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1. Introduction

Since its inception in the 1960s, variational inequality theory has inspired numerous
mathematicians. It has been observed that the theory of variational inequalities(VI) now plays a
significant role in both pure and applied mathematics, particularly in the field of scientific
advancement. This theory is making a big difference in the main field of engineering’s
problem-solving and mathematical advancement. It has also seen significant expansion in its social,
pure, and applied sciences, finance and economics, and industry fields. Variational inequalities have
spawned a plethora of numerical approaches that have been developed over
time [2–8,10,12,15,16,18,24,26–30,34,35]. In addition, a variety of generalizations and refinements
have been made to these methods for variational
inequalities. [9, 11, 13, 14, 17, 19, 20, 22, 27, 28, 32, 33, 36] discuss the results of its applications in a
variety of fields; however, this theory presented itself as the least artificial, clearest, most integrated,
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and most effective framework for resolving linear non-linear problems. It also suggests the general
treatment they will receive, which is explicitly mentioned in [1, 9, 20, 21, 23, 25, 37, 38]. In addition,
in 1988, Noor [26] proposed a diverse class of (VI) using two different operators. which were
subsequently documented as general variational inequality(GVI). GVI are one-of-a-kind, brand-new,
integrated, and simple methods used to investigate a wide range of that phenomenon in a variety of
scientific fields. Noor [26] explored and created different inertial sort projection strategies and
iterative plan for general variational imbalances. Under gentle conditions, assembly investigation
pertinent to these strategies have been delineated too. The references therein [4, 9, 26, 31].

The exceptional implicit iterative approaches based on modified projection techniques were the
subject of the current study. The new method is an extension of previously established variational
inequalities. This is useful in applied science applications. This same formulation is frequently used
in a number of numerical methods. It is highlighted that (GVI) is helpful to investigate a number of
applied and pure sciences, including free and also moving boundary value related problems,
odd-order classes, unilateral and non-symmetric obstacles, and so on. The proposed implicit method’s
convergence criteria are also specified for some mild cases, which would be helpful to students
interested in mathematics research. The new findings are primarily motivated by the convergence
analysis. The numerical example is provided for implementation.

2. Formulations and basic facts

Assume that convex set λ is in Hilbert space H. The notation of inner product and norm are ⟨·, ·⟩ and
∥·∥ respectively. We assume that the mapping T, ϕ : H −→ H are continuous, the problem of getting
the value of C ∈ H, and ϕ (C) ∈ λ, we have

⟨TC, ϕ(t) − ϕ(C) ≥ 0, ∀ ϕ (t) ∈ λ, t ∈ H. (2.1)

As a result of Noor [29], this class is called non-linear general variational inequality.
Special cases
(i) If we assume ϕ = I, then (2.1) is considered to getting C ∈ λ, we have

⟨TC, t − C⟩ ≥ 0, ∀ t ∈ λ. (2.2)

This problem was originally introduced by Stampacchia [24] and is called variational inequality .
(ii) If K∗ = {C ∈ H : ⟨C, t⟩ ≥ 0, ∀ t ∈ λ, } is defined a polar cone (dual) of K in H, where λ is also

defines as convex set in H, then (2.1) is modified to find C ∈ H, satisfying the:

ϕ(C) ∈ H , T (C) ∈ λ∗, ⟨ϕ(C), TC⟩ = 0, (2.3)

the equality (2.3) is defined as complementarity problem for nonlinear general variational inequality.
(iii) If λ = H, then (2.1) reduces to find C,that is

⟨TC, ϕ(C)⟩ = 0.

This is recognized as weak formulation in boundary value problem.
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Definition 1. The non-linear operator denoted by T and mapped from H to H is:
(i) Strongly(monotone), for α > 0, such that

⟨TC − Tt, C − t⟩ ≥ α ∥C − t∥2 , ∀ C, t ∈ H.

(ii) Lipschitz continuous, for β > 0, such that

∥TC − Tt∥ ≤ β ∥C − t∥ , ∀ C, t ∈ H.

