A complex intuitionistic fuzzy set is a generalization framework to characterize several applications in decision making, pattern recognition, engineering, and other fields. This set is considered more fitting and coverable to Intuitionistic Fuzzy Sets (IDS) and complex fuzzy sets. In this paper, the abstraction of (α1,2,β1,2) complex intuitionistic fuzzy sets and (α1,2,β1,2)-complex intuitionistic fuzzy subgroups were introduced regarding to the concept of complex intuitionistic fuzzy sets. Besides, we show that (α1,2,β1,2)-complex intuitionistic fuzzy subgroup is a general form of every complex intuitionistic fuzzy subgroup. Also, each of (α1,2,β1,2)-complex intuitionistic fuzzy normal subgroups and cosets are defined and studied their relationship in the sense of the commutator of groups and the conjugate classes of group, respectively. Furthermore, some theorems connected the (α1,2,β1,2)-complex intuitionistic fuzzy subgroup of the classical quotient group and the set of all (α1,2,β1,2)-complex intuitionistic fuzzy cosets were studied and proved. Additionally, we expand the index and Lagrange's theorem to be suitable under (α1,2,β1,2)-complex intuitionistic fuzzy subgroups.
Citation: Doaa Al-Sharoa. (α1, 2, β1, 2)-complex intuitionistic fuzzy subgroups and its algebraic structure[J]. AIMS Mathematics, 2023, 8(4): 8082-8116. doi: 10.3934/math.2023409
[1] | Zhuonan Wu, Zengtai Gong . Algebraic structure of some complex intuitionistic fuzzy subgroups and their homomorphism. AIMS Mathematics, 2025, 10(2): 4067-4091. doi: 10.3934/math.2025189 |
[2] | Muhammad Jawad, Niat Nigar, Sarka Hoskova-Mayerova, Bijan Davvaz, Muhammad Haris Mateen . Fundamental theorems of group isomorphism under the framework of complex intuitionistic fuzzy set. AIMS Mathematics, 2025, 10(1): 1900-1920. doi: 10.3934/math.2025088 |
[3] | Supriya Bhunia, Ganesh Ghorai, Qin Xin . On the fuzzification of Lagrange's theorem in (α,β)-Pythagorean fuzzy environment. AIMS Mathematics, 2021, 6(9): 9290-9308. doi: 10.3934/math.2021540 |
[4] | Maysaa Al-Qurashi, Mohammed Shehu Shagari, Saima Rashid, Y. S. Hamed, Mohamed S. Mohamed . Stability of intuitionistic fuzzy set-valued maps and solutions of integral inclusions. AIMS Mathematics, 2022, 7(1): 315-333. doi: 10.3934/math.2022022 |
[5] | Zhihua Wang . Stability of a mixed type additive-quadratic functional equation with a parameter in matrix intuitionistic fuzzy normed spaces. AIMS Mathematics, 2023, 8(11): 25422-25442. doi: 10.3934/math.20231297 |
[6] | Shichao Li, Zeeshan Ali, Peide Liu . Prioritized Hamy mean operators based on Dombi t-norm and t-conorm for the complex interval-valued Atanassov-Intuitionistic fuzzy sets and their applications in strategic decision-making problems. AIMS Mathematics, 2025, 10(3): 6589-6635. doi: 10.3934/math.2025302 |
[7] | Adela Khamis, Abd Ghafur Ahmad . On fundamental algebraic characterizations of complex intuitionistic Q-fuzzy subfield. AIMS Mathematics, 2023, 8(3): 7032-7060. doi: 10.3934/math.2023355 |
[8] | Supriya Bhunia, Ganesh Ghorai, Qin Xin . On the characterization of Pythagorean fuzzy subgroups. AIMS Mathematics, 2021, 6(1): 962-978. doi: 10.3934/math.2021058 |
[9] | Sumaira Yasmin, Muhammad Qiyas, Lazim Abdullah, Muhammad Naeem . Linguistics complex intuitionistic fuzzy aggregation operators and their applications to plastic waste management approach selection. AIMS Mathematics, 2024, 9(11): 30122-30152. doi: 10.3934/math.20241455 |
[10] | Tehreem, Harish Garg, Kinza Ayaz, Walid Emam . Multi attribute decision-making algorithms using Hamacher Choquet-integral operators with complex intuitionistic fuzzy information. AIMS Mathematics, 2024, 9(12): 35860-35884. doi: 10.3934/math.20241700 |
A complex intuitionistic fuzzy set is a generalization framework to characterize several applications in decision making, pattern recognition, engineering, and other fields. This set is considered more fitting and coverable to Intuitionistic Fuzzy Sets (IDS) and complex fuzzy sets. In this paper, the abstraction of (α1,2,β1,2) complex intuitionistic fuzzy sets and (α1,2,β1,2)-complex intuitionistic fuzzy subgroups were introduced regarding to the concept of complex intuitionistic fuzzy sets. Besides, we show that (α1,2,β1,2)-complex intuitionistic fuzzy subgroup is a general form of every complex intuitionistic fuzzy subgroup. Also, each of (α1,2,β1,2)-complex intuitionistic fuzzy normal subgroups and cosets are defined and studied their relationship in the sense of the commutator of groups and the conjugate classes of group, respectively. Furthermore, some theorems connected the (α1,2,β1,2)-complex intuitionistic fuzzy subgroup of the classical quotient group and the set of all (α1,2,β1,2)-complex intuitionistic fuzzy cosets were studied and proved. Additionally, we expand the index and Lagrange's theorem to be suitable under (α1,2,β1,2)-complex intuitionistic fuzzy subgroups.
Intuitionistic Fuzzy Sets (IFS) [1] is a generalization of Fuzzy Sets (FS) [2]. Many problems have been successfully solved using IFS compared to FS. IFS is characterized by representing information that depends on human subjectivity with answers of "yes", "No", and "I am not sure, I do not know, … etc. i.e. IFS has membership, non-membership, and hesitant functions, respectively, which is help to represent human information in medical application, multi-attribute decision making, renewable energy, manufacturing industry, and other fields [3,4,5,6,7].
Two approaches in the literature have been generated from the idea of combining FS and the mathematical field of algebra. In 1971, the first approach was given by Rosenfeld [8] under the concept of fuzzy subgroup. Many researchers studied, generalized, and discussed Rosenfeld approach [9,10,11,12,13,14,15]. In 1989, Biswas introduced intuitionistic fuzzy subgroup (IFSG) and its properties [16]. The notion of (α, β)-cut of IFSG was presented by Sharma [17]. Sharma and other researcher have been widely studied IFSG and its properties [18,19,20,21,22,23]. In 1994, the second approach was introduced by Dip [24], named fuzzy group based on fuzzy space. Before started his new approach, Dib and Youssef established a new structure of fuzzy cartesian product, relations and functions [25]. Dib approach can be summarized in replacing fuzzy space and fuzzy binary operation instead of the universal set and binary operation, respectively, at traditional algebra. The fuzzy normal subgroup is defined using fuzzy space by Dib and Hassan [26]. Marashdeh and Salleh generalized the concept of fuzzy space to intuitionistic fuzzy space to create the theory of Intuitionistic Fuzzy Group (IFG) [27] and then Intuitionistic Fuzzy Normal Subgroup (IFNSG) [28].
Moreover, complicated information involving periodicity and changeable meaning for the same data gives a new type of uncertainty. This type of complicated information comes from the rapid development of our daily life and modern technology. Therefore, we need a proper mathematical tool that has the ability to represent the uncertainty and periodicity semantics of information at the same time. So, the expected tool should be helpful and easily used by decision-makers to decrease the difficulties of giving a proper solution to the decision-making problems. To beat this obstacle, Ramot et al. [29,30] introduced the concept of Complex Fuzzy Sets (CFS) and logic. Also, Alkouri and Salleh [31,32,33] introduced Complex Intuitionistic Fuzzy Set (CIFS), relations and its operations. Both CFS and CIFS generated an extra range which lies within the unit disk in the complex plane. This extension helps to represent complicated information that carries time-periodic problems and two-dimension data simultaneously in a single set. Differences between CFS and CIFS appear in the ability of CIFS to represent information in more detail by using an extra complex non-membership function. Besides CIFS is considered a generalization of CFS that can solve a problem that seems too much roughs in CF [30,31]. Several enhancement and development applications using CIFS and its generalizations have increased rapidly appeared in different fields [34,35,36,37,38,39,40], for example, decision-making process, information security management, graph and group, cellular network and etc.
Thus, it is greatly necessary to create additional notions of IFS and CIFS relating to complex set members. In 2016, Alhusbann and Salleh [41] introduced the notion of complex fuzzy group based on Dib approach. One year Later, Alsarahead and Ahmed [42,43,44] produced different notions named complex fuzzy subgroup, complex fuzzy subring and complex fuzzy soft subgroups from Rosenfeld and Liu approach [8,45]. In 2021, (α, β)-complex fuzzy sets, subgroups, and their properties were introduced by Alolaiyan et al. [46]. Furthermore, they introduced the notion of (α, β)-complex fuzzy cosets to formulate (α, β)-complex fuzzy normal subgroup. Besides, (α, β)-complex fuzzy quotient ring induced by (α, β)-CFNSG and (α, β)-complex fuzzification of Lagrange's Theorem were also derived in [46]. Concurrently, with developing the fuzzy subgroup to the complex fuzzy subgroup. IFS has been clearly developed into IFG and IFNSG [27,28]. Also, in the realm of complex numbers, the notion of Complex Intuitionistic Fuzzy Group (CIFG) and Complex Intuitionistic Fuzzy normal Subgroup were produced by Alhusban et al. in 2016 and 2017 [47,48].
Recently, Xiao and other researchers studied, generalized and applied the Complex evidence theory in the field of quantum mechanics and decisions. Also, they designed several algorithms, model and methods using quantum information in complex plane to predicting and describing human decision-making behaviors to be applied in pattern classification [49,50,51,52].
In this study, our motivations are, 1- to introduce more generalized notion under CIFS, i.e. (α1,2,β1,2)-Complex Intuitionistic Fuzzy Subgroups (CIFSG). 2- to define the reduced relations between our concept and each of (α, β)-CFS, and CIFS. 3- to study the algebraic structure of (α1,2,β1,2)-complex intuitionistic fuzzy normal subgroup (CIFNSG) and some algebraic notions as coset, quotient group, and Lagrange theorem under (α1,2,β1,2) CIFSG. Therefore, the main purpose of this study is to introduce a powerful extension of CIFS and (α, β)-complex fuzzy set and subgroup. Besides, we show the relation between each of (α1,2,β1,2)-CIFNSG and CIF cosets. Also, we prove some theorems connected the (α1,2,β1,2)-CIFSG of the classical quotient group and the set of all (α1,2,β1,2)-CIF cosets. Finally, we expand the index and Lagrange's theorem to be suitable under (α1,2,β1,2)-CIFSG.
(Alpha 1, 2, Beta 1, 2) CIF- complex intuitionistic fuzzy cosets is a cornerstone in the structure of Lagrange's theorem under CIFSG. Also, Cosets is a particular type of CIF subgroup named by a CIF normal subgroup. Its can be used as the elements of another group called a quotient group or factor group under CIFS. As a future research, Cosets OF CIFS also may appear in other areas of mathematics such as vector spaces and error-correcting codes.
In this section, we recall some useful definitions to produce our work successfully.
Definition 2.1. [2] A complex intuitionistic fuzzy set A, defined by A={⟨x,μA(x),γA(x)⟩:xϵX}, where μA(x):X→{a|a∈∁,|a≤1}, γA(x):X→{ˊa|ˊa∈∁,|ˊa≤1}, and |μA(x)+γA(x)|≤1, and i=√−1, each of rA(x), kA(x) belong to the interval [0, 1] such that 0≤rA(x)+kA(x)≤1, also wrA(x) and wkA(x) are real-valued.
Definition 2.2 [2]. Let A={⟨x,μA(o),γA(o)⟩:oϵO} be a complex intuitionistic fuzzy set. Define the complement of A,c(A), as c(A)=¨A={⟨x,γA(o),μA(o)⟩:xϵX}={⟨x,kA(o).ei(wkA(o)),rA(o)ei(wrA(o))⟩:oϵO}, where wkA(o)=wA(o),2π−wA(o) or wA(o)+π.
Definition 2.3. [2] Let μA(o)=rA(o)e i ωr A(o),andνA(o)=kA(o)e i ωk A(o), and μB(o)=rB(o)e i ω B(o),andνB(o)=kB(o)e i ωkB(o), Be two membership and non-membership functions of complex intuitionistic fuzzy sets A and B respectively, on O.
a. B is subset of A, "A⊇B or B⊆A", if for any o∈O, rA(o)⩽rB(o),kA(o)⩾kB(o), ωrA(o)⩽ωrB(o),andωkA(o)⩾ωkB(o).
b. A union B, A∪B, as
A∪B={x,max |
c. A intersection B, denoted by A \cap B , as
A \cap B = \left\{ {x, \min (} \right.{r_A}(o), {r_B}(o)){e^{i\min ({\omega ^r}_A(o), {\omega ^r}_B(o))}}, \left. {\max ({k_A}(o), {k_B}(o)){e^{i\max (\, {\omega ^k}_A(o), {\omega ^k}_B(o))}}} \right\}. |
Some definitions related to ( \alpha , \beta )-CFS and ( \alpha , \beta )-CFSG of a group G are selected from the reference of Alolaiyan et al. [46], as follow:
Definition 2.4. [46] \mathrm{L}\mathrm{e}\mathrm{t}\;\mathrm{A} = \left\{ < a, S\left(a\right){e}^{i\alpha {w}_{A}^{S\left(a\right)}} > :a\mathrm{ϵ}G\right\} , be CFS of group G, for any \alpha ϵ\left[\mathrm{0, 1}\right], and\;\beta ϵ\left[\mathrm{0, 2}\pi \right], such that S\left(a\right)\le \alpha , {w}_{A}^{S}\le \beta , or ( S\left(a\right)\ge \alpha , {w}_{A}^{s}\ge \beta ). Then, the set {A}_{(\alpha , \beta )} is called an ( \alpha , \beta )-CFS and is defined as:
{S}_{{A}_{\alpha }}{e}^{i{w}_{{A}_{\beta }}^{S\left(a\right)}} = \mathrm{min}\{S\left(a\right){e}^{i{w}_{A}^{S\left(a\right)}}, \alpha {e}^{i\beta }\} = \mathrm{min}\{{S}_{A}\left(a\right), \alpha \}{e}^{i\mathrm{m}\mathrm{i}\mathrm{n}({w}_{A}^{S\left(a\right)}, \beta )}\} , |
where, {S}_{{A}_{\alpha }}{e}^{i{w}_{{A}_{\beta }}^{S\left(a\right)}} is called a complex membership function of ( \alpha , \beta )-complex fuzzy sets.
