi_{Z^{^{\prime}\backslash}}(c)\vee\rho_{L^{^{\prime}\backslash} }(u^{^{\prime\prime\prime}})\vee\chi_{Z^{^{\prime}\backslash}}(d)\right] \\ & \leqq\max\left[ \rho_{L^{^{\prime}\backslash}}(u^{^{\prime\prime\prime} })\vee\chi_{Z^{^{\prime}\backslash}}(u^{^{\prime\prime\prime}})\vee \rho_{L^{^{\prime}\backslash}}(u^{^{\prime\prime\prime}})\vee\chi _{Z^{^{\prime}\backslash}}(u^{^{\prime\prime\prime}})\right] \\ & \leqq\rho_{L^{^{\prime}\backslash}}(u^{^{\prime\prime\prime}})\vee \chi_{Z^{^{\prime}\backslash}}(u^{^{\prime\prime\prime}}) = (\rho_{L^{^{\prime }\backslash}}\vee\chi_{Z^{^{\prime}\backslash}})(u^{^{\prime\prime\prime}}). \end{align*} |
Now
\mu_{L^{^{\prime}\backslash}}\odot_{k}\chi_{Z^{^{\prime}\backslash}}\geqq \mu_{L^{^{\prime}\backslash}}\wedge\chi_{Z^{^{\prime}\backslash}} , \; \rho_{L^{^{\prime}\backslash}}\vee\chi_{Z^{^{\prime}\backslash}}\geqq \rho_{L^{^{\prime}\backslash}}\odot_{k}\chi_{Z^{^{\prime}\backslash}}. |
But
\mu_{L^{^{\prime}\backslash}}\odot_{k}\chi_{Z^{^{\prime}\backslash}}\leqq \mu_{L^{^{\prime}\backslash}}\wedge\chi_{Z^{^{\prime}\backslash}} , \; \rho_{L^{^{\prime}\backslash}}\vee\chi_{Z^{^{\prime}\backslash}}\leqq \rho_{L^{^{\prime}\backslash}}\odot_{k}\chi_{Z^{^{\prime}\backslash}} |
is always true. Then,
\mu_{L^{^{\prime}\backslash}}\odot_{k}\chi_{Z^{^{\prime}\backslash}} = \mu_{L^{^{\prime}\backslash}}\wedge\chi_{Z^{^{\prime}\backslash}} , \; \rho_{L^{^{\prime}\backslash}}\vee\chi_{Z^{^{\prime}\backslash}} = \rho_{L^{^{\prime}\backslash}}\odot_{k}\chi_{Z^{^{\prime}\backslash}}. |
Hence \chi_{Z^{^{\prime}\backslash}} is right pure intuitionistic fuzzy k- ideal of \underleftrightarrow{H}.
Proposition 5.3. Let L^{^{\prime}\backslash} = (\mu_{L^{^{\prime}\backslash}}, \rho_{L^{^{\prime}\backslash}}), M^{^{\prime}\backslash} = (\mu_{M^{^{\prime }\backslash}}, \rho_{M^{^{\prime}\backslash}}) are right pure intuitionistic fuzzy k- ideals of \underleftrightarrow{H}, then so are \mu_{L^{^{\prime }\backslash}}\wedge\mu_{M^{^{\prime}\backslash}}, \rho_{L^{^{\prime }\backslash}}\vee\rho_{M^{^{\prime}\backslash}}.
Proof. We know that \mu_{L^{^{\prime}\backslash}}\wedge\mu_{M^{^{\prime}\backslash} }, \rho_{L^{^{\prime}\backslash}}\vee\rho_{M^{^{\prime}\backslash}} are intuitionistic fuzzy k- ideal of \underleftrightarrow{H}. We shall prove any intuitionistic fuzzy right k- ideal N = (\mu_{N}, \rho_{N}) of \underleftrightarrow{H},
\mu_{N}\odot_{k}(\mu_{L^{^{\prime}\backslash}}\wedge\mu_{M^{^{\prime }\backslash}}) = \mu_{N}\wedge(\mu_{L^{^{\prime}\backslash}}\wedge \mu_{M^{^{\prime}\backslash}}), |
\rho_{N}\odot_{k}(\rho_{L^{^{\prime}\backslash}}\vee\rho_{M^{^{\prime }\backslash}}) = \rho_{N}\vee(\rho_{L^{^{\prime}\backslash}}\vee\rho _{M^{^{\prime}\backslash}}). |
Since M^{^{\prime}\backslash} = (\mu_{M^{^{\prime}\backslash}}, \rho _{M^{^{\prime}\backslash}}) is right pure intuitionistic fuzzy k- ideal of \underleftrightarrow{H} therefore
\mu_{L^{^{\prime}\backslash}}\wedge\mu_{M^{^{\prime}\backslash}} = \mu_{L^{^{\prime}\backslash}}\odot_{k}\mu_{M^{^{\prime}\backslash}} , \rho_{L^{^{\prime}\backslash}}\vee\rho_{M^{^{\prime}\backslash}} = \rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{M^{^{\prime}\backslash}}. |
Hence
\mu_{N}\odot_{k}(\mu_{L^{^{\prime}\backslash}}\odot_{k}\mu_{M^{^{\prime }\backslash}}) = \mu_{N}\odot_{k}(\mu_{L^{^{\prime}\backslash}}\wedge \mu_{M^{^{\prime}\backslash}}), |
\rho_{N}\odot_{k}(\rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{M^{^{\prime }\backslash}}) = \rho_{N}\odot_{k}(\rho_{L^{^{\prime}\backslash}}\vee \rho_{M^{^{\prime}\backslash}}). |
Also
\begin{align*} \mu_{N}\wedge(\mu_{L^{^{\prime}\backslash}}\wedge\mu_{M^{^{\prime}\backslash} }) & = (\mu_{N}\wedge\mu_{L^{^{\prime}\backslash}})\wedge\mu_{M^{^{\prime }\backslash}} = (\mu_{N}\odot_{k}\mu_{L^{^{\prime}\backslash}})\wedge \mu_{M^{^{\prime}\backslash}}\\ & = (\mu_{N}\odot_{k}\mu_{L^{^{\prime}\backslash}})\odot_{k}\mu_{M^{^{\prime }\backslash}} = \mu_{N}\odot_{k}(\mu_{L^{^{\prime}\backslash}}\odot_{k} \mu_{M^{^{\prime}\backslash}}), \end{align*} |
\begin{align*} \rho_{N}\vee(\rho_{L^{^{\prime}\backslash}}\vee\rho_{M^{^{\prime}\backslash} }) & = (\rho_{N}\vee\rho_{L^{^{\prime}\backslash}})\vee\rho_{M^{^{\prime }\backslash}} = (\rho_{N}\odot_{k}\rho_{L^{^{\prime}\backslash}})\vee \rho_{M^{^{\prime}\backslash}} = (\rho_{N}\odot_{k}\rho_{L^{^{\prime}\backslash }})\odot_{k}\rho_{M^{^{\prime}\backslash}}\\ & = \rho_{N}\odot_{k}(\rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{M^{^{\prime }\backslash}}). \end{align*} |
since \mu_{N}\odot_{k}\mu_{L^{^{\prime}\backslash}}, \rho_{N}\odot_{k} \rho_{L^{^{\prime}\backslash}} are intuitionistic fuzzy right k- ideal of \underleftrightarrow{H}.