(iii) Only Monotone, then
⟨TC − Tt, C − t⟩ ≥ 0, ∀ C, t ∈ H.

(iv) Called pseudo(monotone), we have

⟨TC, t − C⟩ ≥ 0⇒ ⟨Tt, t − C⟩ ≥ 0, ∀ C, t ∈ H.

Remark 1. The conclusion is that strongly(monotonicity) mapping is a monotonicity and also
monotonicity mapping implies a pseudo(monotonicity); however, the inverse does not exist.

The role is to establish equivalence between fixed point problems and variational inequalities using
known results relevant to projection lemma, also known as best projection lemma. Using these findings,
we examine the convergence of newly considered approaches to solving optimization and variational
inequalities-related problems.

Lemma 1. [14, 30]: If λ ∈ H be a convex and closed set, then, for z ∈ H, C ∈ λ, satisfying the

⟨C − z, t − C⟩ ≥ 0, ∀ t ∈ λ , (2.4)

if, C = PλC, where Pλ(is called pro jection operator) of H onto λ and is also called as non expansive
operator.

∥Pλ(C) − Pλ(t)∥ ≤ ∥C − t∥ , ∀ C, t ∈ H.

3. Projection method and results

The new iterative schemes have been established by using the fixed point formulation for solving
the GVI (2.1). The convergence analysis is also provided In this section. This is our main motivation
and result.

Lemma 2. [26, 30]: If λ(Convex set) is in H(Helbert space) and C ∈ H solution of the GVI (2.1) if
and only if u satisfies the

ϕ(C) = Pλ
[
ϕ(C) − ρTC

]
, (3.1)

the ρ is cited as constant and greater than zero and Pλ is defined as the projection from H onto λ.

We apply that the GVI (2.1) is regarded as equivalent to (3.1) from the projection lemma, and then
we define the fixed point lemma and the problem. With the help of this formulation, we are able to
establish a number of novel implicit schemes, algorithm (Algo) and approaches for figuring out how
to solve general variational inequalities. The following new iterative approaches to figuring out the
inequalities are denoted by (2.1).
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Algo 3.1: For C0 ∈ H, approximate Cn+1 by the formulation:

ϕ(Cn+1) = Pλ
[
ϕ(Cn) − ρTCn

]
, n = 0, 1, 2... (3.2)

the formulation (3.2) has been established by using projection iterative scheme. This scheme has
already been discussed many times [26].
Algo 3.2: For C0 ∈ H, calculate Cn+1 by the formulation:

ϕ(Cn+1) = Pλ
[
ϕ(Cn) − ρTCn+1

]
, n = 0, 1, 2... (3.3)

that is called extragradient technique and considers a new iterative scheme.
For ϕ = I, we get

Cn+1 = Pλ
[
Cn − ρTCn+1

]
, n = 0, 1, 2...

see Noot et al. [29].
Algo 3.3: For C0 ∈ H, calculate Cn+1 by the formulation:

ϕ (Cn+1) = Pλ
[
ϕ(Cn+1) − ρTCn+1

]
, n = 0, 1, 2... (3.4)

that is defined as modified projection technique and implicit scheme. We apply predictor- corrector
scheme to make them explicit for working out general variational inequalities and can be modified and
rewritten as:
Algo 3.4: For a taken C0 ∈ H, calculate Cn+1 by the formulation:

yn = Pλ
[
Cn − ρTCn

]
,

ϕ(Cn+1) = Pλ
[
ϕ(yn) − ρTyn

]
, n = 0, 1, 2... (3.5)

that is called double projection method(two step-method).
If ϕ = I, then,

yn = Pλ
[
Cn − ρTCn

]
,

Cn+1 = Pλ
[
yn − ρTyn

]
, n = 0, 1, 2...

see Noor et al. [30].
The Eq (3.1) can be written as:

ϕ(C) = Pλ

[
ϕ(C) + ϕ(C)

2
− ρTC

]
. (3.6)

This is modified fixed point implicit formulation and is new one to consider the following scheme
(implicit method) in Algo 3.5.
Algo 3.5: For a taken C0 ∈ H, calculate Cn+1 by iterative formulation:

ϕ(Cn+1) = Pλ

[
ϕ(Cn) + ϕ(Cn+1)

2
− ρTCn+1

]
. n = 0, 1, 2... (3.7)
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For numerical output of Algo 3.5, we apply the technique of predictor-corrector for the following
two steps method of iteration for solution of the GVI.
Algo 3.6: For C0 ∈ H, calculate Cn+1 by the formulation:

yn = Pλ
[
Cn − ρTCn

]
,

ϕ(Cn+1) = Pλ

[
ϕ(yn) + ϕ(Cn)

2
− ρT (yn)

]
, n = 0, 1, 2... (3.8)

that is an explicit scheme for working out general variational inequalities.
Form Eq (3.1), we have

ϕ(C) = Pλ

[
ϕ(C) − ρT (

C + C

2
)
]
. (3.9)

This scheme can be used to implement the iterative scheme for solving GVI of the following as:
Algo 3.7: For C0 ∈ H, calculate Cn+1 by the formulation:

ϕ(Cn+1) = Pλ

[
ϕ(Cn) − ρT (

Cn + Cn+1

2
)
]
. n = 0, 1, 2... (3.10)

For ϕ = I, we obtain

Cn+1 = Pλ

[
Cn − ρT (

Cn + Cn+1

2
)
]
, n= 0,1, 2...

see Noor et al. [30].
For (3.10), we use the technique of predictor-corrector to convert the above implicit method into

explicit method for working out general variational inequalities.
Algo 3.8: For a taken C0 ∈ H, calculate Cn+1 by the formulation:

yn = Pλ
[
Cn − ρTCn

]
,

ϕ(Cn+1) = Pλ

[
ϕ(Cn) − ρT (

Cn + yn

2
)
]
. n= 0,1, 2... (3.11)

We see that (3.11) is the new iterative scheme(implicit midpoint) for solving the GVI. It is evident
that different variants of the Eq (3.1) fixed point formulation have been suggested for Algos 3.7 and 3.8.
This is the main reason for the paper: it can be combined with fixed point formulations to recommend
an implicit scheme for GVI and other optimization problems.

The Eq (3.1) can be modified as:

ϕ(C) = Pλ

[
ϕ(C) + ϕ(C)

2
− ρT (

C + C

2
)
]
. (3.12)

We want to say that from (3.12), we develop the new algorithm called implicit scheme.For
implementation of this scheme, we consider the predictor-corrector rule. For this, we take Algo 3.1 as
predictor and Algo 3.9 as a corrector step. This procedure is called two steps method for the solution
of the GVI.
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This new equivalent formulation by using fixed point allows us to motivate the following scheme
for the GVI.
Algo 3.9: For C0 ∈ H, calculate Cn+1 by the formulation:

ϕ(Cn+1) = Pλ

[
ϕ(Cn) + ϕ(Cn+1)

2
− ρT (

Cn + Cn+1

2
)
]
, n = 0, 1, 2... (3.13)

that is an implicit scheme.
It is again highlighted that the formulation made and constructed in the (3.13) is an implicit schem.

For implementation of the modified implicit scheme, we apply predictor-corrector rule. Here, predictor
step is consider as Algo 3.1 and corrector step as Algo 3.9 for solving the GVI. This process is also
called two steps method and scheme is new for GVI.
Algo 3.10: For C0 ∈ H, calculate Cn+1 by the formulation:

yn = Pλ
[
Cn − ρTCn

]
,

ϕ(Cn+1) = Pλ

[
ϕ(Cn) + ϕ(yn)

2
− ρT (

Cn + yn

2
)
]
, n=0,1, 2...

which is known as two-step method and considers to be new scheme. It is important to provide and
prove the convergence analysis of the Algo 3.10 which is our main target and motivation of the new
created scheme.