Definition 2.5. [46]. Let {A}_{(\alpha , \beta )} be an ( \alpha , \beta )-CFS of group G for \alpha , \beta ϵ\left[\mathrm{0, 1}\right] . Then, {A}_{(\alpha , \beta )} is called
( \alpha , \beta )-CFSG of group G if it satisfies the following axioms:
\mathrm{S}{A}_{\alpha }\left(pq\right){e}^{i{w}_{{A}_{\beta }}^{S\left(pq\right)}}\ge \mathrm{m}\mathrm{i}\mathrm{n}\{\mathrm{S}{A}_{\alpha }\left(p\right){e}^{i\alpha {w}_{{A}_{\beta }}^{S\left(p\right)}}, \mathrm{S}{A}_{\alpha }(q\left){e}^{i\alpha {w}_{{A}_{\beta }}^{S\left(q\right)}}\right\} |
\mathrm{S}{A}_{\alpha }\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{\beta }}^{S\left({p}^{-1}\right)}}\ge \mathrm{S}{A}_{\alpha }\left(p\right){e}^{i\alpha {w}_{{A}_{\beta }}^{S\left(p\right)}}, \forall p, q\in G. |
Definition 2.6. [46]. Let {A}_{(\alpha , \beta )} be an (\alpha , \beta )- CFSG of group G , where \alpha \in \left[\mathrm{0, 1}\right] and \beta \in \left[\mathrm{0, 2}\mathrm{\pi }\right] . Then the \left(\alpha , \beta \right)- CFS g{A}_{(\alpha , \beta )}\left(a\right) = \left\{\left(a, {S}_{g{A}_{\alpha }}\left(a\right){e}^{i{w}_{{gA}_{\beta }}^{{S}_{g{A}_{\alpha }}}\left(a\right)}\right), a\in G\right\} of G is called a (\alpha , \beta )\text{-} complex fuzzy left coset of G determined by {A}_{(\alpha , \beta )} and g and is described as:
{S}_{g{A}_{\alpha }}\left(o\right){e}^{i\alpha {w}_{{gA}_{\beta }}^{{S}_{g{A}_{\alpha }}}\left(o\right)} = {S}_{{A}_{\alpha }}\left({g}^{-1}o\right){e}^{i\alpha {w}_{{A}_{\beta }}^{{S}_{{A}_{\alpha }}}\left({g}^{-1}o\right)} = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left({g}^{-1}o\right){e}^{i{w}_{A}^{{S}_{A}}\left({g}^{-1}o\right)}\right., \left.{\alpha e}^{i\beta }\right\} . |
Similarly, they defined (\alpha , \beta ) -complex fuzzy right coset [45].
Definition 2.7. [46]. Let {A}_{(\alpha , \beta )} be an (\alpha , \beta )- CFSG of group G , where \alpha \in \left[\mathrm{0, 1}\right] and \beta \in \left[\mathrm{0, 2}\mathrm{\pi }\right] . Then, {A}_{(\alpha , \beta )} is called a (\alpha , \beta ) -CFNSG if {A}_{(\alpha , \beta )}\left(gh\right) = {A}_{(\alpha , \beta )}\left(hg\right) . Equivalently (\alpha , \beta ) -CFSG {A}_{(\alpha , \beta )} is (\alpha , \beta ) -CFNSG of group G if: {A}_{(\alpha , \beta )}g\left(h\right) = g{A}_{(\alpha , \beta )}\left(h\right) , for all g, h\in G .
Definition 2.8. [45]. Let {A}_{\left(\alpha , \beta \right)} be an \left(\alpha , \beta \right) -CFSG of finite group G . Then, the cardinality of the set G/{A}_{\left(\alpha , \beta \right)} of all \left(\alpha , \beta \right) -complex fuzzy left cosets of G by {A}_{\left(\alpha , \beta \right)} is called the index of \left(\alpha , \beta \right) -CFSG and is denoted by \left[G:{A}_{\left(\alpha , \beta \right)}\right] .
In this section, we define the hybrid models of ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFSs and ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFSGs. We prove that every CIFSG is also ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFSG but the converse may not be true generally, and we discuss some basic characterization of this phenomenon.
Definition 3.1. \mathrm{L}\mathrm{e}\mathrm{t}\;\mathrm{A} = \left\{ < a, S\left(a\right){e}^{i\alpha {w}_{A}^{S\left(a\right)}}, L\left(a\right){e}^{i\alpha {w}_{A}^{L\left(a\right)}} > :\mathrm{a}\mathrm{ϵ}\mathrm{G}\right\} , be CIFS of group G, for any {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}ϵ\left[\mathrm{0, 1}\right], S, L, {w}_{A}^{S}, {w}_{A}^{L}\in \left[\mathrm{0, 1}\right] such that S\le {\alpha }_{1}, L\ge {\alpha }_{2} {w}_{A}^{S}\le {\beta }_{1}, {w}_{A}^{L}\ge {\beta }_{2} or ( S\ge {\alpha }_{1}, L\le {\alpha }_{2}, {w}_{A}^{s}\ge {\beta }_{1}, {w}_{A}^{l}\le {\beta }_{2} ), Then, the set {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is called an ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFS and is defined as:
{S}_{{A}_{{\alpha }_{1}}}{e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{{\alpha }_{1}}}\left(a\right)}} = \mathrm{min}\{S\left(a\right){e}^{i\alpha {w}_{A}^{S\left(a\right)}}, {\alpha }_{1}{e}^{i{\beta }_{1}}\} = \mathrm{min}\{{S}_{A}\left(a\right), {\alpha }_{1}\}{e}^{i\alpha \mathrm{m}\mathrm{i}\mathrm{n}({w}_{A}^{S\left(a\right)}, {\beta }_{1})}\} |
{L}_{{A}_{{\alpha }_{2}}}{e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{{\alpha }_{2}}}\left(a\right)}} = \mathrm{max}\{L\left(a\right){e}^{i\alpha {w}_{A}^{L\left(a\right)}}, {\alpha }_{2}{e}^{i{\beta }_{2}}\} = \mathrm{max}\{{L}_{A}\left(a\right), {\alpha }_{2}\}{e}^{i\alpha \mathrm{m}\mathrm{a}\mathrm{x}({w}_{A}^{L\left(a\right)}, {\beta }_{2})}\} , |
where
{S}_{{A}_{{\alpha }_{1}}} = \mathrm{m}\mathrm{i}\mathrm{n}\{S\left(a\right), {\alpha }_{1}\} , {w}_{{A}_{{\beta }_{1}}}^{S\left(a\right)} = \mathrm{m}\mathrm{i}\mathrm{n}\{{w}_{A}^{S\left(a\right)}, {\beta }_{1}\} , {L}_{{A}_{{\alpha }_{2}}} = \mathrm{m}\mathrm{a}\mathrm{x}\{\mathrm{L}\left(\mathrm{a}\right), {\alpha }_{2}\} , {w}_{{A}_{{\beta }_{2}}}^{L\left(a\right)} = \mathrm{m}\mathrm{a}\mathrm{x}\{{w}_{A}^{L\left(a\right)}, {\beta }_{2}\} , |
S+L\le 1, {w}^{S}+{w}^{L}\le 1 , {\alpha }_{1}+{\alpha }_{2}\le 1, \mathrm{a}\mathrm{n}\mathrm{d}{\beta }_{1}+{\beta }_{2}\le 1 . |
In this paper we shall use \mathrm{S}{A}_{{\alpha }_{1}}{e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{\mathrm{S}{A}_{{\alpha }_{1}}\left(a\right)}}, \mathrm{L}{A}_{{\alpha }_{2}}{e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{\mathrm{L}{A}_{{\alpha }_{2}}\left(a\right)}} as a membership function and non-membership function of ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFSs, {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})}and{B}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} respectively.
Definition Let {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} , {B}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} be a two ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFSs of G. Then
(1) A ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )–CIFS {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is homogeneous ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )–CIFS if, for all p, qϵG , we have {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)\le {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right), {L}_{{A}_{{\alpha }_{2}}}\left(p\right)\le {L}_{{A}_{{\alpha }_{2}}}\left(q\right) if and only if {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(a\right)}\left(p\right)\le {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(a\right)}\left(q\right) , {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{{\alpha }_{2}}}\left(a\right)}\left(p\right)\le {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{{\alpha }_{2}}}\left(a\right)}\left(q\right) .
(2) A ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )–CIFS {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is homogeneous ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )–CIFS with {B}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} for all p, qϵG , we have {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)\le {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right), {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)\le {L}_{{A}_{{\alpha }_{2}}}\left(q\right) if and only if {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(a\right)}\left(p\right)\le {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(a\right)}\left(q\right) , {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{{\alpha }_{2}}}\left(a\right)}\left(p\right)\le {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{{\alpha }_{2}}}\left(a\right)}\left(q\right) .
In this paper, we take ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFS as homogeneous ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFS.
Remark 1. Let, {M}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} and {N}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} be two ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFSs of G. Then ({M\cap N)}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = {M}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\cap {N}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}
Example 3.1. Consider a group {\mathrm{Z}}_{4} = {0, 1, 2, 3} is a group. Let {\alpha }_{1} = 0.7, {\alpha }_{2} = 0.2, {\beta }_{1} = 0.4, and{\beta }_{2} = 0.5 , and a CIFS \mathrm{A} = \left\{ < 0, 0.8{e}^{i\alpha 0.4}, 0.1{e}^{i\alpha 0.3} > , < 1, 0.4{e}^{i\alpha 0.1}, 0.5{e}^{i\alpha 0.6} > , \; < 2, 0.3{e}^{i0.6}, 0.7{e}^{i\alpha 0.3} > , \; < 3, 0.7{e}^{i\alpha 0.4}, 0.1{e}^{i\alpha 0.5} > \right\}\mathrm{o}\mathrm{f}\;\mathrm{a}\;\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}{\mathrm{Z}}_{4} , Then, the set {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is called an ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFS and is defined as:
{A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} = \left\{ < 0, 0.7{e}^{i\alpha 0.4}, 0.2{e}^{i\alpha 0.5} > , < 1, 0.4{e}^{i\alpha 0.1}, 0.5{e}^{i\alpha 0.6} > , \; < 2, 0.3{e}^{i0.4}, 0.7{e}^{i\alpha 0.5} > \right., |
\left. < 3, 0.7{e}^{i\alpha 0.4}, 0.2{e}^{i\alpha 0.5} > \right\} . |
Definition 3.2. Let {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} be an ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFS of group G for {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}ϵ\left[\mathrm{0, 1}\right] . Then, {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is called ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-Complex Intuitionistic Fuzzy subgroupoid of group G if the following axioms hold:
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right)}}\ge \mathrm{m}\mathrm{i}\mathrm{n}\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}, {\mathrm{S}}_{{A}_{{\alpha }_{1}}}(q\left){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}}\right\} |
{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right)}}\le \mathrm{max}\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}}, {\mathrm{L}}_{{A}_{{\alpha }_{2}}}(q\left){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}}\right\} . |
Example 3.2. Recalling that {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} = \left\{ < 0, 0.7{e}^{i\alpha 0.4}, 0.2{e}^{i\alpha 0.5} > , < 1, 0.4{e}^{i\alpha 0.1}, 0.5{e}^{i\alpha 0.6} > , \; < 2, 0.3{e}^{i0.4}, 0.7{e}^{i\alpha 0.5} > \right., \left. < 3, 0.7{e}^{i\alpha 0.4}, 0.2{e}^{i\alpha 0.5} > \right\} from Example 3.1. satisfies all axioms of Definition 3.3. for all elements in the group {\mathrm{Z}}_{4} . For example (Let p = 1, q = 2), so pq = 3, {p}^{-1} = 3 in {\mathrm{Z}}_{4} . Then:
Axiom 1:
\mathrm{S}{A}_{0.7}\left(3\right){e}^{i\alpha {w}_{{A}_{\;0.4}}^{S\left(3\right)}} = 0.7{e}^{i\alpha 0.4}\ge \mathrm{m}\mathrm{i}\mathrm{n}\mathrm{S}{A}_{0.7}\left(1\right){e}^{i\alpha {w}_{{A}_{\;0.4}}^{S\left(1\right)}} = 0.4{e}^{i\alpha 0.1}, \mathrm{S}{A}_{0.7}\left(2\right){e}^{i\alpha {w}_{{A}_{\;0.4}}^{S\left(1\right)}} = 0.3{e}^{i0.4} |
= \mathrm{min}\left\{0.4{e}^{i\alpha 0.1}, 0.3{e}^{i0.4}\right\} = \mathrm{min}\left\{0.4, 0.3\right\}{e}^{i\alpha min\left\{0.1, 0.4\right\}} = 0.3{e}^{i\alpha 0.1} . |
Axiom 2:
\mathrm{S}{A}_{0.7}\left({p}^{-1} = 3\right){e}^{i\alpha {w}_{{A}_{\;0.4}}^{S\left({p}^{-1} = 3\right)}} = 0.7{e}^{i\alpha 0.4}\ge \mathrm{S}{A}_{0.7}\left(p = 1\right){e}^{i\alpha {w}_{{A}_{\;0.4}}^{S\left(p = 1\right)}} = 0.4{e}^{i\alpha 0.1} . |
Axiom 3:
\begin{array}{c} \mathrm{L}{A}_{0.2}\left(pq = 3\right){e}^{i\alpha {w}_{{A}_{\;0.5}}^{L\left(pq = 3\right)}} = 0.2{e}^{i\alpha 0.5}\le \mathrm{max}\{\mathrm{L}{A}_{0.2}\left(p = 1\right){e}^{i\alpha {w}_{{A}_{\;0.5}}^{L\left(p = 1\right)}}, \mathrm{L}{A}_{0.2}(q = 2\left){e}^{i\alpha {w}_{{A}_{\;0.5}}^{L\left(q = 2\right)}}\right\}\\= \mathrm{max}\left\{0.5{e}^{i\alpha 0.6}, 0.7{e}^{i\alpha 0.5}\right\} = \mathrm{max}\left\{\mathrm{0.5, 0.7}\right\}{e}^{i\alpha max\left\{\mathrm{0.6, 0.5}\right\}} = 0.7{e}^{i\alpha 0.6}. \end{array} |
Axiom 4:
\mathrm{L}{A}_{0.2}\left({p}^{-1} = 3\right){e}^{i\alpha {w}_{{A}_{\;0.5}}^{L\left({p}^{-1} = 3\right)}} = 0.2{e}^{i\alpha 0.5}\le \mathrm{L}{A}_{0.2}\left(p = 1\right){e}^{i\alpha {w}_{{A}_{\;0.5}}^{L\left(p = 1\right)}} = 0.5{e}^{i\alpha 0.6}. |
Definition 3.3. Let {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} be an ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFS of group G for {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}ϵ\left[\mathrm{0, 1}\right] . Then, {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is named.
( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFSG of group G if the following axioms hold:
(1) \;{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right)}}\ge \mathrm{m}\mathrm{i}\mathrm{n}\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{S\left(p\right)}}, {\mathrm{S}}_{{A}_{{\alpha }_{1}}}(q\left){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}}\right\} .
(2) \;{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}\right)}}\ge {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}.
(3) \;{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{{\alpha }_{2}}}\left(pq\right)}}\le \mathrm{max}\{{L}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{{\alpha }_{2}}}\left(p\right)}}, {L}_{{A}_{{\alpha }_{2}}}(q\left){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{{\alpha }_{2}}}\left(q\right)}}\right\} .