Thus
\mu_{N}\odot_{k}(\mu_{L^{^{\prime}\backslash}}\wedge\mu_{M^{^{\prime }\backslash}}) = \mu_{N}\wedge(\mu_{L^{^{\prime}\backslash}}\wedge \mu_{M^{^{\prime}\backslash}}), |
\rho_{N}\odot_{k}(\rho_{L^{^{\prime}\backslash}}\vee\rho_{M^{^{\prime }\backslash}}) = \rho_{N}\vee(\rho_{L^{^{\prime}\backslash}}\vee\rho _{M^{^{\prime}\backslash}}). |
Proposition 5.4. For a hemiring \underleftrightarrow{H} with identity the following statements are equivalent:
N_{1} \underleftrightarrow{H} is right k-weaky regular hemiring.
N_{2} all right k- ideals of \underleftrightarrow{H} are k-idempotent .
N_{3} every k- ideal of \underleftrightarrow{H} is right pure.
N_{4} all intuitionistic fuzzy right k- ideals of \underleftrightarrow{H} are k-idempotent .
N_{5} every intuitionistic fuzzy k- ideal of \underleftrightarrow {H} is right pure.
N_{6} if \underleftrightarrow{H} is commutative, then \underleftrightarrow{H} is k-regular .
Proof. (N_{1}), (N_{2}), (N_{3}) are equivalent by Proposition 5.2 and (N_{1}), (N_{4}) are equivalent by theorem 3.6. (N_{4})\implies(N_{5})
Suppose L^{^{\prime}\backslash} = (\mu_{L^{^{\prime}\backslash}}, \rho _{L^{^{\prime}\backslash}}) and M^{^{\prime}\backslash} = (\mu_{M^{^{\prime }\backslash}}, \rho_{M^{^{\prime}\backslash}}) are intuitionistic fuzzy right and two sided k- ideals of \underleftrightarrow{H}.
Then \mu_{L^{^{\prime}\backslash}}\wedge \mu_{M^{^{\prime}\backslash} }, \; \rho_{L^{^{\prime}\backslash}}\vee\rho_{M^{^{\prime}\backslash}} are intuitionistic fuzzy k- ideals of \underleftrightarrow{H}.
\mu_{L^{^{\prime}\backslash}}\odot_{k}\mu_{M^{^{\prime}\backslash}}\leqq \mu_{L^{^{\prime}\backslash}}\wedge \mu_{M^{^{\prime}\backslash}}, \; \rho_{L^{^{\prime}\backslash}}\odot_{k}\rho_{M^{^{\prime}\backslash}} \geqq\rho_{L^{^{\prime}\backslash}}\vee\rho_{M^{^{\prime}\backslash}}. By supposition, \mu_{L^{^{\prime}\backslash}}\wedge \mu_{M^{^{\prime }\backslash}} = (\mu_{L^{^{\prime}\backslash}}\wedge \mu_{M^{^{\prime }\backslash}})\odot_{k}(\mu_{L^{^{\prime}\backslash}}\wedge \mu _{M^{^{\prime}\backslash}})\leqq\mu_{L^{^{\prime}\backslash}}\odot_{k} \mu_{M^{^{\prime}\backslash}}, \; \rho_{L^{^{\prime}\backslash}}\vee \rho_{M^{^{\prime}\backslash}} = (\rho_{L^{^{\prime}\backslash}}\vee \rho_{M^{^{\prime}\backslash}})\odot_{k}(\rho_{L^{^{\prime}\backslash}} \vee\rho_{M^{^{\prime}\backslash}})\geqq\rho_{L^{^{\prime}\backslash}} \odot_{k}\rho_{M^{^{\prime}\backslash}}. Hence \mu_{L^{^{\prime}\backslash} }\odot_{k}\mu_{M^{^{\prime}\backslash}} = \mu_{L^{^{\prime}\backslash}}\wedge \mu_{M^{^{\prime}\backslash}}, \; \rho_{L^{^{\prime}\backslash}}\odot_{k} \rho_{M^{^{\prime}\backslash}} = \rho_{L^{^{\prime}\backslash}}\vee \rho_{M^{^{\prime}\backslash}}. Thus M^{^{\prime}\backslash} = (\mu _{M^{^{\prime}\backslash}}, \rho_{M^{^{\prime}\backslash}}) is right pure.