Theorem 1. Let the mappings T, ϕ are strongly monotone with fixed α > 0 and δ > 0 are lipschitz
contious with fixed β > 0 and σ > 0, respectively. Let C ∈ H be the solution of Eq (2.1) and Cn+1 be
the approximate solution obtained from algo 3.10. If there exists a constant ρ > 0, such that

0 <
∣∣∣∣∣ρ − αβ2

∣∣∣∣∣ <
√
α2 − 4β2k (1 − k)

β2 , (3.14)

then the approximate solution Cn+1 coverges to the exact solution C ∈ H.

Proof. Let C ∈ H be the solution of Eq (1) and Cn+1 be the approximate solution from Algo 3.10, then

Cn+1 = Cn+1 − ϕ(Cn+1) + Pλ

[
ϕ(Cn) + ϕ(Cn+1)

2
− ρT (

Cn + Cn+1

2
)
]

(3.15)

C = C − ϕ(C) + Pλ

[
ϕ(C) + ϕ(C)

2
− ρT (

C + C

2
)
]
. (3.16)

From Eqs (3.15) and (3.16) we can write

∥Cn+1 − C∥ =
∥ Cn+1 − ϕ(Cn+1) + Pλ

[
ϕ(Cn) + ϕ(Cn+1)

2
− ρT (

Cn + Cn+1

2
)
]
− C

+ϕ(C) − Pλ

[
ϕ(C) + ϕ(C)

2
− ρT (

C + C

2
)
]
∥

as Cλ is non-expensiveu, the above equation can be written as:

∥Cn+1 − C∥ ≤ ∥Cn+1 − C − ϕ(Cn+1) + ϕ(C)∥
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+

∥∥∥∥∥ϕ(Cn+1) + ϕ(Cn)
2

−
ϕ(C) + ϕ(C)

2
− ρT (

Cn+1 + Cn

2
) + ρT (

C + C

2
)
∥∥∥∥∥ .

Adding and subtracting (
Cn+1 + Cn

2
−
C + C

2
)

∥Cn+1 − C∥ ≤ ∥Cn+1 − C − (ϕ(Cn+1) − ϕ(C))∥

−+ ∥ (
Cn+1 + Cn

2
−
C + C

2
) +
ϕ(Cn+1) + ϕ(Cn)

2
−
ϕ(C) + ϕ(C)

2
+(
Cn+1 + Cn

2
−
C + C

2
) − ρ

(
T (
Cn+1 + Cn

2
) − T (

C + C

2
)
)
∥

∥Cn+1 − C∥ ≤ ∥Cn+1 − C − (ϕ(Cn+1) − ϕ(C))∥

+

∥∥∥∥∥−(
Cn+1 + Cn

2
−
C + C

2
) +
ϕ(Cn+1) + ϕ(Cn)

2
−
ϕ(C) + ϕ(C)

2

∥∥∥∥∥
+

∥∥∥∥∥∥(
Cn+1 + Cn

2
−
C + C

2
) − ρ

(
T (
Cn+1 + Cn

2
) − T (

C + C

2
)
)∥∥∥∥∥∥

∥Cn+1 − C∥ ≤ ∥Cn+1 − C − (ϕ(Cn+1) − ϕ(C))∥

+

∥∥∥∥∥∥−
{

(
Cn+1 + Cn

2
−
C + C

2
) −
ϕ(Cn+1) + ϕ(Cn)

2
+
ϕ(C) + ϕ(C)