(4)\; {L}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}\right)}}\le {L}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{{\alpha }_{2}}}\left(p\right)}}, \mathrm{f}\mathrm{o}\mathrm{r}\;\mathrm{a}\mathrm{l}\mathrm{l}p, qϵG .
Remark 2. {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} be an ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFS of group G, for {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}ϵ\left[\mathrm{0, 1}\right] . Then,
(1)\; {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}q\right)}}\ge \mathrm{m}\mathrm{i}\mathrm{n}\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}, {\mathrm{S}}_{{A}_{{\alpha }_{1}}}(q\left){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}}\right\} .
(2) \;{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}q\right)}}\le \mathrm{max}\{\mathrm{L}{A}_{{\alpha }_{2}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}}, \mathrm{L}{A}_{{\alpha }_{2}}(q\left){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}}\right\} .
Theorem 3.1. If {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} be an ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFS of group G, for all p, qϵG . Then,
(1) {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}}\le {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(e\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(e\right)}} , (2) {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}q\right)}} = {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(e\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(e\right)}} ,
(3) {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}}\ge {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(e\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(e\right)}} , (4) {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}q\right)}} = {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(e\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(e\right)}} ,
which implies that
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}} = {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}} |
and
{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}} = {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}} . |
Theorem 3.2. Let {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} be an ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} ) complex intuitionistic fuzzy subgroupoid of a finite G, and then {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFSG of finite G.
Proof. Let pϵG and G is a finite group; therefore, pn = e, where p has finite order n., where e is the natural element of group G. Then, we have {p}^{-1} = {p}^{n-1}, now, by using the Definition 3.3 twice, we get
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}\right)}} = {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{\;n-1}\;\right)\;{e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{\;n-1}\;\right)\;}} |
{ = \mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{\;n-2}\;\;p\right)\;{e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{\;n-2}\;\;p\right)\;}} |
\ge {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}, |
\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}\right)}} = {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{\;n-1}\;\right)\;{e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{\;n-1}\;\right)\;}} |
= {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{\;n-2}\;\;p\right)\;{e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{\;n-2p}\;\;\right)\;}} |
\le {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}} . |
Theorem3.3. Let {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} be an ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFSG of a group G, Let pϵG and
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}} = {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(e\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(e\right)}} , {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}} = {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(e\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(e\right)}}, |
then
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right)}} = {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}} , |
and
{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right)}} = {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}} , \;{\text{for all}} \; qϵG . |
Proof.
(1) Given that {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}} = {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(e\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(e\right)}} . Then form Theorem we have that
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}}\le {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}} ,{\text{ for all }} qϵG . |
Let
\begin{array}{c} {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right)}}\ge \mathrm{min}\left\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}, {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}}\right\} \\ {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right)}}\ge {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}}. \end{array} | (1) |
Now, assume that
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}} = {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}pq\right)}} |
\ge \mathrm{min}\left\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}, {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right)}}\right\} . |
Again, from Theorem 3.1, we have
\mathrm{min}\left\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}, {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right)}}\right\} = {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right)}} . |
Therefore, we obtain
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}}\ge {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right)}} . | (2) |
From Eqs (1) and (2), we have
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right)}} = {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}} . |
(2) Assume that {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}} = {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(e\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(e\right)}} . Then from Theorem 3.3 we have that
{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}}\le {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}} ,{\text{ for all }} qϵG . |
Let
\begin{array}{c} {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right)}}\le \mathrm{max}\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}}, \mathrm{L}{A}_{{\alpha }_{2}}(q\left){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}}\right\}\\ {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right)}}\le {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}} . \end{array} | (3) |
Now, assume that
{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}} = {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}pq\right)}} |
\le \mathrm{max}\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}}, {\mathrm{L}}_{{A}_{{\alpha }_{2}}}(pq\left){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right)}}\right\} . |
Again, from Theorem 3.1, we have
\mathrm{max}\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}}, {\mathrm{L}}_{{A}_{{\alpha }_{2}}}(pq\left){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right)}}\right\} = {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right)}} . |
Therefore, we obtain
{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}}\le {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right)}} . | (4) |
From Eqs (3) and (4), we have
{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right)}} = {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}} . |
Theorem 3.4 Every CIFSG of group G is also ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFSG of G.
Proof. Assume A be CIFSG of group G, and p, q ϵ G. then
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right)}} = \mathrm{min}\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right)}}, \alpha {e}^{i\beta }\} |
\ge \mathrm{m}\mathrm{i}\mathrm{n}\left\{\mathrm{min}\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}, \mathrm{S}{A}_{{\alpha }_{1}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}}\}, \alpha {e}^{i\beta }\right\} |
= \mathrm{min}\{\mathrm{min}\left\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}, \alpha {e}^{i\beta }\right\}, \mathrm{min}\left\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}}, \alpha {e}^{i\beta }\right\}\} |
= \mathrm{min}\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}, {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}}\} . |
Further, we assume that
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}\right)}} = \mathrm{min}\left\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}\right)}}, \alpha {e}^{i\beta }\right\} |
\ge \mathrm{m}\mathrm{i}\mathrm{n}\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}, \alpha {e}^{i\beta }\} |
= {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}} . |
Consider
{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right)}} = \mathrm{max}{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right)}}, \alpha {e}^{i\beta } |
\le \mathrm{m}\mathrm{a}\mathrm{x}\left\{\mathrm{max}\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}}, {\mathrm{L}}_{{A}_{{\alpha }_{2}}}(q\left){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}}\right\}, \alpha {e}^{i\beta }\right\} |
= \mathrm{max}\{\mathrm{max}\left\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}}, \alpha {e}^{i\beta }\right\}, \mathrm{min}\left\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}}, \alpha {e}^{i\beta }\right\}\} |
= \mathrm{max}\left\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}}, {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}}\right\} . |
Further, we assume that
{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}\right)}} = \mathrm{max}\left\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}\right)}}, \alpha {e}^{i\beta }\right\} |
\le \mathrm{m}\mathrm{a}\mathrm{x}\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}}, \alpha {e}^{i\beta }\} |
= {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}} . |
Theorem 3.5. Suppose A is a CIFS of group G where
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}\right)}} = {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}} , \forall p\in G. {\text{ Let }} {\alpha }_{1}{e}^{i{\beta }_{1}}\le {r}_{1}{e}^{i{w}_{1}} , |
{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}\right)}} = , {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}} , \forall p\in G . \;{\text{Let}} \; {\alpha }_{2}{e}^{i{\beta }_{2}}\ge {r}_{2}{e}^{i{w}_{2}} , |
such that {\alpha }_{1}\le {r}_{1}, {\beta }_{1}\le {w}_{1} , {\alpha }_{2}\le {r}_{2}, {\beta }_{2}\le {w}_{2} .
Where
{r}_{1}{e}^{i{w}_{1}} = \mathrm{min}\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}:p\in G\} , {r}_{2}{e}^{i{w}_{2}} = \mathrm{max}\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}}:p\in G\} |
{\alpha }_{1}, {r}_{1}, {\beta }_{1}, {w}_{1} , {\alpha }_{2}, {r}_{2}, {\beta }_{2}, {w}_{2}\in \left[\mathrm{0, 1}\right] . |
Then, {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is an ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFSG of G.
Proof. Let {\alpha }_{1}{e}^{i{\beta }_{1}}\le {r}_{1}{e}^{i{w}_{1}} , implies that \mathrm{min}\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}:p\in G\ge {\alpha }_{1}{e}^{i{\beta }_{1}} , which implies that \mathrm{min}\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}, {\alpha }_{1}{e}^{i{\beta }_{1}}\} = {\alpha }_{1}{e}^{i{\beta }_{1}}, \forall p\in G , which implies that {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}} = {\alpha }_{1}{e}^{i{\beta }_{1}} .
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(pq\right)}}\ge \mathrm{min}\{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}, {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(q\right)}}\} . |
Moreover,
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}\right)}} = {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}} . |
This implies that
{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left({p}^{-1}\right)}} = {\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\mathrm{S}}_{{A}_{{\alpha }_{1}}}\left(p\right)}}. |
Let {\alpha }_{2}{e}^{i{\beta }_{2}}\le {r}_{2}{e}^{i{w}_{2}} , implies that \mathrm{max}\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}}:p\in G\le {\alpha }_{2}{e}^{i{\beta }_{2}}, } which implies that \mathrm{max}\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}}:p\in G, {\alpha }_{2}{e}^{i{\beta }_{2}}\} = {\alpha }_{2}{e}^{i{\beta }_{2}} , \forall p\in G , which implies that
{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}} = {\alpha }_{2}{e}^{i{\beta }_{2}} |
{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(pq\right)}}\le \mathrm{max}\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}}, \mathrm{L}{A}_{{\alpha }_{2}}(q\left){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(q\right)}}\right\} |
{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}\right)}} = {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}} |
{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({p}^{-1}\right)}} = {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(p\right)}} . |
Therefore, {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is an ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFSG of G.
Theorem 3.6. If {M}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} and {N}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} are two ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFSGs of G, then {M}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})}\cap {N}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is also ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )- CIFSG of G.