(N_{5})\implies(N_{1})
L^{^{\prime}\backslash} be a right k-ideal of \underleftrightarrow{H} and M^{^{\prime}\backslash} be a two sided k-ideal of \underleftrightarrow{H} then the characteristic functions \chi _{L^{^{\prime}\backslash}\text{ }} is intuitionistic fuzzy two-sided k-ideal of \underleftrightarrow{H} and \chi_{M^{^{\prime}\backslash }\text{ }} is intuitionistic fuzzy k-ideal of \underleftrightarrow{H}.
Hence \chi_{L^{^{\prime}\backslash}\text{ }}\odot_{k}\chi_{M^{^{\prime }\backslash}\text{ }} = \chi_{L^{^{\prime}\backslash}\text{ }}\wedge \chi_{M^{^{\prime}\backslash}\text{ }}.
(N_{6}) is obvious.
Proposition 6.1. Suppose \underleftrightarrow{H} be a right k-weakly regular hemiring. If A^{^{\prime}\backslash} = (\mu_{A^{^{\prime}\backslash}\mathit{\text{}} }, \rho_{A^{^{\prime}\backslash}\mathit{\text{}}}) is a right pure intuitionistic fuzzy k- ideal of \underleftrightarrow{H} with \mu_{A^{^{\prime} \backslash}\mathit{\text{}}}(a') = s, \rho_{A^{^{\prime}\backslash}\mathit{\text{}}}(a') = s where a'\in\underleftrightarrow{H} and s\in\left[0, 1\right], then \exists a purely prime intuitionistic fuzzy k- ideal B^{^{\prime}\backslash} = (\mu_{B^{^{\prime}\backslash}\mathit{\text{}}}, \rho_{B^{^{\prime}\backslash}\mathit{\text{}}}) of \underleftrightarrow{H} such that \mu_{A^{^{\prime}\backslash}\mathit{\text{}}}\leqq\mu_{B^{^{\prime}\backslash }\mathit{\text{}}}, \; \rho_{A^{^{\prime}\backslash}\mathit{\text{}}}\geqq\rho_{B^{^{\prime }\backslash}\mathit{\text{}}} and \mu_{A^{^{\prime}\backslash}\mathit{\text{}}}(a^{^{\prime }}) = s, \rho_{A^{^{\prime}\backslash}\mathit{\text{}}}(a') = s.
Proof. Suppose Y = \{C^{^{\prime}\backslash} = (\mu_{C^{^{\prime}\backslash}}, \rho_{C^{^{\prime}\backslash}}): \mu_{C^{^{\prime}\backslash}} (b) = \beta, \; \rho_{C^{^{\prime}\backslash}}(b) = \beta\And\mu_{A^{^{\prime }\backslash}}\leqq\mu_{C^{^{\prime}\backslash}}, \; \rho_{A^{^{\prime}\backslash }}\geqq\rho_{C^{^{\prime}\backslash}}\}, where C^{^{\prime}\backslash} is a right pure intuitionistic fuzzy k- ideal of \underleftrightarrow{H} . Then Y\neq\{\}, since A^{^{\prime}\backslash}\in Y. Suppose F\subseteq Y, F be a totally odered set, say F = \{A_{\xi^{\prime\prime}}^{^{\prime}\backslash } = (\mu_{A_{\xi''}^{^{\prime}\backslash}}, \rho_{A_{\xi ''}^{^{\prime}\backslash}}):\xi''\in \digamma\}. First we prove \bigvee\limits_{\xi''\in\digamma} \mu_{A_{\xi''}^{^{\prime}\backslash}}, \; \bigwedge \limits_{\xi''\in\digamma}\rho_{A_{\xi''}^{^{\prime }\backslash}} is an intuitionistic fuzzy right k- ideal of \underleftrightarrow{H}. For any y^{^{\prime\prime\prime}}, \; s^{^{\prime \prime\prime}}\in\underleftrightarrow{H}, we have
(\bigvee\limits_{\xi''\in\digamma}\mu_{A_{\xi'' }^{^{\prime}\backslash}})(y^{^{\prime\prime\prime}}) = \bigvee\limits_{\xi ''\in\digamma}(\mu_{A_{\xi''}^{^{\prime }\backslash}}(y^{^{\prime\prime\prime}}))\leqq\bigvee\limits_{\xi^{'' }\in\digamma}(\mu_{A_{\xi''}^{^{\prime}\backslash} }(y^{^{\prime\prime\prime}}s^{^{\prime\prime\prime}})) = (\bigvee\limits_{\xi ''\in\digamma}\mu_{A_{\xi''}^{^{\prime }\backslash}})(y^{^{\prime\prime\prime}}s^{^{\prime\prime\prime}}), |
(\bigwedge\limits_{\xi''\in\digamma}\rho_{A_{\xi'' }^{^{\prime}\backslash}})(y^{^{\prime\prime\prime}}) = \bigwedge\limits_{\xi ''\in\digamma}(\rho_{A_{\xi''}^{^{\prime }\backslash}}(y^{^{\prime\prime\prime}}))\geqq\bigwedge\limits_{\xi^{'' }\in\digamma}(\rho_{A_{\xi''}^{^{\prime}\backslash} }(y^{^{\prime\prime\prime}}s^{^{\prime\prime\prime}})) = (\bigwedge \limits_{\xi''\in\digamma}\rho_{A_{\xi''}^{^{\prime }\backslash}})(y^{^{\prime\prime\prime}}s^{^{\prime\prime\prime}}). |
Suppose y^{^{\prime\prime\prime}}, \; z^{\upsilon^{\prime\prime\prime}} \in\underleftrightarrow{H},