2

}∥∥∥∥∥∥
+

∥∥∥∥∥∥(
Cn+1 + Cn

2
−
C + C

2
) − ρ

(
T (
Cn+1 + Cn

2
) − T (

C + C

2
)
)∥∥∥∥∥∥

∥Cn+1 − C∥ ≤ ∥Cn+1 − C − (ϕ(Cn+1) − ϕ(C))∥

+
1
2
∥Cn+1 + Cn − C − C − ϕ(Cn+1) − ϕ(Cn) + ϕ(C) + ϕ(C)∥

+

∥∥∥∥∥∥(
Cn+1 + Cn

2
−
C + C

2
) − ρ

(
T (
Cn+1 + Cn

2
) − T (

C + C

2
)
)∥∥∥∥∥∥

∥Cn+1 − C∥ ≤ ∥Cn+1 − C − (ϕ(Cn+1) − ϕ(C))∥

+
1
2
∥Cn+1 − C − ϕ(Cn+1) + ϕ(C) + Cn − C − ϕ(Cn) + ϕ(C)∥

+

∥∥∥∥∥∥(
Cn+1 + Cn

2
−
C + C

2
) − ρ

(
T (
Cn+1 + Cn

2
) − T (

C + C

2
)
)∥∥∥∥∥∥

∥Cn+1 − C∥ ≤ ∥Cn+1 − C − (ϕ(Cn+1) − ϕ(C))∥

+
1
2
∥Cn+1 − C − (ϕ(Cn+1) − ϕ(C)) + Cn − C − (ϕ(Cn) − ϕ(C))∥

+

∥∥∥∥∥∥(
Cn+1 + Cn

2
−
C + C

2
) − ρ

(
T (
Cn+1 + Cn

2
) − T (

C + C

2
)
)∥∥∥∥∥∥
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∥Cn+1 − C∥ ≤ ∥Cn+1 − C − (ϕ(Cn+1) − ϕ(C))∥

+
1
2
∥Cn+1 − C − (ϕ(Cn+1) − ϕ(C))∥ +

1
2
∥Cn − C − (ϕ(Cn) − ϕ(C))∥

+

∥∥∥∥∥∥(
Cn+1 + Cn

2
−
C + C

2
) − ρ

(
T (
Cn+1 + Cn

2
) − T (

C + C

2
)
)∥∥∥∥∥∥

∥Cn+1 − C∥ ≤
3
2
∥Cn+1 − C − (ϕ(Cn+1) − ϕ(C))∥ + ∥Cn − C − (ϕ(Cn) − ϕ(C))∥

+

∥∥∥∥∥∥(
Cn+1 + Cn

2
−
C + C

2
) − ρ

(
T (
Cn+1 + Cn

2
) − T (

C + C

2
)
)∥∥∥∥∥∥ .

Here we consider,

∥Cn+1 − C − (ϕ(Cn+1) − ϕ(C))∥2 = ∥Cn+1 − C∥
2
− 2 ⟨Cn+1 − C, ϕ(Cn+1) − ϕ(C)⟩ + ∥ϕ(Cn+1) − ϕ(C)∥2

∥Cn+1 − C − (ϕ(Cn+1) − ϕ(C))∥2 ≤ ∥Cn+1 − C∥
2
− 2δ ∥Cn+1 − C∥

2 + σ2 ∥Cn+1 − C∥
2

∥Cn+1 − C − (ϕ(Cn+1) − ϕ(C))∥2 ≤
(
1 − 2δ + σ2

)
∥Cn+1 − C∥

2

∥Cn+1 − C − (ϕ(Cn+1) − ϕ(C))∥ ≤
√

1 − 2δ + σ2 ∥Cn+1 − C∥ . (3.17)

Similarily,
∥Cn − C − (ϕ(Cn) − ϕ(C))∥ ≤

√
1 − 2δ + σ2 ∥Cn − C∥ . (3.18)