Proof.
{\mathrm{S}}_{{\left(M\cap N\right)}_{\;\;{{\alpha }_{1}}}\;\;}\left(pq\right){e}^{i\alpha {w}_{{\left(M\cap N\right)}_{\;\;{{\beta }_{1}}}\;\;}^{{\left(M\cap N\right)}_{\;\;{{\alpha }_{1}}}\;\;\left(pq\right)}} = \mathrm{S}{{M}_{\;{\alpha }_{1}}\;\cap N}_{{\alpha }_{1}}\left(pq\right){e}^{i\alpha {w}_{{{M}_{{\beta }_{1}}\cap N}_{{\beta }_{1}}}^{\mathrm{S}{{M}_{\;{\alpha }_{1}}\;\cap N}_{{\alpha }_{1}}\left(pq\right)}} |
= \mathrm{min}\{{\mathrm{S}}_{{M}_{\;{\alpha }_{1}}\;}\left(pq\right){e}^{i\alpha {w}_{{M}_{{\beta }_{1}}}^{{\mathrm{S}}_{{M}_{\;{\alpha }_{1}}\;}\left(pq\right)}}, {\mathrm{S}}_{{N}_{\;{\alpha }_{1}}\;}\left(pq\right){e}^{i\alpha {w}_{{N}_{{\beta }_{1}}}^{{\mathrm{S}}_{{N}_{\;{\alpha }_{1}}\;}\left(pq\right)}}\} |
\ge \mathrm{m}\mathrm{i}\mathrm{n}\{\mathrm{min}\left\{{\mathrm{S}}_{{M}_{\;{\alpha }_{1}}\;}\left(p\right){e}^{i\alpha {w}_{{M}_{{\beta }_{1}}}^{{\mathrm{S}}_{{M}_{\;{\alpha }_{1}}\;}\left(p\right)}}, {\mathrm{S}}_{{M}_{\;{\alpha }_{1}}\;}\left(q\right){e}^{i\alpha {w}_{{M}_{{\beta }_{1}}}^{{\mathrm{S}}_{{M}_{\;{\alpha }_{1}}\;}\left(q\right)}}\right\}, \mathrm{min}\left\{\mathrm{S}{N}_{\;{\alpha }_{1}}\;\left(p\right){e}^{i\alpha {w}_{{N}_{{\beta }_{1}}}^{S\left(p\right)}}, \mathrm{S}{N}_{\;{\alpha }_{1}}\;\left(q\right){e}^{i\alpha {w}_{{N}_{{\beta }_{1}}}^{S\left(q\right)}}\right\}\} , |
\mathrm{m}\mathrm{i}\mathrm{n}\{\mathrm{min}\left\{{\mathrm{S}}_{{M}_{\;{\alpha }_{1}}\;}\left(p\right){e}^{i\alpha {w}_{{M}_{{\beta }_{1}}}^{{\mathrm{S}}_{{M}_{\;{\alpha }_{1}}\;}\left(p\right)}}, {\mathrm{S}}_{{N}_{\;{\alpha }_{1}}\;}\left(p\right){e}^{i\alpha {w}_{{N}_{{\beta }_{1}}}^{{\mathrm{S}}_{{N}_{\;{\alpha }_{1}}\;}\left(p\right)}}\right\}, \mathrm{min}\left\{{\mathrm{S}}_{{M}_{\;{\alpha }_{1}}\;}\left(q\right){e}^{i\alpha {w}_{{M}_{{\beta }_{1}}}^{{\mathrm{S}}_{{M}_{\;{\alpha }_{1}}\;}\left(q\right)}}, {\mathrm{S}}_{{N}_{\;{\alpha }_{1}}\;}\left(q\right){e}^{i\alpha {w}_{{N}_{{\beta }_{1}}}^{{\mathrm{S}}_{{N}_{\;{\alpha }_{1}}\;}\left(q\right)}}\right\}\} |
= \mathrm{min}\left\{{S}_{{{M}_{\;{\alpha }_{1}}\;\cap N}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{{M}_{{\beta }_{1}}\cap N}_{{\beta }_{1}}}^{{S}_{{{M}_{\;{\alpha }_{1}}\;\cap N}_{{\alpha }_{1}}}\left(p\right)}}, {S}_{{{M}_{\;{\alpha }_{1}}\;\cap N}_{{\alpha }_{1}}}\left(q\right){e}^{i\alpha {w}_{{{M}_{{\beta }_{1}}\cap N}_{{\beta }_{1}}}^{{S}_{{{M}_{\;{\alpha }_{1}}\;\cap N}_{{\alpha }_{1}}}\left(q\right)}}\right\} |
= \mathrm{min}\left\{{\mathrm{S}}_{{(M\cap N)}_{{\alpha }_{1}}\;}\left(p\right){e}^{i\alpha {w}_{{(M\cap N)}_{\;\;{\beta }_{1}}\;\;}^{{\mathrm{S}}_{{(M\cap N)}_{\;\;{\alpha }_{1}}\;\;}\left(p\right)}}, {\mathrm{S}}_{{(M\cap N)}_{{\alpha }_{1}}\;}\left(q\right){e}^{i\alpha {w}_{{(M\cap N)}_{\;\;{\beta }_{1}}\;\;}^{{\mathrm{S}}_{{(M\cap N)}_{\;\;{\alpha }_{1}}\;\;}\left(q\right)}}\right\} . |
Further,
{\mathrm{S}}_{{(M\cap N)}_{\;\;{\alpha }_{1}}\;\;}\left({p}^{-1}\right){e}^{i\alpha {w}_{{(M\cap N)}_{\;\;{\beta }_{1}}\;\;}^{{\mathrm{S}}_{{(M\cap N)}_{\;\;{\alpha }_{1}}\;\;}\left({p}^{-1}\right)}} = {\mathrm{S}}_{{{M}_{\;{\alpha }_{1}}\;\cap N}_{{\alpha }_{1}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{{M}_{{\beta }_{1}}\cap N}_{{\beta }_{1}}}^{{\mathrm{S}}_{{{M}_{\;{\alpha }_{1}}\;\cap N}_{{\alpha }_{1}}}\left({p}^{-1}\right)}} |
= \mathrm{m}\mathrm{i}\mathrm{n}\{{\mathrm{S}}_{{M}_{\;{\alpha }_{1}}\;}\left({p}^{-1}\right){e}^{i\alpha {w}_{{M}_{{\beta }_{1}}}^{{\mathrm{S}}_{{M}_{\;{\alpha }_{1}}\;}\left({p}^{-1}\right)}}, {S}_{{N}_{\;{\alpha }_{1}}\;}\left({p}^{-1}\right){e}^{i\alpha {w}_{{N}_{{\beta }_{1}}}^{{S}_{{N}_{\;{\alpha }_{1}}\;}\left({p}^{-1}\right)}}\} |
\ge \mathrm{m}\mathrm{i}\mathrm{n}\{{S}_{{M}_{\;{\alpha }_{1}}\;}\left(p\right){e}^{i\alpha {w}_{{M}_{{\beta }_{1}}}^{{S}_{{M}_{\;{\alpha }_{1}}\;}\left({p}^{-1}\right)}}, {\mathrm{S}}_{{N}_{\;{\alpha }_{1}}\;}\left(p\right){e}^{i\alpha {w}_{{N}_{{\beta }_{1}}}^{{\mathrm{S}}_{{N}_{\;{\alpha }_{1}}\;}\left({p}^{-1}\right)}}\} |
= {\mathrm{S}}_{{\left(M\cap N\right)}_{\;\;{{\alpha }_{1}}}\;\;}\left(p\right){e}^{i\alpha {w}_{{\left(M\cap N\right)}_{\;\;{{\beta }_{1}}}\;\;}^{{\mathrm{S}}_{{\left(M\cap N\right)}_{\;\;{{\alpha }_{1}}}\;\;}\left(p\right)}}. |
And
{\mathrm{L}}_{{(M\cap N)}_{{{\alpha }_{2}}}}\left(pq\right){e}^{i\alpha {w}_{{(M\cap N)}_{\;\;{{\beta }_{2}}}}^{{\mathrm{L}}_{{(M\cap N)}_{{{\alpha }_{2}}}}\left(pq\right)}} = {\mathrm{L}}_{{{M}_{{\alpha }_{2}}\cap N}_{{\alpha }_{2}}}\left(pq\right){e}^{i\alpha {w}_{{{M}_{{\beta }_{2}}\cap N}_{{\beta }_{2}}}^{{\mathrm{L}}_{{{M}_{{\alpha }_{2}}\cap N}_{{\alpha }_{2}}}\left(pq\right)}} |
= \mathrm{max}\{{\mathrm{L}}_{{M}_{\;{\alpha }_{2}}}\;\left(pq\right){e}^{i\alpha {w}_{{M}_{{\beta }_{2}}}^{{\mathrm{L}}_{{M}_{\;{\alpha }_{2}}}\;\left(pq\right)}}, {\mathrm{L}}_{{N}_{{\alpha }_{2}}}\left(pq\right){e}^{i\alpha {w}_{{N}_{{\beta }_{2}}}^{{\mathrm{L}}_{{N}_{{\alpha }_{2}}}\left(pq\right)}}\} |
\le \mathrm{m}\mathrm{a}\mathrm{x}\{\mathrm{max}\left\{{\mathrm{L}}_{{M}_{\;{\alpha }_{2}}}\;\left(p\right){e}^{i\alpha {w}_{{M}_{{\beta }_{2}}}^{{\mathrm{L}}_{{M}_{\;{\alpha }_{2}}}\;\left(p\right)}}, {\mathrm{L}}_{{M}_{\;{\alpha }_{2}}}\;\left(q\right){e}^{i\alpha {w}_{{M}_{{\beta }_{2}}}^{{\mathrm{L}}_{{M}_{\;{\alpha }_{2}}}\;\left(q\right)}}\right\}, |
\mathrm{max}\left\{{\mathrm{L}}_{{N}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{N}_{{\beta }_{2}}}^{{\mathrm{L}}_{{N}_{{\alpha }_{2}}}\left(p\right)}}, {\mathrm{L}}_{{N}_{{\alpha }_{2}}}\left(q\right){e}^{i\alpha {w}_{{N}_{{\beta }_{2}}}^{{\mathrm{L}}_{{N}_{{\alpha }_{2}}}\left(q\right)}}\right\} = \mathrm{m}\mathrm{a}\mathrm{x}\{\mathrm{max}\left\{{\mathrm{L}}_{{M}_{\;{\alpha }_{2}}}\;\left(p\right){e}^{i\alpha {w}_{{M}_{{\beta }_{2}}}^{{\mathrm{L}}_{{M}_{\;{\alpha }_{2}}}\;\left(p\right)}}, {\mathrm{L}}_{{N}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{N}_{{\beta }_{2}}}^{L\left(p\right)}}\right\}, |
\mathrm{max}\left\{{\mathrm{L}}_{{M}_{\;{\alpha }_{2}}}\;\left(q\right){e}^{i\alpha {w}_{{M}_{{\beta }_{2}}}^{{\mathrm{L}}_{{M}_{\;{\alpha }_{2}}}\;\left(q\right)}}, {\mathrm{L}}_{{N}_{{\alpha }_{2}}}\left(q\right){e}^{i\alpha {w}_{{N}_{{\beta }_{2}}}^{{\mathrm{L}}_{{N}_{{\alpha }_{2}}}\left(q\right)}}\right\} = \mathrm{max}\left\{{L}_{{{M}_{{\alpha }_{2}}\cap N}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{{M}_{{\beta }_{2}}\cap N}_{{\beta }_{2}}}^{{L}_{{{M}_{{\alpha }_{2}}\cap N}_{{\alpha }_{2}}}\left(p\right)}}, {L}_{{{M}_{{\alpha }_{2}}\cap N}_{{\alpha }_{2}}}\left(q\right){e}^{i\alpha {w}_{{{M}_{{\beta }_{2}}\cap N}_{{\beta }_{2}}}^{{L}_{{{M}_{{\alpha }_{2}}\cap N}_{{\alpha }_{2}}}\left(q\right)}}\right\} |
= \mathrm{max}\left\{{\mathrm{L}}_{{(M\cap N)}_{{{\alpha }_{2}}}}\left(p\right){e}^{i\alpha {w}_{{(M\cap N)}_{\;\;{{\beta }_{2}}}}^{{\mathrm{L}}_{{(M\cap N)}_{\;\;{{\alpha }_{2}}}}\;\;\left(p\right)}}, {\mathrm{L}}_{{(M\cap N)}_{{{\alpha }_{2}}}}\left(q\right){e}^{i\alpha {w}_{{(M\cap N)}_{\;\;{{\beta }_{2}}}}^{{\mathrm{L}}_{{(M\cap N)}_{\;\;{{\alpha }_{2}}}}\;\;\left(q\right)}}\right\} . |
Further,
{\mathrm{L}}_{{(M\cap N)}_{{{\alpha }_{2}}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{(M\cap N)}_{\;\;{{\beta }_{2}}}}^{{(M\cap N)}_{\;\;{{\alpha }_{2}}}\left({p}^{-1}\right)}} = {\mathrm{L}}_{{{M}_{{\alpha }_{2}}\cap N}_{{\alpha }_{2}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{{M}_{{\beta }_{2}}\cap N}_{{\beta }_{2}}}^{{{M}_{\;{\alpha }_{2}}\cap N}_{{\alpha }_{2}}\left({p}^{-1}\right)}} |
= \mathrm{m}\mathrm{a}\mathrm{x}\{{L}_{{M}_{\;{\alpha }_{2}}}\;\left({p}^{-1}\right){e}^{i\alpha {w}_{{M}_{{\beta }_{2}}}^{{L}_{{M}_{\;{\alpha }_{2}}}\;\left({p}^{-1}\right)}}, {\mathrm{L}}_{{N}_{{\alpha }_{2}}}\left({p}^{-1}\right){e}^{i\alpha {w}_{{N}_{{\beta }_{2}}}^{{\mathrm{L}}_{{N}_{{\alpha }_{2}}}\left({p}^{-1}\right)}}\} |
= \mathrm{m}\mathrm{a}\mathrm{x}\{{L}_{{M}_{\;{\alpha }_{2}}}\;\left(p\right){e}^{i\alpha {w}_{{M}_{{\beta }_{2}}}^{{L}_{{M}_{\;{\alpha }_{2}}}\;\left(p\right)}}, {\mathrm{L}}_{{N}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{N}_{{\beta }_{2}}}^{{\mathrm{L}}_{{N}_{{\alpha }_{2}}}\left(p\right)}}\} |
= {\mathrm{L}}_{{(M\cap N)}_{{{\alpha }_{2}}}}\left(p\right){e}^{i\alpha {w}_{{(M\cap N)}_{\;\;{{\beta }_{2}}}}^{{\mathrm{L}}_{{(M\cap N)}_{\;\;{{\alpha }_{2}}}}\;\;\left(p\right)}} . |
Consequently, {M}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})}\cap {N}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is also ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )- CIFSG of G.
Remark 3. The union of two \left({\mathrm{\alpha }}_{\mathrm{1, 2}}, {\mathrm{\beta }}_{\mathrm{1, 2}}\right)- CIFSGs may not be \left({\mathrm{\alpha }}_{\mathrm{1, 2}}, {\mathrm{\beta }}_{\mathrm{1, 2}}\right)- CIFSGs.
Example 3.3. Let {S}_{3} be a symmetric group of all permutation of 3 elements. Suppose {M}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} and {N}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} are two sets of \left({\mathrm{\alpha }}_{\mathrm{1, 2}}, {\mathrm{\beta }}_{\mathrm{1, 2}}\right)- CIFSGs of {S}_{4} , and {\alpha }_{1} = 0.6, {\alpha }_{2} = 0.3, {\beta }_{1} = 0.4, and{\beta }_{2} = 0.5 , given as:
{M}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\;\right)}\;\left(\rho \right) = \left\{\begin{array}{c} < \rho , 0.6{e}^{i\alpha 0.2}, 0.3{e}^{i\alpha 0.7} > {\rm{if}}\;\rho = {\rho }_{1}\\ < \rho , 0.2{e}^{i\alpha 0.1}, 0.5{e}^{i\alpha 0.7} > {\rm{otherwise}}\end{array}\right., |
{N}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\;\right)}\;\left(\rho \right) = \left\{\begin{array}{c} < \rho , 0.5{e}^{i\alpha 0.1}, 0.5{e}^{i\alpha 0.5} > {\rm{if}}\;\rho = {\rho }_{2}\\ < \rho , 0.3{e}^{i\alpha 0.1}, 0.7{e}^{i\alpha 0.6} > {\rm{otherwise}}\end{array}\right.. |
So,
{M}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})}{\cup N}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} = \left\{\begin{array}{c} < \rho , 0.6{e}^{i\alpha 0.2}, 0.3{e}^{i\alpha 0.6} > {\rm{if}}\;\rho = {\rho }_{1}\\ < \rho , 0.5{e}^{i\alpha 0.1}, 0.5{e}^{i\alpha 0.5} > {\rm{if}}\;\rho = {\rho }_{2}\\ < \rho , 0.3{e}^{i\alpha 0.1}, 0.5{e}^{i\alpha 0.6} > {\rm{otherwise}}\end{array}\right.. |
Take {M}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}{\cup N}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\left({\rho }_{1}\right) = < 0.6{e}^{i\alpha 0.2}, 0.3{e}^{i\alpha 0.6} > and {M}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}{\cup N}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\left({\rho }_{2}\right) = < 0.5{e}^{i\alpha 0.1}, 0.5{e}^{i\alpha 0.5} > , and {M}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}{\cup N}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\left({\rho }_{1}{\rho }_{2} = {\rho }_{0}\right) = < 0.3{e}^{i\alpha 0.1}, 0.5{e}^{i\alpha 0.6} > .
Clearly, Axiom 1 from definition 3.3 does not hold
\mathrm{S}{M\cup N}_{{\alpha }_{1}}\left({\rho }_{1}{\rho }_{2} = {\rho }_{0}\right){e}^{i\alpha {w}_{{M\cup N}_{\;\;{\beta }_{1}}}^{S\left({\rho }_{1}{\rho }_{2} = {\rho }_{0}\right)}} = 0.3{e}^{i\alpha 0.1} |
\ngeqq \mathrm{m}\mathrm{i}\mathrm{n}\{\mathrm{S}{M\cup N}_{{\alpha }_{1}}\left({\rho }_{1}\right){e}^{i\alpha {w}_{{M\cup N}_{\;\;{\beta }_{1}}}^{S\left({\rho }_{1}\right)}}, \mathrm{S}{M\cup N}_{{\alpha }_{1}}({\rho }_{2}\left){e}^{i\alpha {w}_{{M\cup N}_{\;\;{\beta }_{1}}}^{S\left({\rho }_{2}\right)}}\right\} |
= \mathrm{min}\left\{0.6{e}^{i\alpha 0.2}, 0.5{e}^{i\alpha 0.1}\right\} = 0.5{e}^{i\alpha 0.1}. |
We get started by introducing the notation of ({\mathrm{\alpha }}_{\mathrm{1, 2}}, {\mathrm{\beta }}_{\mathrm{1, 2}}) -complex intuitionistic fuzzy cosets of ({\mathrm{\alpha }}_{\mathrm{1, 2}}, {\mathrm{\beta }}_{\mathrm{1, 2}}) -CIFSG. Hence, a quotient group induced by CIDNSGs generalized. After that we study Lagrange's theorem under ( {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}} )-CIFSG.
Definition 13. Let {A}_{({\mathrm{\alpha }}_{\mathrm{1, 2}}, {\mathrm{\beta }}_{\mathrm{1, 2}})} be an ({\mathrm{\alpha }}_{\mathrm{1, 2}}, {\mathrm{\beta }}_{\mathrm{1, 2}})- CIFSG of group G , where {\mathrm{\alpha }}_{\mathrm{1, 2}}, {\mathrm{\beta }}_{\mathrm{1, 2}}\in \left[\mathrm{0, 1}\right] . Then the \left({\mathrm{\alpha }}_{\mathrm{1, 2}}, {\mathrm{\beta }}_{\mathrm{1, 2}}\right)- CIFS g{A}_{({\mathrm{\alpha }}_{\mathrm{1, 2}}, {\mathrm{\beta }}_{\mathrm{1, 2}})}\left(a\right) = \left\{\left(a, {S}_{g{A}_{\;{\alpha }_{1}}}\left(a\right){e}^{i\alpha {w}_{{gA}_{\;{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}\left(a\right)}, {L}_{g{A}_{{\alpha }_{2}}}\left(a\right){e}^{i\alpha {w}_{{gA}_{\;{\beta }_{2}}}^{{L}_{g{A}_{\;{\alpha }_{2}}}}\left(a\right)}\right), a\in G\right\} of G is called a ({\mathrm{\alpha }}_{\mathrm{1, 2}}, {\mathrm{\beta }}_{\mathrm{1, 2}})\text{-} complex intuitionistic fuzzy left coset of G determined by {A}_{({\mathrm{\alpha }}_{\mathrm{1, 2}}, {\mathrm{\beta }}_{\mathrm{1, 2}})} and g and is describe as:
{S}_{g{A}_{\;{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{{gA}_{\;{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}\left(o\right)} = {S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}o\right)} = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left({g}^{-1}o\right){e}^{i\alpha {w}_{A}^{{S}_{A}}\left({g}^{-1}o\right)}\right., \left.{{\mathrm{\alpha }}_{1}e}^{i{\beta }_{1}}\right\} , |
and
{L}_{g{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{{gA}_{\;{\beta }_{2}}}^{{L}_{g{A}_{\;{\alpha }_{2}}}}\left(a\right)} = {L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}a\right)} = \mathrm{m}ax\left\{{L}_{A}\left({g}^{-1}o\right){e}^{i\alpha {w}_{A}^{{L}_{A}}\left({g}^{-1}o\right)}\right., \left.{{\mathrm{\alpha }}_{2}e}^{i{\beta }_{2}}\right\} , |
for all o, g\in G.