\begin{align*} (\bigvee\limits_{\xi''\in\digamma}\mu_{A_{\xi'' }^{^{\prime}\backslash}})(y^{^{\prime\prime\prime}})\wedge(\bigvee _{\varrho''\in\digamma}\mu_{A_{\varrho'' }^{^{\prime}\backslash}})(z^{\upsilon^{\prime\prime\prime}}) & = (\bigvee _{\xi''\in\digamma}\mu_{A_{\xi''}^{^{\prime }\backslash}}(y^{^{\prime\prime\prime}})\wedge(\bigvee\limits_{\varrho^{^{\prime \prime}}\in\digamma}\mu_{A_{\varrho''}^{^{\prime}\backslash} }(z^{\upsilon^{\prime\prime\prime}}))\\ & = \bigvee\limits_{\varrho''\in\digamma}(\bigvee\limits_{\xi^{^{\prime \prime}}\in\digamma}(\mu_{A_{\xi''}^{^{\prime}\backslash} }(y^{^{\prime\prime\prime}})\wedge\mu_{A_{\varrho''} ^{^{\prime}\backslash}}(z^{\upsilon^{\prime\prime\prime}})))\\ & \leqq\bigvee\limits_{\varrho''\in\digamma}(\bigvee\limits_{\xi ''\in\digamma}(\max\{\mu_{A_{\xi''}^{^{\prime }\backslash}}(y^{^{\prime\prime\prime}}), \mu_{A_{\varrho'' }^{^{\prime}\backslash}}(y^{^{\prime\prime\prime}})\}\\ & \wedge\max\{\mu_{A_{\xi''}^{^{\prime}\backslash} }(z^{\upsilon^{\prime\prime\prime}}), \mu_{A_{\varrho'' }^{^{\prime}\backslash}}(z^{\upsilon^{\prime\prime\prime}})\})\\ & \leqq\bigvee\limits_{\varrho''\in\digamma}(\bigvee\limits_{\xi ''\in\digamma}(\max\{\mu_{A_{\xi''}^{^{\prime }\backslash}}(y^{^{\prime\prime\prime}}+z^{\upsilon^{\prime\prime\prime}} ), \mu_{A_{\varrho''}^{^{\prime}\backslash}}(y^{^{\prime \prime\prime}}+z^{\upsilon^{\prime\prime\prime}})\})\\ & \leqq\bigvee\limits_{\xi'', \varrho''\in\digamma }\max\{\mu_{A_{\xi''}^{^{\prime}\backslash}}(y^{^{\prime \prime\prime}}+z^{\upsilon^{\prime\prime\prime}}), \mu_{A_{\varrho ''}^{^{\prime}\backslash}}(y^{^{\prime\prime\prime} }+z^{\upsilon^{\prime\prime\prime}})\}\\ & \leqq(\bigvee\limits_{\xi''\in\digamma}\mu_{A_{\xi^{^{\prime\prime }}}^{^{\prime}\backslash}})(y^{^{\prime\prime\prime}}+z^{\upsilon ^{\prime\prime\prime}}) \end{align*} |
and
\begin{align*} (\bigwedge\limits_{\xi''\in\digamma}\rho_{A_{\xi'' }^{^{\prime}\backslash}})(y^{^{\prime\prime\prime}})\vee(\bigwedge \limits_{\varrho''\in\digamma}\rho_{A_{\varrho'' }^{^{\prime}\backslash}})(z^{\upsilon^{\prime\prime\prime}}) & = (\bigwedge \limits_{\xi''\in\digamma}\rho_{A_{\xi''}^{^{\prime }\backslash}}(y^{^{\prime\prime\prime}}))\vee(\bigwedge\limits_{\varrho ''\in\digamma}\rho_{A_{\varrho''}^{^{\prime }\backslash}}(z^{\upsilon^{\prime\prime\prime}}))\\ & = \bigwedge\limits_{\varrho''\in\digamma}(\bigwedge\limits_{\xi ''\in\digamma}(\rho_{A_{\xi''}^{^{\prime }\backslash}}(y^{^{\prime\prime\prime}})\vee\rho_{A_{\varrho^{'' }}^{^{\prime}\backslash}}(z^{\upsilon^{\prime\prime\prime}})))\\ & \geqq\bigwedge\limits_{\varrho''\in\digamma}(\bigwedge \limits_{\xi''\in\digamma}(\min\{\rho_{A_{\xi'' }^{^{\prime}\backslash}}(y^{^{\prime\prime\prime}}), \rho_{A_{\varrho ''}^{^{\prime}\backslash}}(y^{^{\prime\prime\prime}})\}\\ & \vee\min\{\rho_{A_{\xi''}^{^{\prime}\backslash}} (z^{\upsilon^{\prime\prime\prime}}), \rho_{A_{\varrho'' }^{^{\prime}\backslash}}(z^{\upsilon^{\prime\prime\prime}})\})\\ & \geqq\bigwedge\limits_{\varrho''\in\digamma}(\bigwedge \limits_{\xi''\in\digamma}(\min\{\rho_{A_{\xi'' }^{^{\prime}\backslash}}(y^{^{\prime\prime\prime}}+z^{\upsilon^{\prime \prime\prime}}), \rho_{A_{\varrho''}^{^{\prime}\backslash} }(y^{^{\prime\prime\prime}}+z^{\upsilon^{\prime\prime\prime}})\})\\ & \geqq\bigwedge\limits_{\xi'', \varrho''\in\digamma }\min\{\rho_{A_{\xi''}^{^{\prime}\backslash}}(y^{^{\prime \prime\prime}}+z^{\upsilon^{\prime\prime\prime}}), \rho_{A_{\varrho ''}^{^{\prime}\backslash}}(y^{^{\prime\prime\prime} }+z^{\upsilon^{\prime\prime\prime}})\}\\ & \geqq(\bigwedge\limits_{\xi''\in\digamma}\rho_{A_{\xi ''}^{^{\prime}\backslash}})(y^{^{\prime\prime\prime} }+z^{\upsilon^{\prime\prime\prime}}). \end{align*} |