Also we can have,∥∥∥∥∥∥Cn+1 + Cn

2
−
C + C

2
− ρ

(
T (
Cn+1 + Cn

2
) − T (

C + C

2
)
)∥∥∥∥∥∥2

=

∥∥∥∥∥Cn+1 + Cn

2
−
C + C

2

∥∥∥∥∥2

− 2ρ
〈
Cn+1 + Cn

2
−
C + C

2
,T (
Cn+1 + Cn

2
) − T (

C + C

2
)
〉

+ρ2
∥∥∥∥∥T (
Cn+1 + Cn

2
) − T (

C + C

2
)
∥∥∥∥∥2

∥∥∥∥∥∥Cn+1 + Cn

2
−
C + C

2
− ρ

(
T (
Cn+1 + Cn

2
) − T (

C + C

2
)
)∥∥∥∥∥∥2

≤

∥∥∥∥∥Cn+1 + Cn

2
−
C + C

2

∥∥∥∥∥2

− 2αρ
∥∥∥∥∥Cn+1 + Cn

2
−
C + C

2

∥∥∥∥∥2

+ρ2β2
∥∥∥∥∥Cn+1 + Cn

2
−
C + C

2

∥∥∥∥∥2

∥∥∥∥∥∥Cn+1 + Cn

2
−
C + C

2
− ρ

(
T (
Cn+1 + Cn

2
) − T (

C + C

2
)
)∥∥∥∥∥∥2

≤
(
1 − 2αρ + ρ2β2

) ∥∥∥∥∥Cn+1 + Cn

2
−
C + C

2

∥∥∥∥∥2

∥∥∥∥∥∥Cn+1 + Cn

2
−
C + C

2
− ρ

(
T (
Cn+1 + Cn

2
) − T (

C + C

2
)
)∥∥∥∥∥∥ ≤ √

1 − 2αρ + ρ2β2

∥∥∥∥∥Cn+1 − C

2
+
Cn − C

2

∥∥∥∥∥
AIMS Mathematics Volume 8, Issue 5, 10788–10801.
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2
−
C + C

2
− ρ

(
T (
Cn+1 + Cn

2
) − T (

C + C

2
)
)∥∥∥∥∥∥

≤
1
2

√
1 − 2αρ + ρ2β2Cn+1 − C +

1
2

√
1 − 2αρ + ρ2β2 ∥Cn − C∥ . (3.19)

Now,

∥Cn+1 − C∥ ≤
3
2

√
1 − 2δ + σ2 ∥Cn+1 − C∥ +

1
2

√
1 − 2δ + σ2 ∥Cn − C∥

+
1
2

√
1 − 2αρ + ρ2β2 ∥Cn+1 − C∥ +

1
2

√
1 − 2αρ + ρ2β2 ∥Cn − C∥

∥Cn+1 − C∥ −
3
2

√
1 − 2δ + σ2 ∥Cn+1 − C∥ −

1
2

√
1 − 2αρ + ρ2β2 ∥Cn+1 − C∥

≤
1
2

√
1 − 2δ + σ2 ∥Cn − C∥ +

1
2

√
1 − 2αρ + ρ2β2 ∥Cn − C∥

(
1 −

3
2

√
1 − 2δ + σ2 −

1
2

√
1 − 2αρ + ρ2β2

)
∥Cn+1 − C∥

≤

(
1
2

√
1 − 2δ + σ2 +

1
2

√
1 − 2αρ + ρ2β2

)
∥Cn − C∥

∥Cn+1 − C∥ ≤
1
2

√
1 − 2δ + σ2 + 1

2

√
1 − 2αρ + ρ2β2

1 − 3
2

√
1 − 2δ + σ2 − 1

2

√
1 − 2αρ + ρ2β2

∥Cn − C∥

∥Cn+1 − C∥ ≤ θ ∥Cn − C∥ . (3.20)

Where,

θ =
1
2

√
1 − 2δ + σ2 + 1

2

√
1 − 2αρ + ρ2β2

1 − 3
2

√
1 − 2δ + σ2 − 1

2

√
1 − 2αρ + ρ2β2

.

For contract solution, θ < 1, then,

1
2

√
1 − 2δ + σ2 + 1

2

√
1 − 2αρ + ρ2β2

1 − 3
2

√
1 − 2δ + σ2 − 1

2

√
1 − 2αρ + ρ2β2

< 1

1
2

√
1 − 2δ + σ2 +

1
2

√
1 − 2αρ + ρ2β2 < 1 −

3
2

√
1 − 2δ + σ2 −

1
2

√
1 − 2αρ + ρ2β2√

1 − 2αρ + ρ2β2 < 1 − 2
√

1 − 2δ + σ2.