Similarly we can define ({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}) - complex intuitionistic fuzzy right coset is described as:
{S}_{g{A}_{\;{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{{gA}_{\;{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}\left(o\right)} = {S}_{{A}_{{\alpha }_{1}}}\left(o{g}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(o{g}^{-1}\right)} = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left({og}^{-1}\right){e}^{i\alpha {w}_{A}^{{S}_{A}\left({og}^{-1}\right)}}\right., \left.{{\mathrm{\alpha }}_{1}e}^{i{\beta }_{1}}\right\} , |
and
{L}_{g{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{{gA}_{\;{\beta }_{2}}}^{{L}_{g{A}_{\;{\alpha }_{2}}}}\left(o\right)} = {L}_{{A}_{{\alpha }_{2}}}\left({ag}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({ag}^{-1}\right)} = \mathrm{m}ax\left\{{L}_{A}\left({og}^{-1}\right){e}^{i\alpha {w}_{A}^{{L}_{A}}\left({og}^{-1}\right)}\right., \left.{{\mathrm{\alpha }}_{2}e}^{i{\beta }_{2}}\right\} , |
for all o, g\in G.
Definition 14. Let {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} be an ({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}) -CIFSG of group G , where {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\in \left[\mathrm{0, 1}\right] . Then, {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is called a ({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}) -CIFNSG if {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})}\left(gh\right) = {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})}\left(hg\right) . Equivalently ({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}) -CIFSG {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is ({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}) -CIFNSG of group G if: {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})}g\left(h\right) = g{A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})}\left(h\right) , for all g, h\in G .
Remark 4. Let {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} be an ({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}) -CIFNSG of group G . Then, {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})}\left({h}^{-1}gh\right) = {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})}\left(g\right) , for all g, h\in G .
Theorem 7. If A is CIFNSG of group G , then {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is an ({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}) -CIFNSG of G .
Proof. Suppose o, g are elements of G . Then, for the membership function we have
{S}_{A}\left({g}^{-1}o\right){e}^{i\alpha {w}_{A}^{S}\left({g}^{-1}o\right)} = {S}_{A}\left(o{g}^{-1}\right){e}^{i\alpha {w}_{A}^{S}\left({og}^{-1}\right)}. |
This implies that
min\left\{{S}_{A}\left({g}^{-1}o\right){e}^{i\alpha {w}_{A}^{S}\left({g}^{-1}o\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\} = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left(o{g}^{-1}\right){e}^{i\alpha {w}_{A}^{S}\left({og}^{-1}\;\right)\;}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\}, |
which implies that {S}_{g{A}_{\;{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{g{A}_{{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}\left(o\right)} = {S}_{{A}_{{\alpha }_{1}}g}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}g}^{{S}_{{A}_{{\alpha }_{1}}g}}\left(o\right)}. This implies that g{A}_{({\alpha }_{1}, {\beta }_{1})}\left(o\right) = {A}_{({\alpha }_{1}, {\beta }_{1})}g\left(o\right). Now, for the non-membership function we have:
{L}_{A}\left({g}^{-1}o\right){e}^{i\alpha {w}_{A}^{L}\left({g}^{-1}o\right)} = {L}_{A}\left(o{g}^{-1}\right){e}^{i\alpha {w}_{A}^{L}\left({og}^{-1}\right)}. |
This implies that
max\left\{{L}_{A}\left({g}^{-1}o\right){e}^{i\alpha {w}_{A}^{l}\left({g}^{-1}o\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\} = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left(o{g}^{-1}\right){e}^{i\alpha {w}_{A}^{L}\left({og}^{-1}\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\}, |
which implies that {L}_{g{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{g{A}_{{\beta }_{2}}}^{{L}_{g{A}_{\;{\alpha }_{2}}}}\left(o\right)} = {L}_{{A}_{{\alpha }_{2}}g}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}g}^{{L}_{{A}_{{\alpha }_{2}}g}}\left(o\right)}. This implies that g{A}_{({\alpha }_{2}, {\beta }_{2})}\left(o\right) = {A}_{({\alpha }_{2}, {\beta }_{2})}g\left(o\right).
Therefore, {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is ({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}) -CIFNSG of G .
Theorem 8. Let {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} be \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -CIFSG of group G such that for membership we have {\alpha }_{1}{e}^{i{\beta }_{1}} < r{e}^{i{w}^{r}} such that {\alpha }_{1}\le r and {\beta }_{1}\le {w}^{r} , where {re}^{i{w}^{r}} = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left(o\right){e}^{i\mathrm{\alpha }{\mathrm{w}}_{A}^{S}\left(o\right)}, \forall o\in G\right\} and for non-membership we have {\alpha }_{2}{e}^{i{\beta }_{2}} < k{e}^{i{w}^{k}} such that {\alpha }_{2}\ge k and {\beta }_{2}\ge {w}^{k} , where {ke}^{i{w}^{k}} = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left(o\right){e}^{i\mathrm{\alpha }{\mathrm{w}}_{A}^{L}\left(o\right)}, \forall o\in G\right\} and {\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}, r, k, {w}^{r}, {w}^{k}\in \left[\mathrm{0, 1}\right]. with CIFS conditions: 0\le {\alpha }_{1}+{\alpha }_{2}\le 1 , 0\le {\beta }_{1}+{\beta }_{2}\le 1 , 0\le r+k\le 1 , and 0\le {w}^{r}+{w}^{k}\le 1. Then, {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} is a \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -complex intuitionistic fuzzy normal subgroup of group G .
Proof. Having {\alpha }_{1}{e}^{i{\beta }_{1}} < r{e}^{i{w}^{r}} then we get \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left(o\right){e}^{i\mathrm{\alpha }{\mathrm{w}}_{A}^{S}\left(o\right)}, \forall o\in G\right\}\ge {\alpha }_{1}{e}^{i{\beta }_{1}} , which implies that {S}_{A}\left(o\right){e}^{i\mathrm{\alpha }{\mathrm{w}}_{A}^{S}\left(o\right)}\ge {\alpha }_{1}{e}^{i{\beta }_{1}} , for all o\in G. And {\alpha }_{2}{e}^{i{\beta }_{2}} > k{e}^{i{w}^{k}} implies that \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left(o\right){e}^{i\mathrm{\alpha }{\mathrm{w}}_{A}^{L}\left(o\right)}, \forall o\in G\right\}\le {\alpha }_{2}{e}^{i{\beta }_{2}} , which implies that {L}_{A}\left(o\right){e}^{i\mathrm{\alpha }{\mathrm{w}}_{A}^{L}\left(o\right)}\le {\alpha }_{2}{e}^{i{\beta }_{2}} , for all o\in G.
Thus,
{S}_{g{A}_{\;{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{g{A}_{{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}\left(o\right)} = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left({g}^{-1}o\right){e}^{i\alpha {w}_{A}^{S}\left({g}^{-1}o\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\} = {\alpha }_{1}{e}^{i{\beta }_{1}} |
and
{L}_{g{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{g{A}_{{\beta }_{2}}}^{{L}_{g{A}_{\;{\alpha }_{2}}}}\left(o\right)} = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left({g}^{-1}o\right){e}^{i\alpha {w}_{A}^{L}\left({g}^{-1}o\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\} = {\alpha }_{2}{e}^{i{\beta }_{2}} , for any a\in G .
Similarly,
{S}_{{A}_{{\alpha }_{1}}g}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}g}^{{S}_{{A}_{{\alpha }_{1}}g}}\left(o\right)} = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left(o{g}^{-1}\right){e}^{i\alpha {w}_{A}^{S}\left(o{g}^{-1}\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\} = {\alpha }_{1}{e}^{i{\beta }_{1}} |
and
{L}_{{A}_{{\alpha }_{2}}g}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}g}^{{L}_{{A}_{{\alpha }_{2}}g}}\left(o\right)} = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left(o{g}^{-1}\right){e}^{i\alpha {w}_{A}^{L}\left(o{g}^{-1}\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\} = {\alpha }_{2}{e}^{i{\beta }_{2}} . |
This implies that
{S}_{g{A}_{\;{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{g{A}_{{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}\left(o\right)} = {S}_{{A}_{{\alpha }_{1}}g}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}g}^{{S}_{{A}_{{\alpha }_{1}}g}}\left(o\right)} |
and
{L}_{g{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{g{A}_{{\beta }_{2}}}^{{L}_{g{A}_{\;{\alpha }_{2}}}}\left(o\right)} = {L}_{{A}_{{\alpha }_{2}}g}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}g}^{{L}_{{A}_{{\alpha }_{2}}g}}\left(o\right)} . |
Theorem 9. Let {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} be an \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -CIFSG of a group G , then {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} is an \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -CIFNSG if and only if {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} is constant in the in the conjugacy class of group G .
Proof. Suppose that {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} is an \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -CIFNSG. Then, so we get
{S}_{{A}_{{\alpha }_{1}}}\left({h}^{-1}gh\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({h}^{-1}gh\right)} = {S}_{{A}_{{\alpha }_{1}}}\left(gh{h}^{-1}\;\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(gh{h}^{-1}\;\right)} |
= {S}_{{A}_{{\alpha }_{1}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(g\right)}, \forall g, h\in G , |
and
{L}_{{A}_{{\alpha }_{2}}}\left({h}^{-1}gh\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({h}^{-1}gh\right)} = {L}_{{A}_{{\alpha }_{2}}}\left(gh{h}^{-1}\;\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(gh{h}^{-1}\;\right)} |
= {L}_{{A}_{{\alpha }_{2}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(g\right)}, \forall g, h\in G. |
Conversely, suppose that {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} is constant in all conjugate classes of group G. Then,
{S}_{{A}_{{\alpha }_{1}}}\left(gh\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(gh\right)} = {S}_{{A}_{{\alpha }_{1}}}\left(ghg{g}^{-1}\;\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(ghg{g}^{-1}\;\right)} |
= {S}_{{A}_{{\alpha }_{1}}}\left(g\left(hg\right){g}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(g\left(hg\right){g}^{-1}\right)} |
= {S}_{{A}_{{\alpha }_{1}}}\left(hg\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(hg\right)}, \forall g, h\in G , |
and
{L}_{{A}_{{\alpha }_{2}}}\left(gh\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(pq\right)} = {L}_{{A}_{{\alpha }_{2}}}\left(ghg{g}^{-1}\;\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(pqp{p}^{-1}\;\right)} |
= {L}_{{A}_{{\alpha }_{2}}}\left(g\left(hg\right){g}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(g\left(hg\right){g}^{-1}\right)} |
= {L}_{{A}_{{\alpha }_{2}}}\left(hg\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(hg\right)}, \forall g, h\in G. |
Theorem 10. If {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} is an \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -CIFSG of a group G , then {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} is an \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -complex intuitionistic fuzzy normal subgroup if and only if {S}_{{A}_{{\alpha }_{1}}}\left(\right[g, h\left]\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(\right[g, h\left]\right)}\ge {S}_{{A}_{{\alpha }_{1}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(g\right)} , and {L}_{{A}_{{\alpha }_{2}}}\left(\left[g, h\right]\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(\left[g, h\right]\right)}\le {L}_{{A}_{{\alpha }_{2}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(g\right)}, \;\forall g, h\in G .
Proof. Suppose that {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} is an \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) - CIFNSG. Let x, y\in G be element of group. So,
{S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}{h}^{-1}gh\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}{h}^{-1}gh\right)}\ge \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{{A}_{{\alpha }_{1}}}\left({h}^{-1}gh\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({h}^{-1}gh\right)}, {S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}\right)}\right\} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(\mathrm{g}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(\mathrm{g}\right)}, {S}_{{A}_{{\alpha }_{1}}}\left(\mathrm{g}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(\mathrm{g}\right)}\right\} |
{S}_{{A}_{{\alpha }_{1}}}\left(\left[g, h\right]\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(\left[g, h\right]\right)}\ge {S}_{{A}_{{\alpha }_{1}}}\left(\mathrm{g}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(\mathrm{g}\right)} , |
and
{L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}{h}^{-1}gh\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}{h}^{-1}gh\right)}\le max\left\{{L}_{{A}_{{\alpha }_{2}}}\left({h}^{-1}gh\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({h}^{-1}gh\right)}, {L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}\right)}\right\} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{{L}_{{A}_{{\alpha }_{2}}}\left(\mathrm{g}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(\mathrm{g}\right)}, {L}_{{A}_{{\alpha }_{2}}}\left(\mathrm{g}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(\mathrm{g}\right)}\right\} |
{L}_{{A}_{{\alpha }_{2}}}\left(\left[g, h\right]\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(\left[g, h\right]\right)}\le {L}_{{A}_{{\alpha }_{2}}}\left(\mathrm{g}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(\mathrm{g}\right)}. |
Conversely, suppose that
{S}_{{A}_{{a}_{1}}}\left(\right[g, h\left]\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(\left[g, h\right]\right)}\ge {S}_{{A}_{{a}_{1}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(g\right)} , |
and
{L}_{{A}_{{a}_{2}}}\left(\right[g, h\left]\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(\left[g, h\right]\right)}\le {L}_{{A}_{{a}_{2}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(g\right)} . |
Let g, o\in G be an element. Consider
\begin{array}{l} {S}_{{A}_{{a}_{1}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}og\right)} = {S}_{{A}_{{a}_{1}}}\left(o{o}^{-1}{g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(o{o}^{-1}{g}^{-1}og\right)} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \ge \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(o\right)}, {S}_{{A}_{{\alpha }_{1}}}\left(\left[o, g\right]\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(\left[o, g\right]\right)}\right\} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {S}_{{A}_{{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(o\right)} \end{array} | (5) |
and,
\begin{array}{l} {L}_{{A}_{{a}_{2}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}og\right)} = {L}_{{A}_{{a}_{2}}}\left(o{o}^{-1}{g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(o{o}^{-1}{g}^{-1}og\right)} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(o\right)}, {L}_{{A}_{{\alpha }_{2}}}\left(\left[o, g\right]\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(\left[o, g\right]\right)}\right\} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {L}_{{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(o\right)} \end{array} | (5*) |
Thus,
{S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}og\right)}\ge {S}_{{A}_{{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(o\right)}, \forall o, g\in G. | (6) |
and,
{L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}og\right)}\le {L}_{{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(o\right)}, \forall o, g\in G. | (6*) |
Now,
\begin{array}{l} {S}_{{A}_{{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(o\right)} = {S}_{{A}_{{\alpha }_{1}}}\left(g{g}^{-1}og{g}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(g{g}^{-1}og{g}^{-1}\right)} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \ge \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(g\right)}, {S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}og\right)}\right\} \end{array} | (7) |
And,
\begin{array}{l} {L}_{{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(o\right)} = {L}_{{A}_{{\alpha }_{2}}}\left(g{g}^{-1}og{g}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(g{g}^{-1}og{g}^{-1}\right)} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{{A}_{{\alpha }_{2}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(g\right)}, {L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}og\right)}\right\} . \end{array} | (7*) |
Here. Two cases have to be proved.