Now
Let y^{^{\prime\prime\prime}}+c^{^{\prime\prime\prime}} = d^{^{\prime \prime\prime}} where c^{^{\prime\prime\prime}}, \; d^{^{\prime\prime\prime} }\in\underleftrightarrow{H} then
\begin{align*} (\bigvee\limits_{\xi''\in\digamma}\mu_{A_{\xi'' }^{^{\prime}\backslash}})(c^{^{\prime\prime\prime}})\wedge(\bigvee _{\varrho''\in\digamma}\mu_{A_{\varrho'' }^{^{\prime}\backslash}})(d^{^{\prime\prime\prime}}) & = (\bigvee _{\xi''\in\digamma}\mu_{A_{\xi''}^{^{\prime }\backslash}}(c^{^{\prime\prime\prime}}))\wedge(\bigvee\limits_{\varrho ''\in\digamma}\mu_{A_{\varrho''}^{^{\prime }\backslash}}(d^{^{\prime\prime\prime}}))\\ & = \bigvee\limits_{\varrho''\in\digamma}(\bigvee\limits_{\xi^{^{\prime \prime}}\in\digamma}(\mu_{A_{\xi''}^{^{\prime}\backslash} }(c^{^{\prime\prime\prime}})\wedge\mu_{A_{\varrho''} ^{^{\prime}\backslash}}(d^{^{\prime\prime\prime}})))\\ & \leqq\bigvee\limits_{\varrho''\in\digamma}(\bigvee\limits_{\xi ''\in\digamma}(\max\{\mu_{A_{\xi''}^{^{\prime }\backslash}}(c^{^{\prime\prime\prime}}), \mu_{A_{\varrho'' }^{^{\prime}\backslash}}(c^{^{\prime\prime\prime}})\}\\ & \wedge\max\{\mu_{A_{\xi''}^{^{\prime}\backslash} }(d^{^{\prime\prime\prime}}), \mu_{A_{\varrho''}^{^{\prime }\backslash}}(d^{^{\prime\prime\prime}})\})\\ & \leqq\bigvee\limits_{\xi'', \varrho''\in\digamma }\max\{\mu_{A_{\xi''}^{^{\prime}\backslash}}(y^{^{\prime \prime\prime}}), \mu_{A_{\varrho''}^{^{\prime}\backslash} }(y^{^{\prime\prime\prime}})\}\\ & \leqq\bigvee\limits_{\xi''\in\digamma}\mu_{A_{\xi^{'' }}^{^{\prime}\backslash}}(y^{^{\prime\prime\prime}}) \end{align*} |
and
\begin{align*} (\bigwedge\limits_{\xi''\in\digamma}\rho_{A_{\xi'' }^{^{\prime}\backslash}})(c^{^{\prime\prime\prime}})\vee(\bigwedge \limits_{\varrho''\in\digamma}\rho_{A_{\varrho'' }^{^{\prime}\backslash}})(d^{^{\prime\prime\prime}}) & = (\bigwedge \limits_{\xi''\in\digamma}\rho_{A_{\xi''}^{^{\prime }\backslash}}(c^{^{\prime\prime\prime}}))\vee(\bigwedge\limits_{\varrho ''\in\digamma}\rho_{A_{\varrho''}^{^{\prime }\backslash}}(d^{^{\prime\prime\prime}}))\\ & = \bigwedge\limits_{\varrho''\in\digamma}(\bigwedge\limits_{\xi ''\in\digamma}(\rho_{A_{\xi''}^{^{\prime }\backslash}}(c^{^{\prime\prime\prime}})\vee\rho_{A_{\varrho^{'' }}^{^{\prime}\backslash}}(d^{^{\prime\prime\prime}})))\\ & \geqq\bigwedge\limits_{\varrho''\in\digamma}(\bigwedge \limits_{\xi''\in\digamma}(\min\{\rho_{A_{\xi'' }^{^{\prime}\backslash}}(c^{^{\prime\prime\prime}}), \rho_{A_{\varrho ''}^{^{\prime}\backslash}}(c^{^{\prime\prime\prime}})\}\\ & \vee\min\{\rho_{A_{\xi''}^{^{\prime}\backslash}} (d^{^{\prime\prime\prime}}), \rho_{A_{\varrho''}^{^{\prime }\backslash}}(d^{^{\prime\prime\prime}})\})\\ & \geqq\bigwedge\limits_{\xi'', \varrho''\in\digamma }\min\{\rho_{A_{\xi''}^{^{\prime}\backslash}}(y^{^{\prime \prime\prime}}), \rho_{A_{\varrho''}^{^{\prime}\backslash} }(y^{^{\prime\prime\prime}})\}\\ & \geqq\bigwedge\limits_{\xi''\in\digamma}\rho_{A_{\xi^{^{\prime \prime}}}^{^{\prime}\backslash}})(y^{^{\prime\prime\prime}}). \end{align*} |
Thus \bigvee\nolimits_{\xi''\in\digamma}\mu_{A_{\xi'' }^{^{\prime}\backslash}}, \; \bigwedge\nolimits_{\xi''\in\digamma} \rho_{A_{\xi''}^{^{\prime}\backslash}} is an intuitionistic fuzzy right k- ideal of \underleftrightarrow{H}.
Clearly \mu_{A^{^{\prime}\backslash}}\leqslant \bigvee\nolimits_{\xi^{^{\prime \prime}}\in\digamma}\mu_{A_{\xi''}^{^{\prime}\backslash} }, \; \rho_{A^{^{\prime}\backslash}}\geqq\bigwedge\nolimits_{\xi'' \in\digamma}\rho_{A_{\xi''}^{^{\prime}\backslash}} and \bigvee\nolimits_{\xi''\in\digamma}\mu_{A_{\xi'' }^{^{\prime}\backslash}}(a) = \alpha, \; \bigwedge\nolimits_{\xi'' \in\digamma}\rho_{A_{\xi''}^{^{\prime}\backslash}}(a) = \alpha.