Let k =
√

1 − 2δ + σ2, then, √
1 − 2αρ + ρ2β2 < 1 − 2k

1 − 2αρ + ρ2β2 < 1 + 4k2 − 4k

ρ2β2 − 2αρ + 4k − 4k2 < 0

ρ2β2 − 2αρ + 4k (1 − k) < 0.
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Apply quadratic formula,

ρ <
2α ±

√
4α2 − 16β2k (1 − k)

2β2

ρ <
2α ± 2

√
α2 − 4β2k (1 − k)

2β2

ρ <
α

β2 ±

√
α2 − 4β2k (1 − k)

β2∣∣∣∣∣ρ − αβ2

∣∣∣∣∣ <
√
α2 − 4β2k (1 − k)

β2

where, k > 1.
Hence,

0 <
∣∣∣∣∣ρ − αβ2

∣∣∣∣∣ <
√
α2 − 4β2k (1 − k)

β2

where,

α > 2β
√

k (1 − k)

and 0 < k < 1.
From Eq (3.22), we have

∥Cn+1 − C∥ ≤ Π
∞
i=0 θi ∥C0 − C∥

Π∞i=0 θi = 0.

Cosequently, lim
n→∞
∥Cn+1 − C∥ → 0,

lim
n→∞
∥Cn+1 − C∥ → 0

lim
n→∞
Cn+1 = C.

Which satisfies the general variational inequalities. From (3.14), it follows that θ < 1. This shows that
the Cn+1 created from the the new Algo (3.10) called approximate solution and has converged to exact
solution C ∈ λ satisfy the inequality (2.1).

4. Numerical example and discussion

Problem 1. We consider the problem related to general variational inequality (2.1), with ϕ(C) =
BC + q and TC = C, where

B =



4 −2 0 · · · 0 0
1 4 −2 · · · 0 0

0 1 4 . . . 0 0
...
...
. . .
. . .
. . .

...

0 0 0 . . .
. . . −2

0 0 0 · · · 1 4


, q =


1
...
...

1

 .

For out put of the result the following domains and parameters are considered.
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M = {α ∈ Rn/ 0 ≤ αi ≤ 1, for i = 1, 2, 3, ....n} . Tables 1 and 2 mention the output for the
Algo 3.10 with starting initial point C0 = −B−1q for the matrix of order n = 100. For all output, we
set, µ, δ ∈ (0, 1), γ ∈ [1, 2] and ρ > 0. The process of iteration will stop when ∥R(Cn, ρn)∥ ≤ 10−7.

Tables 1 and 2 provide the output of and results of the new establised algorithm (Algo 3.10). From
these values, we have seen and observed that by varying of the parameters δ, ρ, and µ, the number of
iterations also vary. If we set the parameters accordingly, the number of iterations reduce significantly.

Table 1. Numberical results for Algo 3.10.

Parameters ρ = 5, δ = 0.2, ρ = 5, δ = 0.1, ρ = 4, δ = 0.04,
µ = 0.6 µ = 0.7 µ = 0.6

Iterations 6 10 14

Table 2. Numberical results for Algo 3.10.

Parameters ρ = 5, δ = 0.3, ρ = 7, δ = 0.2, ρ = 8, δ = 0.05,
µ = 0.5 µ = 0.6 µ = 0.6

Iterations 3 4 12

5. Conclusions

In order to establish equivalence and make recommendations for new iterative approaches for
solving general variational inequilities, this research paper makes use of the fixed point formulation
and general variational inequalities. Under certain favorable condition for the established method’s,
the convergence analysis is examined. As special cases, the extragradient method and modified
double projection methods are among these novel implicit methods. Several novel implicit methods
for resolving GVI and related problems can be recommended using the methods and procedures
described in this paper. For use, a numerical example is provided.
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8. L. C. Ceng, E. Köbis, X. P. Zhao, On general implicit hybrid iteration method for triple hierarchical
variational inequalities with hierarchical variational inequality constraints, Optimization, 69
(2020), 1961–1986. https://doi.org/10.1080/02331934.2019.1703978

9. L. C. Ceng, J. C. Yao, Y. Shehu, On Mann implicit composite subgradient extragradient methods
for general systems of variational inequalities with hierarchical variational inequality constraints,
J. Inequal. Appl., 2022 (2022), 78. https://doi.org/10.1186/s13660-022-02813-0
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