Case 1. If
\mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(g\right)}, {S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}og\right)}\right\} = {S}_{{A}_{{\alpha }_{1}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(g\right)}. |
Then, we obtain
{S}_{{A}_{{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(o\right)}\ge {S}_{{A}_{{\alpha }_{1}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(g\right)}, \forall o, g\in G. |
And if
\mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{{A}_{{\alpha }_{2}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(g\right)}, {L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}og\right)}\right\} = {L}_{{A}_{{\alpha }_{2}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(g\right)}. |
Then, we obtain
{L}_{{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(o\right)}\le {L}_{{A}_{{\alpha }_{2}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(g\right)}, \forall o, g\in G. |
This implies that {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is a constant mapping.
Case 2. If
\mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(g\right)}, {S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}og\right)}\right\} = {S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}og\right)}. |
Then, from Eq (7) we have
\left.{S}_{{A}_{{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(o\right)}\right\}\ge {S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}og\right)}, | (8) |
and if
\mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{{A}_{{\alpha }_{2}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(g\right)}, {L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}og\right)}\right\} = {L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}og\right)}. |
Then, from Eq (7) we have
\left.{L}_{{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(o\right)}\right\}\le {L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}og\right)}. | (8*) |
In the view of Equations (6, 6*) and (8, 8*) we have
\left.{S}_{{A}_{{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(o\right)}\right\} = {S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}og\right)} |
and
\left.{L}_{{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(o\right)}\right\} = {L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}og\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}og\right)} . |
Hence, {A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})} is constant.
Theorem 11. Let {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} be \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -CIFNSG of group G . Then, the set {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} = \{x\in G:\left.{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\left({x}^{-1}\right) = {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\left(id\right)\right\} is a normal subgroup of group G .
Proof. Clearly that {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\ne \varnothing because id\in G . Let x, y\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} be any elements. Consider
{S}_{{A}_{{\alpha }_{1}}}\left(xy\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(xy\right)}\ge \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(x\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(x\right)}, {S}_{{A}_{{\alpha }_{1}}}\left(y\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(y\right)}\right\} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(id\right)}, {S}_{{A}_{{\alpha }_{1}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(id\right)}\right\} . |
And
{L}_{{A}_{{\alpha }_{2}}}\left(xy\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(xy\right)}\le \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{{A}_{{\alpha }_{2}}}\left(x\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(x\right)}, {L}_{{A}_{{\alpha }_{2}}}\left(y\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(y\right)}\right\} |
= \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{{A}_{{\alpha }_{2}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(id\right)}, {L}_{{A}_{{\alpha }_{2}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(id\right)}\right\} . |
This implies that
{S}_{{A}_{{\alpha }_{1}}}\left(xy\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(xy\right)}\ge {S}_{{A}_{{\alpha }_{1}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(id\right)} |
and
{L}_{{A}_{{\alpha }_{2}}}\left(xy\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(xy\right)}\le {L}_{{A}_{{\alpha }_{2}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(id\right)} . |
However,
{S}_{{A}_{{\alpha }_{1}}}\left(xy\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(xy\right)}\le {S}_{{A}_{{\alpha }_{1}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(id\right)} , |
and
{L}_{{A}_{{\alpha }_{2}}}\left(xy\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(xy\right)}\ge {L}_{{A}_{{\alpha }_{2}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(id\right)} . |
Therefore,
{S}_{{A}_{{\alpha }_{1}}}\left(xy\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(xy\right)} = {S}_{{A}_{{\alpha }_{1}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(id\right)} \; {\rm{and}} \; {L}_{{A}_{{\alpha }_{2}}}\left(xy\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(xy\right)} = {L}_{{A}_{{\alpha }_{2}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(id\right)} . |
This implies that
{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\left({x}^{-1}\right) = {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\left(id\right) , |
which implies that xy\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} .
Further,
{S}_{{A}_{{\alpha }_{1}}}\left({y}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}(y-1)}\ge {S}_{{A}_{{\alpha }_{1}}}\left(y\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(y\right)} = {S}_{{A}_{{\alpha }_{1}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(id\right)} |
and
{L}_{{A}_{{\alpha }_{2}}}\left({y}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}(y-1)}\le {L}_{{A}_{{\alpha }_{2}}}\left(y\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(y\right)} = {L}_{{A}_{{\alpha }_{2}}}\left(\mathrm{i}\mathrm{d}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(id\right)} . |
However,
{S}_{{A}_{{\alpha }_{1}}}\left(x\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(x\right)}\le {S}_{{A}_{{\alpha }_{1}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(id\right)} |
and
{L}_{{A}_{{\alpha }_{2}}}\left(x\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(x\right)}\ge {L}_{{A}_{{\alpha }_{2}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(id\right)} . |
Thus, {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} is subgroup of group G . Moreover, let x\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} and y\in G . We have
{S}_{{A}_{{\alpha }_{1}}}\left({y}^{-1}xy\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({y}^{-1}xy\right)} = {S}_{{A}_{{\alpha }_{1}}}\left(x\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(x\right)} |
and
{L}_{{A}_{{\alpha }_{2}}}\left({y}^{-1}xy\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({y}^{-1}xy\right)} = {L}_{{A}_{{\alpha }_{2}}}\left(x\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(x\right)} . |
This implies that {y}^{-1}xy\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} . Hence, {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} is a normal subgroup.
Theorem 12. Let {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} be an \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -CIFNSG of group G . Then,
\begin{array}{l} g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} \;{\text{if and if only }}\; {g}^{-1}h\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}, \\ {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}g = {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}h {\text{ if and if only }} g{h}^{-1}\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} . \end{array} |
Proof. (i) For any g, h\in G , we have g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} .Consider,
\begin{array}{l}{S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}h\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}h\right)}& = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left({g}^{-1}h\right){e}^{i\alpha {w}_{A}^{{S}_{\mathrm{A}}}\left({g}^{-1}h\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\}\\ & = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{gA}\left(h\right){e}^{i\alpha {w}_{gA}^{{S}_{gA}}\left(h\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\}\\ & = {S}_{g{A}_{\;{\alpha }_{1}}}\left(h\right){e}^{i\alpha {w}_{{gA}_{\;{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}\left(h\right)}\\ & = {S}_{h{A}_{{\alpha }_{1}}}\left(h\right){e}^{i\alpha {w}_{{hA}_{{\beta }_{1}}}^{{S}_{{hA}_{{\alpha }_{1}}}}\left(h\right)}\\ & = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left({h}^{-1}h\right){e}^{i{\alpha w}_{A}^{{S}_{\mathrm{A}}}\left({h}^{-1}h\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\}\\ & = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left(id\right){e}^{i{\alpha w}_{A}^{{S}_{\mathrm{A}}}\left(id\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\}\\ & = {S}_{{A}_{{\alpha }_{1}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(id\right)}.\end{array} |
and
\begin{array}{l}{L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}h\right){e}^{i{\phi }_{{A}_{\beta }}\left({g}^{-1}h\right)}& = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left({g}^{-1}h\right){e}^{i\alpha {w}_{A}^{{L}_{\mathrm{A}}}\left({g}^{-1}h\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\}\\ & = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{gA}\left(h\right){e}^{i\alpha {w}_{gA}^{{L}_{gA}}\left(h\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\}\\ & = {L}_{g{A}_{{\alpha }_{2}}}\left(h\right){e}^{i\alpha {w}_{g{A}_{{\;\beta }_{2}}}^{{L}_{{gA}_{{\;\alpha }_{2}}}}\left(h\right)}\\ & = {L}_{h{A}_{{\alpha }_{2}}}\left(h\right){e}^{i\alpha {w}_{{hA}_{{\;\beta }_{2}}}^{{L}_{{hA}_{{\;\alpha }_{2}}}}\left(\right(h)}\\ & = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left({h}^{-1}h\right){e}^{i{\alpha w}_{A}^{{L}_{\mathrm{A}}}\left({h}^{-1}h\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\}\\ & = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left(id\right){e}^{i{\alpha w}_{A}^{{L}_{\mathrm{A}}}\left(id\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\}\\ & = {L}_{{A}_{{\alpha }_{2}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(id\right)}.\end{array} |
Therefore, {g}^{-1}h\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} .
Conversely, let {g}^{-1}h\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} implies that
{S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}h\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}h\right)} = {S}_{{A}_{{\alpha }_{1}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(id\right)} |
and
{L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}h\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}h\right)} = {L}_{{A}_{{\alpha }_{2}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(id\right)} . |
\begin{array}{l}\text{Consider, }{S}_{g{A}_{\;{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{gA}_{{\alpha }_{1}}}}\left(o\right)}& = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left({g}^{-1}o\right){e}^{i\alpha {w}_{A}^{{S}_{\mathrm{A}}}\left({g}^{-1}a\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\}\\ & = {S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}a\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}o\right)}\\ & = {S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}h\right)\left({h}^{-1}o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}h\right)\left({h}^{-1}o\right)}\\ & \ge \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}h\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}h\right)}, {S}_{{A}_{{\alpha }_{1}}}\left({h}^{-1}o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({h}^{-1}o\right)}\right\}\\ & = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(id\right)}, {S}_{{A}_{{\alpha }_{1}}}\left({h}^{-1}o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({h}^{-1}o\right)}\right\}\\ & = {S}_{{A}_{{\alpha }_{1}}}\left({h}^{-1}o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({h}^{-1}o\right)}\\ & = {S}_{h{A}_{{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{{hA}_{{\beta }_{1}}}^{{S}_{h{A}_{{\alpha }_{1}}}}\left(o\right)}.\end{array} |
\begin{array}{l}\text{And, }{L}_{g{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{g{A}_{\;{\alpha }_{2}}}}\left(o\right)}& = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left({g}^{-1}o\right){e}^{i\alpha {w}_{A}^{{L}_{\mathrm{A}}}\left({g}^{-1}o\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\}\\ & = {L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}o\right)}\\ & = {L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}h\right)\left({h}^{-1}o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}h\right)\left({h}^{-1}o\right)}\\ & \le \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}h\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({g}^{-1}h\right)}, {S}_{{A}_{{\alpha }_{1}}}\left({h}^{-1}o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({h}^{-1}o\right)}\right\}\\ & = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{{A}_{{\alpha }_{2}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(id\right)}, {L}_{{A}_{{\alpha }_{2}}}\left({h}^{-1}o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({h}^{-1}o\right)}\right\}\\ & = {L}_{{A}_{{\alpha }_{2}}}\left({h}^{-1}o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left({h}^{-1}o\right)}\\ & = {L}_{h{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{{hA}_{{\beta }_{2}}}^{{L}_{h{A}_{{\alpha }_{2}}}}\left(o\right)}.\end{array} |
Replace the position of g and h , and we gain
{S}_{h{A}_{{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{h{A}_{{\beta }_{1}}}^{{S}_{h{A}_{{\alpha }_{1}}}}\left(o\right)}\ge {S}_{g{A}_{\;{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{g{A}_{{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}\left(o\right)} |
and
{L}_{h{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{h{A}_{{\beta }_{2}}}^{{L}_{h{A}_{{\alpha }_{2}}}}\left(o\right)}\le {L}_{g{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{{gA}_{\;{\beta }_{2}}}^{{L}_{g{A}_{\;{\alpha }_{2}}}}\left(o\right)} . |
Therefore,
{S}_{g{A}_{\;{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{{gA}_{\;{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}\left(o\right)} = {S}_{h{A}_{{\alpha }_{1}}}\left(o\right){e}^{i\alpha {w}_{h{A}_{{\beta }_{1}}}^{{S}_{h{A}_{{\alpha }_{1}}}}\left(o\right)} |
and
{L}_{g{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{{gA}_{\;{\beta }_{2}}}^{{L}_{g{A}_{\;{\alpha }_{2}}}}\left(o\right)} = {L}_{h{A}_{{\alpha }_{2}}}\left(o\right){e}^{i\alpha {w}_{h{A}_{{\beta }_{2}}}^{{L}_{h{A}_{{\alpha }_{2}}}}\left(o\right)} . |
(ⅱ) Similar to part (ⅰ).
Theorem 13. Let {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} be an \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -CIFNSG of group G and g, h, o , and f be any elements in G . If g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = o{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} and h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = f{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} , then gh{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = of{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} .
Proof. Given that g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = o{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} and h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = f{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} . This implies that {g}^{-1}o, {h}^{-1}f\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} . Consider,
\left(gh{)}^{-1}\right(of) = {h}^{-1}\left({g}^{-1}o\right)f = {h}^{-1}\left({g}^{-1}o\right)\left(h{h}^{-1}\right)f = \left[{h}^{-1}\left({g}^{-1}o\right)\left(h\right)\right]\left({h}^{-1}f\right) . |
As {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} is normal subgroup of G . Therefor,
(gh{)}^{-1}(of)\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}. |
Consequently,
gh{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = of{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} . |
Theorem 14. Let G/{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = \left\{g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}:g\in G\right\} be the collection of all \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -complex intuitionistic fuzzy cosets of \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -CIFNSG {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} of G . Then, (\star ) is a well-defined binary operation under G/{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} and is defined as g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\star h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = gh{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} for all g, h\in G .