Thus \bigvee\nolimits_{\xi''\in\digamma}\mu_{A_{\xi'' }^{^{\prime}\backslash}} is the least upper bound, \bigwedge\nolimits_{\xi ''\in\digamma}\rho_{A_{\xi''}^{^{\prime }\backslash}} is the greatest lower bound. Hence by Zorn's lemma there exists a right pure intuitionistic fuzzy k- ideal B^{^{\prime}\backslash} = (\mu_{B^{^{\prime}\backslash}}, \rho_{B^{^{\prime}\backslash}}) of \underleftrightarrow{H}. By the property that \mu_{A^{^{\prime}\backslash }\text{ }}\leqq\mu_{B^{^{\prime}\backslash}\text{ }}, \; \rho_{A^{^{\prime }\backslash}\text{ }}\geqq\rho_{B^{^{\prime}\backslash}\text{ }} and \mu_{B^{^{\prime}\backslash}\text{ }}(b') = \beta, \; \rho _{B^{^{\prime}\backslash}\text{ }}(b') = \beta, \; B^{^{\prime }\backslash} = (\mu_{B^{^{\prime}\backslash}\text{ }}, \rho_{B^{^{\prime }\backslash}\text{ }}) is maximal.
We shall prove that B^{^{\prime}\backslash} = (\mu_{B^{^{\prime}\backslash} }, \rho_{B^{^{\prime}\backslash}}) is purely prime intuitionistic fuzzy k- ideal of \underleftrightarrow{H}. Suppose C^{^{\prime}\backslash} = (\mu_{C^{^{\prime}\backslash}\text{ }}, \rho_{C^{^{\prime}\backslash}\text{ } }) and D^{^{\prime}\backslash} = (\mu_{D^{^{\prime}\backslash}\text{ }}, \rho_{D^{^{\prime}\backslash}\text{ }}) are right pure intuitionistic fuzzy k- ideals ^{^{\prime\prime\prime}} of \underleftrightarrow{H}. Let \mu_{B^{^{\prime}\backslash}\text{ }} = \mu_{C^{^{\prime}\backslash}\text{ } }\wedge\mu_{D^{^{\prime}\backslash}\text{ }} and \rho_{B^{^{\prime }\backslash}\text{ }} = \rho_{C^{^{\prime}\backslash}\text{ }}\vee \rho_{D^{^{\prime}\backslash}\text{ }} . Thus \mu_{B^{^{\prime}\backslash }\text{ }}\leqq\mu_{C^{^{\prime}\backslash}\text{ }}, \; \mu_{B^{^{\prime }\backslash}\text{ }} = \mu_{D^{^{\prime}\backslash}\text{ }} and \rho_{B^{^{\prime}\backslash}\text{ }}\geqq\rho_{C^{^{\prime}\backslash }\text{ }}, \; \rho_{B^{^{\prime}\backslash}\text{ }}\geqq\rho_{D^{^{\prime }\backslash}\text{ }}. We claim that either \mu_{B^{^{\prime}\backslash }\text{ }} = \mu_{C^{^{\prime}\backslash}\text{ }} or \mu_{B^{^{\prime }\backslash}\text{ }} = \mu_{D^{^{\prime}\backslash}\text{ }} and \rho_{B^{^{\prime}\backslash}\text{ }} = \rho_{C^{^{\prime}\backslash}\text{ } } or \rho_{B^{^{\prime}\backslash}\text{ }} = \rho_{D^{^{\prime}\backslash }\text{ }} . Suppose \mu_{B^{^{\prime}\backslash}\text{ }}\neq\mu _{C^{^{\prime}\backslash}\text{ }}\And\mu_{B^{^{\prime}\backslash}\text{ } }\neq\mu_{D^{^{\prime}\backslash}\text{ }} and \rho_{B^{^{\prime}\backslash }\text{ }}\neq\rho_{C^{^{\prime}\backslash}\text{ }}\And\rho_{B^{^{\prime }\backslash}\text{ }}\neq\rho_{D^{^{\prime}\backslash}\text{ }} . By the property that \mu_{A^{^{\prime}\backslash}\text{ }}(b') = \beta, \; \rho_{A^{^{\prime}\backslash}\text{ }}(b') = \beta, B^{^{\prime}\backslash} is maximal and since \mu_{B^{^{\prime}\backslash }\text{ }}\lvertneqq\mu_{C^{^{\prime}\backslash}\text{ }}, \; \mu_{B^{^{\prime }\backslash}\text{ }}\lvertneqq\mu_{D^{^{\prime}\backslash}\text{ }} and \rho_{B^{^{\prime}\backslash}\text{ }}\gvertneqq\rho_{C^{^{\prime}\backslash }\text{ }}, \; \rho_{B^{^{\prime}\backslash}\text{ }}\gvertneqq\rho_{D^{^{\prime }\backslash}\text{ }}, so \mu_{C^{^{\prime}\backslash}\text{ }}(b^{^{\prime }})\neq\beta, \; \rho_{C^{^{\prime}\backslash}\text{ }}(b')\neq\beta and \mu_{D^{^{\prime}\backslash}\text{ }}(b')\neq\beta, \; \rho_{D^{^{\prime}\backslash}\text{ }}(b')\neq\beta . Hence
\beta = \mu_{B^{^{\prime}\backslash}\text{ }}(b') = \left( \mu_{C^{^{\prime}\backslash}\text{ }}\wedge\text{ }\mu_{D^{^{\prime} \backslash}\text{ }}\right) \left( b'\right) = \left( \mu_{C^{^{\prime}\backslash}\text{ }}\right) \left( b'\right) \wedge\left( \mu_{D^{^{\prime}\backslash}\text{ }}\right) \left( b'\right) \neq\beta |
and
\beta = \rho_{B^{^{\prime}\backslash}\text{ }}(b') = \left( \rho_{C^{^{\prime}\backslash}\text{ }}\vee\text{ }\rho_{D^{^{\prime} \backslash}\text{ }}\right) \left( b'\right) = \left( \rho_{C^{^{\prime}\backslash}\text{ }}\right) \left( b'\right) \vee\left( \rho_{D^{^{\prime}\backslash}\text{ }}\right) \left( b^{\prime }\right) \neq\beta |
contrdiction. Hence \mu_{B^{^{\prime}\backslash}\text{ }} = \mu_{C^{^{\prime }\backslash}\text{ }} or \mu_{B^{^{\prime}\backslash}\text{ }} = \mu_{D^{^{\prime}\backslash}\text{ }} and \rho_{B^{^{\prime}\backslash }\text{ }} = \rho_{C^{^{\prime}\backslash}\text{ }} or \rho_{B^{^{\prime }\backslash}\text{ }} = \rho_{D^{^{\prime}\backslash}\text{ }} . Thus B^{^{\prime}\backslash} = (\mu_{B^{^{\prime}\backslash}}, \rho_{B^{^{\prime }\backslash}}) is purely prime intutionistic fuzzy k- ideal of \underleftrightarrow{H} .