Proof. We have g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} and o{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = f{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} , for any o, f, g, h\in G . Let v\in G be any element, then
\left[g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\star o{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\right]\left(v\right) = \left(ga{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\left(v\right)\right) = \left(v, {\mu }_{pa{A}_{\alpha }}\left(v\right){e}^{i{\phi }_{pa{A}_{\beta }}\;\left(v\right)}\right) . |
Consider,
{S}_{go{A}_{{\alpha }_{1}}}\left(v\right){e}^{i\alpha {w}_{{goA}_{\;{\beta }_{1}}}^{{S}_{go{A}_{{\;\alpha }_{1}}}}\left(v\right)} = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{go\mathrm{A}}\left(v\right){e}^{i\alpha {w}_{goA}^{{S}_{go\mathrm{A}}}\left(v\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left((go{)}^{-1}v\right){e}^{i\alpha {w}_{A}^{{S}_{\mathrm{A}}}\left((go{)}^{-1}v\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left({o}^{-1}\left({g}^{-1}v\right)\right){e}^{i\alpha {w}_{A}^{{S}_{\mathrm{A}}}\left({o}^{-1}\left({g}^{-1}v\right)\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\} |
= {S}_{o{A}_{{\alpha }_{1}}}\left({g}^{-1}v\right){e}^{i\alpha {w}_{{oA}_{{\;\beta }_{1}}}^{{S}_{o{A}_{{\;\alpha }_{1}}}}\;\left({g}^{-1}v\right)} |
= {S}_{f{A}_{{\alpha }_{1}}}\left({g}^{-1}v\right){e}^{i\alpha {w}_{{fA}_{{\;\beta }_{1}}}^{{S}_{f{A}_{{\;\alpha }_{1}}}}\left({g}^{-1}v\right)} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left({f}^{-1}\left({g}^{-1}v\right)\right){e}^{i\alpha {w}_{A}^{{S}_{A}}\left({f}^{-1}\left({g}^{-1}v\right)\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left({g}^{-1}\left(v{f}^{-1}\right)\right){e}^{i\alpha {w}_{A}^{{S}_{A}}\left({g}^{-1}\left(v{f}^{-1}\right)\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\} |
= {S}_{g{A}_{\;{\alpha }_{1}}}\left(v{f}^{-1}\right){e}^{i\alpha {w}_{{gA}_{\;{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}\left(v{f}^{-1}\right)} |
= {S}_{h{A}_{{\alpha }_{1}}}\left(v{f}^{-1}\right){e}^{i\alpha {w}_{{hA}_{{\;\beta }_{1}}}^{{S}_{h{A}_{{\;\alpha }_{1}}}}\left(v{f}^{-1}\right)} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left({h}^{-1}\left(v{f}^{-1}\right)\right){e}^{i\alpha {w}_{A}^{{S}_{A}}\left({h}^{-1}\left(v{f}^{-1}\right)\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left({h}^{-1}v\right){f}^{-1}{e}^{i\alpha {w}_{A}^{{S}_{A}}\left({h}^{-1}v\right){f}^{-1}}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left({f}^{-1}{h}^{-1}\left(v\right)\right){e}^{i\alpha {w}_{A}^{{S}_{A}}\left({f}^{-1}{h}^{-1}\left(v\right)\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{A}\left(\left(hf{)}^{-1}\right(v)\right){e}^{i\alpha {w}_{A}^{{S}_{A}}\left(\left(hf{)}^{-1}\right(v)\right)}, {\alpha }_{1}{e}^{i{\beta }_{1}}\right\} |
= {S}_{hf{A}_{{a}_{1}}}\left(v\right){e}^{i\alpha {w}_{{hfA}_{{\;\beta }_{1}}}^{{S}_{hf{A}_{{\;\alpha }_{1}}}}\left(v\right)}. |
And,
{L}_{go{A}_{{\alpha }_{2}}}\left(v\right){e}^{i\alpha {w}_{{goA}_{{\;\beta }_{2}}}^{{L}_{go{A}_{{\;\alpha }_{2}}}}\left(v\right)} = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{go\mathrm{A}}\left(v\right){e}^{i\alpha {w}_{goA}^{{L}_{go\mathrm{A}}}\left(v\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\} |
= \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left((go{)}^{-1}v\right){e}^{i\alpha {w}_{A}^{{L}_{\mathrm{A}}}\left((go{)}^{-1}v\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\} |
= \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left({o}^{-1}\left({g}^{-1}v\right)\right){e}^{i\alpha {w}_{A}^{{L}_{\mathrm{A}}}\left({o}^{-1}\left({g}^{-1}v\right)\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\} |
= {L}_{o{A}_{{\alpha }_{2}}}\left({g}^{-1}v\right){e}^{i\alpha {w}_{{oA}_{{\;\beta }_{2}}}^{{L}_{o{A}_{{\;\alpha }_{2}}}}\left({g}^{-1}v\right)} |
= {L}_{f{A}_{{\alpha }_{2}}}\left({g}^{-1}v\right){e}^{i\alpha {w}_{{fA}_{{\;\beta }_{2}}}^{{L}_{f{A}_{{\;\alpha }_{2}}}}\left({g}^{-1}v\right)} |
= \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left({f}^{-1}\left({g}^{-1}v\right)\right){e}^{i\alpha {w}_{A}^{{L}_{A}}\left({f}^{-1}\left({g}^{-1}v\right)\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\} |
= \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left({g}^{-1}\left(v{f}^{-1}\right)\right){e}^{i\alpha {w}_{A}^{{L}_{A}}\left({g}^{-1}\left(v{f}^{-1}\right)\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\} |
= {L}_{g{A}_{{\alpha }_{2}}}\left(v{f}^{-1}\right){e}^{i\alpha {w}_{{gA}_{\;{\beta }_{2}}}^{{L}_{g{A}_{\;{\alpha }_{2}}}}\left(v{f}^{-1}\right)} |
= {L}_{h{A}_{{\alpha }_{2}}}\left(v{f}^{-1}\right){e}^{i\alpha {w}_{{hA}_{\;{\beta }_{2}}}^{{L}_{h{A}_{{\;\alpha }_{2}}}}\left(v{f}^{-1}\right)} |
= \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left({h}^{-1}\left(v{f}^{-1}\right)\right){e}^{i\alpha {w}_{A}^{{L}_{A}}\left({h}^{-1}\left(v{f}^{-1}\right)\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\} |
= \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left({h}^{-1}v\right){f}^{-1}{e}^{i\alpha {w}_{A}^{{L}_{A}}\left({h}^{-1}v\right){f}^{-1}}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\} |
= \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left({f}^{-1}{h}^{-1}\left(v\right)\right){e}^{i\alpha {w}_{A}^{{L}_{A}}\left({f}^{-1}{h}^{-1}\left(v\right)\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\} |
= \mathrm{m}\mathrm{a}\mathrm{x}\left\{{L}_{A}\left(\left(hf{)}^{-1}\right(v)\right){e}^{i\alpha {w}_{A}^{{L}_{A}}\left(\left(hf{)}^{-1}\right(v)\right)}, {\alpha }_{2}{e}^{i{\beta }_{2}}\right\} |
= {S}_{hf{A}_{{a}_{2}}}\left(v\right){e}^{i\alpha {w}_{{hfA}_{\;{\beta }_{2}}}^{{S}_{hf{A}_{{a}_{2}}}}\;\left(v\right)}. |
Hence, we concluded that the axiom of associative and closure under the presented binary operation * are satisfied for the set /{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} .Further,
\begin{array}{c} {S}_{{A}_{{\mathrm{\alpha }}_{1}}}{e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}}\star {S}_{g{A}_{\;{\alpha }_{1}}}{e}^{\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}} = {S}_{id{A}_{{\alpha }_{1}}}{e}^{i\alpha {w}_{{id}_{{\beta }_{1}}}^{{S}_{{id}_{{\alpha }_{1}}}}}\star {S}_{g{A}_{\;{\alpha }_{1}}}{e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}} = {S}_{g{A}_{\;{\alpha }_{1}}}{e}^{i\alpha {w}_{{gA}_{\;{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}} \\ = {S}_{g{A}_{\;{\alpha }_{1}}}{e}^{i\alpha {w}_{{gA}_{\;{\beta }_{1}}}^{{S}_{{gA}_{{\alpha }_{1}}}}}⟹{S}_{{A}_{{\alpha }_{1}}}{e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}} \end{array} |
and
\begin{array}{c} {L}_{{A}_{{\mathrm{\alpha }}_{2}}}{e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{{\mathrm{\alpha }}_{2}}}}}\star {L}_{g{A}_{{\mathrm{\alpha }}_{2}}}{e}^{\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{g{A}_{{\mathrm{\alpha }}_{2}}}}} = {L}_{id{A}_{{\alpha }_{2}}}{e}^{i\alpha {w}_{{id}_{{\beta }_{2}}}^{{L}_{id{A}_{{\alpha }_{2}}}}}\star {L}_{g{A}_{{\alpha }_{2}}}{e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{g{A}_{\;{\alpha }_{2}}}}} = {L}_{g{A}_{{\alpha }_{2}}}{e}^{i\alpha {w}_{{gA}_{\;{\beta }_{2}}}^{{L}_{g{A}_{\;{\alpha }_{2}}}}} =\\ {L}_{g{A}_{{\alpha }_{2}}}{e}^{i\alpha {w}_{{gA}_{\;{\beta }_{2}}}^{{L}_{g{A}_{\;{\alpha }_{2}}}}}⟹{L}_{{A}_{{\alpha }_{2}}} , \end{array} |
an element of G/{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} . So the inverse of every element of G/{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} exist if
{S}_{{gA}_{{\alpha }_{1}}}{e}^{i\alpha {w}_{{gA}_{\;{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}}\in G/{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} . |
And
{L}_{g{A}_{{\mathrm{\alpha }}_{2}}}{e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{g{A}_{{\mathrm{\alpha }}_{2}}}}}\in G/{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} , |
and then there exists an element,
{S}_{{g}^{-1}{A}_{{\alpha }_{1}}}{e}^{i\alpha {w}_{{gA}_{\;{\beta }_{1}}}^{{S}_{{g}^{-1}{A}_{{\alpha }_{1}}}}}\in G/{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} . |
And
{L}_{{h}^{-1}{A}_{{\mathrm{\alpha }}_{2}}}{e}^{i\alpha {w}_{{h}^{-1}{A}_{{\beta }_{2}}}^{{h}^{-1}{A}_{\;{\mathrm{\alpha }}_{2}}}} |
such that
{S}_{{g}^{-1}{A}_{{\alpha }_{1}}}{e}^{i\alpha {w}_{{{g}^{-1}A}_{{\beta }_{1}}}^{{S}_{{g}^{-1}{A}_{{\alpha }_{1}}}}} = {S}_{{A}_{{\alpha }_{1}}}{e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}} . |
And
{L}_{{g}^{-1}{A}_{{\alpha }_{2}}}{e}^{i\alpha {w}_{{{g}^{-1}A}_{{\beta }_{2}}}^{{L}_{{g}^{-1}{A}_{{\alpha }_{2}}}}} = {L}_{{A}_{{\alpha }_{2}}}{e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}} . |
As a result, G/{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} is a group. And is called the CIF quotient group of the G.
Lemma 1. Let m:G\to G/{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} be natural homomorphism and defined by the rule, m\left(g\right) = g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} with the kernel m = {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} .
Proof. Let g, h be any elements of group G , and then
\begin{array}{c} m\left(gh\right) = gh{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = {S}_{gh{A}_{{\alpha }_{1}}}{e}^{i\alpha {w}_{{ghA}_{{\;\beta }_{1}}}^{{S}_{gh{A}_{{\alpha }_{1}}}}} = {S}_{{gA}_{{\alpha }_{1}}}{e}^{i\alpha {w}_{{gA}_{\;{\beta }_{1}}}^{{S}_{g{A}_{\;{\alpha }_{1}}}}}\star {S}_{{hA}_{{\alpha }_{1}}}{e}^{i\alpha {w}_{{hA}_{{\;\beta }_{1}}}^{{S}_{{hA}_{{\alpha }_{1}}}}} \\ = g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\star h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = m\left(g\right)\star m\left(h\right). \end{array} |
And
\begin{array}{c} m\left(gh\right) = gh{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = {L}_{gh{A}_{{\alpha }_{2}}}{e}^{i\alpha {w}_{{ghA}_{{\beta }_{2}}}^{{L}_{gh{A}_{\;{\alpha }_{2}}}}} = {L}_{{gA}_{{\;\alpha }_{2}}}{e}^{i\alpha {w}_{{gA}_{\;{\beta }_{2}}}^{{L}_{{gA}_{\;{\alpha }_{2}}}}}\star {L}_{{hA}_{{\alpha }_{2}}}{e}^{i\alpha {w}_{{hA}_{{\;\beta }_{2}}}^{{L}_{{hA}_{{\;\alpha }_{2}}}}} \\= g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\star h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = m\left(g\right)\star m\left(h\right). \end{array} |
Thus, m is homomorphism. Now,
\begin{array}{l}\text{Kernal}& = \left\{g\in G:n\left(p\right) = id{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\right\}\\ & = \left\{g\in G:p{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = id{A}_{(\alpha , \beta )}\right\}\\ & = \left\{g\in G:p{\left(id\right)}^{-1}\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\}\\ & = \left\{g\in G:p\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\}\\ & = {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}.\end{array} |
Theorem 15. Let {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} be a normal subgroup of G . If
{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = \left\{\left(g, {S}_{{A}_{{\alpha }_{1}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\;\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(g\right)}, {L}_{{A}_{{\alpha }_{2}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(g\right)}\right):g\in G\right\} |
is \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -CIFSG, then, the \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -CIFS.
{\stackrel{‾}{A}}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = \left\{\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}, {\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\stackrel{-}{S}}_{{A}_{{\alpha }_{1}}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)}, {\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{-}{L}}_{{A}_{{\alpha }_{2}}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)}\right):g\in G\right\} |
of G/{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} is also a (\alpha , \beta ) -CIFSG of G/{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} where
{\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\stackrel{-}{S}}_{{A}_{{\alpha }_{1}}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)} = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(go\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(go\right)}:o\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\}. |
And
{\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{‾}{L}}_{{A}_{{\;\alpha }_{2}}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)} = \mathrm{m}in\left\{{\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}\left(go\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{‾}{L}}_{{A}_{\;{\alpha }_{2}}}}\left(go\right)}:o\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\} . |
Proof. First, we shall prove that
{\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\stackrel{-}{S}}_{{A}_{{\alpha }_{1}}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)} |
and
{\stackrel{-}{L}}_{{A}_{{\alpha }_{2}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{-}{L}}_{{A}_{{\alpha }_{2}}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)} |
is well-defined. Let g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} = h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} then h = go , for some o\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} .
Now,
{\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}\left(h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\stackrel{-}{S}}_{{A}_{{\alpha }_{1}}}}\left(h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)} = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(hf\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(hf\right)}:f\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\} |
\begin{array}{l}& = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(gof\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(gof\right)}:c = of\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\}\\ & = \mathrm{m}\mathrm{a}\mathrm{x}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(gc\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(gc\right)}:c\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\}\\ & = {\stackrel{-}{S}}_{{A}_{{\alpha }_{1}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\stackrel{-}{S}}_{{A}_{{\alpha }_{1}}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)}.\end{array} |
And,
{\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}\left(h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}}\left(h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)} = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}\left(hf\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}}\left(hf\right)}:f\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\} |
\begin{array}{l}& = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{L}_{{A}_{{\alpha }_{2}}}\left(gof\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}}\left(gof\right)}:c = of\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\}\\ & = \mathrm{m}\mathrm{i}\mathrm{n}\left\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(gc\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}}\left(gc\right)}:c\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\}\\ & = {\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)}.\end{array} |
Therefore,
{\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\stackrel{-}{S}}_{{A}_{{\alpha }_{1}}}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right) |
and
{\stackrel{-}{L}}_{{A}_{{\alpha }_{2}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{-}{L}}_{{A}_{{\alpha }_{2}}}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right) |
is will-defined.