Proposition 6.2. Suppose \underleftrightarrow{H} be a right k-weakly regular hemiring.Then each proper intuitionistic fuzzy right pure k- ideal is the intersection of all purely prime intuitionistic fuzzy k- ideals of \underleftrightarrow{H} which contain it.
Proof. Suppose A^{^{\prime}\backslash} = (\mu_{A^{^{\prime}\backslash}}, \rho _{A^{^{\prime}\backslash}}) be the intuitionistic fuzzy right right pure k- ideal of \underleftrightarrow{H} and let \{A_{\alpha}^{^{\prime }\backslash}:\alpha\in\Omega\} be the family of all intuitionistic fuzzy purely prime k- ideals of \underleftrightarrow{H} which contain A^{^{\prime}\backslash} . Clearly
\mu_{A^{^{\prime}\backslash}}\leqq\underset{\alpha\in\Omega}{\bigwedge\limits} \mu_{A_{\alpha}^{^{\prime}\backslash}}, \rho_{A^{^{\prime}\backslash}} \geqq\underset{\alpha\in\Omega}{\bigwedge\limits}\rho_{A_{\alpha}^{^{\prime }\backslash}}. |
We show that
\mu_{A^{^{\prime}\backslash}}\geqq\underset{\alpha\in\Omega}{\bigwedge\limits} \mu_{A_{\alpha}^{^{\prime}\backslash}}, \rho_{A^{^{\prime}\backslash}} \leqq\underset{\alpha\in\Omega}{\bigwedge\limits}\rho_{A_{\alpha}^{^{\prime }\backslash}}. |
Suppose a be any element of \underleftrightarrow{H}, \exists an intuitionistic fuzzy purely prime k- ideal B^{^{\prime}\backslash} = (\mu_{B^{^{\prime}\backslash}}, \rho_{B^{^{\prime}\backslash}}) such that
\mu_{A^{^{\prime}\backslash}}\leqq\mu_{B^{^{\prime}\backslash}}, \rho _{A^{^{\prime}\backslash}}\geqq\rho_{B^{^{\prime}\backslash}}\And \mu_{A^{^{\prime}\backslash}}(a) = \mu_{B^{^{\prime}\backslash}}(a), \rho _{A^{^{\prime}\backslash}}(a) = \rho_{B^{^{\prime}\backslash}}(a). |
B^{^{\prime}\backslash}\in\{A_{\alpha}^{^{\prime}\backslash}:\alpha\in \Omega\}. |
Hence
\mu_{B^{^{\prime}\backslash}}\geqq\underset{\alpha\in\Omega}{\bigwedge\limits} \mu_{A_{\alpha}^{^{\prime}\backslash}}, \rho_{B^{^{\prime}\backslash}} \leqq\underset{\alpha\in\Omega}{\bigwedge\limits}\rho_{A_{\alpha}^{^{\prime }\backslash}} |
So
\mu_{A^{^{\prime}\backslash}}(a) = \mu_{B^{^{\prime}\backslash}}(a)\geqq \underset{\alpha\in\Omega}{\bigwedge\limits}\mu_{A_{\alpha}^{^{\prime}\backslash} }(a), \rho_{A^{^{\prime}\backslash}}(a) = \rho_{B^{^{\prime}\backslash}} (a)\leqq\underset{\alpha\in\Omega}{\bigwedge\limits}\rho_{A_{\alpha}^{^{\prime }\backslash}}(a), |
i.e.,
\mu_{A^{^{\prime}\backslash}}\geqq\underset{\alpha\in\Omega}{\bigwedge\limits} \mu_{A_{\alpha}^{^{\prime}\backslash}}, \rho_{A^{^{\prime}\backslash}} \leqq\underset{\alpha\in\Omega}{\bigwedge\limits}\rho_{A_{\alpha}^{^{\prime }\backslash}}. |
Hence
\mu_{A^{^{\prime}\backslash}} = \underset{\alpha\in\Omega}{\bigwedge\limits} \mu_{A_{\alpha}^{^{\prime}\backslash}}, \rho_{A^{^{\prime}\backslash} } = \underset{\alpha\in\Omega}{\bigwedge\limits}\rho_{A_{\alpha}^{^{\prime}\backslash} }. |
Intuitionistic fuzzy ideals with specific properties are important in the study of fuzzy algebraic systems. In this research, we investigate hemirings in which every intuitionistic fuzzy k -ideal is idempotent and characterize these hemirings in terms of prime and semiprime intuitionistic fuzzy k -ideals. In our opinion the future study of (intuitionistic) fuzzy ideals of semirings and hemirings can be connected with (1) investigating semiprime and prime (intuitionistic) fuzzy one-sided k -ideal and every intuitionistic fuzzy k -bi-ideal is idempotent. (2) Finding intuitionistic and/or interval valued fuzzy sets and triangular norms. The obtained results can be used to solve some social networks problems and decide whether the corresponding graph is balanced or clusterable.
The authors present their appreciation to King Saud University for funding this research through Researchers Supporting Project (Project number: RSPD2023R650), King Saud University, Riyadh, Saudi Arabia.
The authors declare that they have no competing interests.
[1] | H. S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914–920. |
[2] | W. Wechler, The concept of fuzziness in automata and language theory, Computer Science, 1978 (1978), 118183255. |
[3] | S. Wan, J. Dong, A group decision-making method considering both the group consensus and multiplicative consistency of interval-valued intuitionistic fuzzy preference relations, In: Decision making theories and methods based on interval-valued intuitionistic fuzzy sets, Singapore: Springer, 2020,271–313. http://doi.org/10.1007/978-981-15-1521-7_9 |
[4] |
S. P. Wan, F. Wang, J. Y. Dong, Theory and method of intuitionistic fuzzy preference relation group decision making, Comp. Model. Eng., 132 (2022), 881–907. http://doi.org/10.32604/cmes.2022.020598 doi: 10.32604/cmes.2022.020598
![]() |
[5] | S. Wan, J. Dong, Decision making theories and methods based on interval-valued intuitionistic fuzzy sets, Singapore: Springer, 2020. https://doi.org/10.1007/978-981-15-1521-7 |
[6] |
S. P. Wan, F. Wang, G. L. Xu, J. Y. Dong, J. Tang, An Atanassov intuitionistic fuzzy programming method for group decision making with interval-valued fuzzy preference relations, Fuzzy Optim. Decis. Ma., 16 (2017), 269–295. https://doi.org/10.1007/s10700-016-9250-z doi: 10.1007/s10700-016-9250-z
![]() |
[7] |
M. Akram, W. A. Dudek, Intuitionistic fuzzy hypergraphs with applications, Inform. Sciences, 218 (2013), 182–193. https://doi.org/10.1016/j.ins.2012.06.024 doi: 10.1016/j.ins.2012.06.024
![]() |
[8] |
K. Hur, R. R. Kim, P. K. Lim, Intuitionistic fuzzy k-ideals of a semiring, Int. J. Fuzzy Log. Inte., 9 (2009), 110–114. http://doi.org/10.5391/IJFIS.2009.9.2.110 doi: 10.5391/IJFIS.2009.9.2.110
![]() |
[9] | M. Shabir, R. Anjum, Right k-weakly regular hemirings, Quasigroups and Related Systems, 20 (2012), 97–112. K. Hur, R. R. Kim, P. K. Lim, Intuitionistic fuzzy k-ideals of a semiring, Int. J. Fuzzy Log. Inte., 9 (2009), 110–114. http://doi.org/10.5391/IJFIS.2009.9.2.110 |
[10] |
W. A. Dudek, M. Shabir, R. Anjum, Characterizations of hemirings by their h-ideals, Comput. Math. Appl., 59 (2010), 3167–3179. https://doi.org/10.1016/j.camwa.2010.03.003 doi: 10.1016/j.camwa.2010.03.003
![]() |
[11] | J. Zhan, W. A. Dudek, Fuzzy h-ideals of hemirings, Inform. Sciences, 177 (2007), 876–886. https://doi.org/10.1016/j.ins.2006.04.005 |
[12] |
M. Shabir, R. Anjum, Characterizations of hemirings by the properties of their k-ideals, Applied Mathematics, 4 (2013), 753–768. http://doi.org/10.4236/am.2013.45104 doi: 10.4236/am.2013.45104
![]() |
[13] | S. Ghosh, Fuzzy k-ideals of semirings, Fuzzy Set. Syst., 95 (1998), 103–108. https://doi.org/10.1016/S0165-0114(96)00306-5 |
[14] | J. S. Golan, Semirings and their applications, Dordrecht: Springer, 1999. https://doi.org/10.1007/978-94-015-9333-5 |
[15] | K. Głazek, A guide to the literature on semirings and their applications in mathematics and information sciences, Dordrecht: Springer, 2002. https://doi.org/10.1007/978-94-015-9964-1 |
[16] | S. Ghosh, Matrices over semirings, Inform. Sciences, 90 (1996), 221–230. https://doi.org/10.1016/0020-0255(95)00283-9 |
[17] | L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[18] | M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices, 6 (1958), 321. |
[19] |
K. Iizuka, On the Jacobson radical of a semiring, Tohoku Math. J., 11 (1959), 409–421. http://doi.org/10.2748/tmj/1178244538 doi: 10.2748/tmj/1178244538
![]() |
[20] | D. R. La Torre, On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen, 12 (1965), 219–226. |
[21] | M. Zhou, S. Li, Applications of bipolar fuzzy theory to hemirings, Computer Science, 2013 (2013), 40261228. |
[22] |
S. K. De, R. Biswas, A. R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Set. Syst., 117 (2001), 209–213. https://doi.org/10.1016/S0165-0114(98)00235-8 doi: 10.1016/S0165-0114(98)00235-8
![]() |
[23] |
M. Gulzar, M. H. Mateen, D. Alghazzawi, N. Kausar, A novel applications of complex intuitionistic fuzzy sets in group theory, IEEE Access, 8 (2020), 196075–196085. https://doi.org/10.1109/ACCESS.2020.3034626 doi: 10.1109/ACCESS.2020.3034626
![]() |
[24] |
M. Gulzar, M. H. Mateen, Y. M. Chu, D. Alghazzawi, G. Abbas, Generalized direct product of complex intuitionistic fuzzy subrings, Int. J. Comput. Int. Sys., 14 (2021), 582–593. https://doi.org/10.2991/ijcis.d.210106.001 doi: 10.2991/ijcis.d.210106.001
![]() |
[25] | P. Mukhopadhyay, Characterization of regular semirings, Mat. Vestn., 48 (1996), 83–85. |
[26] | K. T. Atanassov, Intuitionistic fuzzy sets, In: Intuitionistic fuzzy sets, Heidelberg: Physica, 1999, 1–137. http://doi.org/10.1007/978-3-7908-1870-3_1 |
1. | Raiha Imran, Kifayat Ullah, Zeeshan Ali, Maria Akram, Tapan Senapati, The theory of prioritized Muirhead mean operators under the presence of Complex Single-Valued Neutrosophic values, 2023, 7, 27726622, 100214, 10.1016/j.dajour.2023.100214 |