Consider
{\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}\left\{\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)\left(h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)\right\}{e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}}\left\{\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)\left(h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)\right\}} |
= {\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}\left(gh{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}}\left(gh{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)} |
= \mathrm{m}\mathrm{a}\mathrm{x}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(gho\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(gho\right)}:o\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\} |
\ge \mathrm{m}\mathrm{a}\mathrm{x}\left\{\mathrm{m}\mathrm{i}\mathrm{n}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(gf\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(gf\right)}, {S}_{{A}_{{\alpha }_{1}}}\left(hc\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(hc\right)}\right\}:f, c\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{\mathrm{m}\mathrm{a}\mathrm{x}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(gf\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(gf\right)}\right\}, \mathrm{m}\mathrm{a}\mathrm{x}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(qc\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(qc\right)}\right\}:f, c\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{{\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)}, {\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}\left(h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}}\left(h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)}\right\}. |
And
{\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}\left\{\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)\left(h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)\right\}{e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}}\left\{\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)\left(h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)\right\}} |
= {\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}\left(gh{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}}\left(gh{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(gho\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}}\left(gho\right)}:o\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\} |
\le \mathrm{m}\mathrm{i}\mathrm{n}\left\{\mathrm{m}\mathrm{a}\mathrm{x}\left\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(gf\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}}\left(gf\right)}, {\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(hc\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}}\left(hc\right)}\right\}:f, c\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\} |
= \mathrm{m}\mathrm{a}\mathrm{x}\left\{\mathrm{m}\mathrm{i}\mathrm{n}\left\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(gf\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}}\left(gf\right)}\right\}, \mathrm{m}\mathrm{i}\mathrm{n}\left\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(qc\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}}\left(qc\right)}\right\}:f, c\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\} |
= \mathrm{m}\mathrm{a}\mathrm{x}\left\{{\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)}, {\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}\left(h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}}\left(h{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)}\right\}. |
{\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}\left({\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}}\left({\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)}^{-1}\right)} = {\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}}\left({g}^{-1}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)} |
= \mathrm{m}\mathrm{a}\mathrm{x}\left\{{S}_{{A}_{{\alpha }_{1}}}\left({g}^{-1}o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left({g}^{-1}o\right)}:o\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\}\ge \mathrm{m}\mathrm{a}\mathrm{x}\left\{{S}_{{A}_{{\alpha }_{1}}}\left(go\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(go\right)}:o\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\} |
= {\stackrel{‾}{S}}_{{A}_{{\alpha }_{1}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{\stackrel{-}{S}}_{{A}_{{\alpha }_{1}}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)}. |
And
{\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}\left({\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)}^{-1}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{‾}{L}}_{{A}_{{\;\alpha }_{2}}}}\left({\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)}^{-1}\right)} = {\stackrel{‾}{L}}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{‾}{L}}_{{A}_{{\;\alpha }_{2}}}}\left({g}^{-1}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)} |
= \mathrm{m}\mathrm{i}\mathrm{n}\left\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left({g}^{-1}o\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{\;{\alpha }_{2}}}}\left({g}^{-1}o\right)}:o\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\}\le \mathrm{m}\mathrm{i}\mathrm{n}\left\{{\mathrm{L}}_{{A}_{{\alpha }_{2}}}\left(go\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\mathrm{L}}_{{A}_{\;{\alpha }_{2}}}}\left(go\right)}:o\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right\} |
= {\stackrel{-}{\mathrm{L}}}_{{A}_{{\alpha }_{2}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{\stackrel{-}{\mathrm{L}}}_{{A}_{{\alpha }_{2}}}}\left(g{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right)} . |
Remark 5. If {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} is an \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -CIFSG of a group G , let g\in G and
{S}_{{A}_{{\alpha }_{1}}}\left(gh\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(gh\right)} = {S}_{{A}_{{\alpha }_{1}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(g\right)} |
and
{L}_{{A}_{{\alpha }_{2}}}\left(gh\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(gh\right)} = {L}_{{A}_{{\alpha }_{2}}}\left(g\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(g\right)} , |
for all h\in G then
{S}_{{A}_{{\alpha }_{1}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(p\right)} = {S}_{{A}_{{\alpha }_{1}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{1}}}^{{S}_{{A}_{\;{\alpha }_{1}}}}\;\left(id\right)} |
and
{L}_{{A}_{{\alpha }_{2}}}\left(p\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(p\right)} = {L}_{{A}_{{\alpha }_{2}}}\left(id\right){e}^{i\alpha {w}_{{A}_{{\beta }_{2}}}^{{L}_{{A}_{\;{\alpha }_{2}}}}\;\left(id\right)} . |
Definition 15. Let {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} be a \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -CIFSG. Then, the cardinality of the set G/{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} of all \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -complex intuitionistic fuzzy left cosets of G by {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} is called the index of \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -complex intuitionistic fuzzy subgroup and is represented by \left[G:{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\right] .
Theorem 16. ( \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -Complex intuitionistic Fuzzification of Lagrange's Theorem): Assume that a \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -complex intuitionistic fuzzy subgroup {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} of finite group G . Then, the index of \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -complex intuitionistic fuzzy subgroup of G divides the order of G .
Proof. By Lemma 1, Define a subgroup \stackrel{‾}{M} = \left\{x\in G:x{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = id{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\right\} . Using the Definition 13 x\in \stackrel{‾}{M} and v\in G , we have x{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\left(v\right) = id{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\left(v\right) . This implies that {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\left({x}^{-1}v\right) = {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\left(v\right) , by Remark 5, which shows that x\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} . Therefore, \stackrel{‾}{M} is contained in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}. Now, we take any element x\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} and using the fact {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} is subgroup of G , we have {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\left({x}^{-1}\right) = {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\left(id\right) . From Theorem 13, the elements {x}^{-1}, v\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} , which means that x{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = id{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} , which implies that x\in \stackrel{‾}{M} . Hence, {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} is contained in \stackrel{‾}{M} . From this discussion, we can say that \stackrel{‾}{M} = {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} .
Now, we define the partition of the group G into the disjoint union of right cosets, and this is defined as G = {s}_{1}\stackrel{-}{M}
\cup {s}_{2}\stackrel{‾}{M}\cup \cdots \cup {s}_{k}\stackrel{‾}{m}\text{. (}{i}\text{)} |
where {s}_{1}\stackrel{‾}{M} = \stackrel{‾}{M} . Now, we prove that, to each coset {s}_{j}\stackrel{‾}{M} in relation (i), there exists an \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -complex intuitionistic fuzzy coset {s}_{j}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} in G/{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} , and this corresponding is injective.
Consider any coset {s}_{j}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} . Let x\in {A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} , then
\begin{array}{l}m\left({s}_{j}x\right) = {s}_{j}x{A}_{({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}})}& = {s}_{j}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}x{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\\ & = {s}_{j}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}id{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\\ & = {s}_{j}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}.\end{array} |
Thus, m maps each element of {s}_{j}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} into the \left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right) -complex intuitionistic fuzzy coset {s}_{j}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} .
Between the set {}^{G}\!\!\diagup\!\!{}_{A_{\left( {{\alpha }_{\text{1},\text{2}}},{{\beta }_{\text{1},\text{2}}} \right)}^{id}}\; and {s}_{j}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}, 1\le j\le k a natural correspondence \stackrel{‾}{m} can be defined by
\stackrel{‾}{m}\left({s}_{j}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right) = {s}_{j}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}, 1\le j\le k. |
The correspondence \stackrel{‾}{m} is injective.
For this, let {s}_{i}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = {s}_{l}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} , then {s}_{l}^{-1}{s}_{i}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} = id{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)} . By using \left(A\right) , we have {s}_{l}^{-1}{s}_{i}\in \stackrel{‾}{M} , which means that {s}_{i}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} = {s}_{i}{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id} , and hence \stackrel{‾}{m} is injective. It is quite clear from the above discussion that \left[G:{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right] and \left[G:{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}\right] are equal. Hence, \left[G:{A}_{\left({\alpha }_{\mathrm{1, 2}}, {\beta }_{\mathrm{1, 2}}\right)}^{id}\right] divides O\left(G\right) .
The concept of (α1, 2, β1, 2)-CIFSs was introduced as a generalization of (α1, 2, β1, 2)-CFS and classical CIFS. Then we defined (α1, 2, β1, 2)-CIF Subgroup and studied its algebraic structure. In order to establish Lagrange theorem under (α1, 2, β1, 2)-CIFSs, we introduced the notion of (α1, 2, β1, 2)−CIFS cosets. A special type of subgroup, named (α1, 2, β1, 2)-CIFNSGs, is created by using the notion of cosets under (α1, 2, β1, 2)-CIFSs. Moreover, we established an (α1, 2, β1, 2)-complex intuitionistic fuzzy quotient ring induced by (α1, 2, β1, 2)-CIFNSG. As future research, we may use our concepts to improve the assessment and prioritization method of key engineering characteristic for complex products [53]. Also can be employed current concepts in decision making problems and machine learning algorithm [54] to enhance the results in both references [53,54].
The authors declare there are no conflicts of interest.
[1] | K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 1–6. |
[2] |
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[3] | E. Szmidt, J. Kacprzyk, Intuitionistic fuzzy sets in some medical applications, In: International conference on computational intelligence, 2206 (2001), 148–151. https://doi.org/10.1007/3-540-45493-4_19 |
[4] |
Z. Wang, F. Xiao, W. Ding, Interval-valued intuitionistic fuzzy jenson-shannon divergence and its application in multi-attribute decision making, Appl. Intell., 2022, 16168–16184. https://doi.org/10.1007/s10489-022-03347-0 doi: 10.1007/s10489-022-03347-0
![]() |
[5] |
J. Liu, J. Mai, H. Li, B. Huang, Y. Liu, On three perspectives for deriving three-way decision with linguistic intuitionistic fuzzy information, Inform. Sci., 588 (2022), 350–380. https://doi.org/10.1016/j.ins.2021.12.072 doi: 10.1016/j.ins.2021.12.072
![]() |
[6] |
F. Bilgili, F. Zarali, M. F. Ilgün, C. Dumrul, Y. Dumrul, The evaluation of renewable energy alternatives for sustainable development in Turkey using intuitionistic fuzzy-TOPSIS method, Renew. Energ., 189 (2022), 1443–1458. https://doi.org/10.1016/j.renene.2022.03.058 doi: 10.1016/j.renene.2022.03.058
![]() |
[7] |
S. Zeng, J. Zhou, C. Zhang, J. M. Merigó, Intuitionistic fuzzy social network hybrid MCDM model for an assessment of digital reforms of manufacturing industry in China, Technol. Forecast. Soc., 176 (2022), 121435. https://doi.org/10.1016/j.techfore.2021.121435 doi: 10.1016/j.techfore.2021.121435
![]() |
[8] | A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. |
[9] | W. J. Liu, 1982. Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Set. Syst., 8 (1982), 133–139. |
[10] | E. Yetkin, N. Olgun, Direct product of fuzzy groups and fuzzy rings, Int. Math. Forum., 6 (2011), 1005–1015. |
[11] | F. A. Azam, A. A. Mamun, F. Nasrin, Anti-fuzzy ideal of ring, Annal, Fuzzy Math. Inform., 5 (2013), 349–360. |
[12] | R. Kellil, Sum and product of fuzzy ideals of ring, Int. J. Math. Comput. Sci., 13 (2018), 187–205. |
[13] |
J. G. Kim, Fuzzy orders relative to fuzzy subgroups, Inform. Sci., 80 (1994), 341–348. https://doi.org/10.1016/0020-0255(94)90084-1 doi: 10.1016/0020-0255(94)90084-1
![]() |
[14] | N. Ajmal, Homomorphism of fuzzy groups, correspondence theorem and fuzzy quotient groups, Fuzzy Set. Syst., 61 (1994), 329–339. |
[15] | A. K. Ray, On product of fuzzy subgroups, Fuzzy Set. Syst., 105 (1999), 181–183. |
[16] | R. Biswas, Intuitionistic fuzzy subgroups, Math. Fortum., 10 (1989), 37–46. |
[17] | P. K. Sharma, (α, β)-cut of intuitionistic fuzzy groups, Int. Math. Forum., 6 (2011), 2605–2614. |
[18] | P. K. Sharma, On intuitionistic anti-fuzzy subgroup of a group, Int. J. Math. Appl. Statist., 3 (2012), 147–153. |
[19] | P. K. Sharma, t- intuitionistic fuzzy subgroups, Int. J. Fuzzy Math. Syst., 2 (2012), 233–243. |
[20] | P. K.Sharma, t-intuitionitic fuzzy quotient group, Adv. Fuzzy Math., 7 (2012), 1–9. |
[21] | P. K. Sharma, On intuitionistic fuzzy abelian subgroups, Adv. Fuzzy Set. Syst., 12 (2012), 1–16. |
[22] | P. K.Sharma, Relationship between alpha-(Anti) fuzzy subgroups and (α, β)-(Anti) fuzzy subgroups, Int. Rev. Pure Appl. Math., 8 (2012), 133–140. |
[23] | P. K. Sharma, A. Duggal, Intuitionistic fuzzy Bi-ideals in a rings, P. Int. Confer. Sci. Comput., 7 (2013), 816–822. |
[24] |
K. A. Dib, On fuzzy spaces and fuzzy group theory, Inform. Sci., 80 (1994), 253–282. https://doi.org/10.1016/0020-0255(94)90079-5 doi: 10.1016/0020-0255(94)90079-5
![]() |
[25] | K. A. Dib, N. L. Youssef, Fuzzy Cartesian product, fuzzy relations and fuzzy functions, Fuzzy Set. Syst., 41 (1991), 299–315. |
[26] | K. A. Dib, A. A. M. Hassan, The fuzzy normal subgroup, Fuzzy Set. Syst., 98 (1998), 393–402. |
[27] | M. F. Marashdeh, A. R. Salleh, Intuitionistic fuzzy groups, Asian J. Algebra, 2 (2009), 1–10. |
[28] |
M. F. Marashdeh, A. R. Salleh, The intuitionistic fuzzy normal subgroup, Int. J. Fuzzy Logic Intell. Syst., 10 (2010), 82–88. https://doi.org/10.5391/IJFIS.2010.10.1.082 doi: 10.5391/IJFIS.2010.10.1.082
![]() |
[29] |
D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 (2002), 450–461. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119
![]() |
[30] |
D. Ramot, M. Friedman, G. Langholz, A. Kandel, Complex fuzzy logic, IEEE Trans. Fuzzy Syst., 11 (2003), 171–186. https://doi.org/10.1109/TFUZZ.2003.814832 doi: 10.1109/TFUZZ.2003.814832
![]() |
[31] |
A. S. M. Alkouri, A. R. Salleh, Complex Atanassov's intuitionistic fuzzy sets, AIP Confer. P., 1482 (2012), 464–470, https://doi.org/10.1063/1.4757515 doi: 10.1063/1.4757515
![]() |
[32] |
A. S. M. Alkouri, A. R. Salleh, Complex Atanassov's intuitionistic fuzzy relation, Abstr. Appl. Anal., 2013 (2013), 287382. https://doi.org/10.1155/2013/287382 doi: 10.1155/2013/287382
![]() |
[33] |
A. S. M. Alkouri, A. R. Salleh, Some operations on complex Atanassov's intuitionistic fuzzy sets, AIP Confer. P., 1571 (2013), 987. https://doi.org/10.1063/1.4858782 doi: 10.1063/1.4858782
![]() |
[34] |
T. Mahmood, Z. Ali, S. Baupradist, R. Chinram, Analysis and applications of Bonferroni mean operators and TOPSIS method in complete cubic intuitionistic complex fuzzy information systems, Symmetry, 14 (2022), 533. https://doi.org/10.3390/sym14030533 doi: 10.3390/sym14030533
![]() |
[35] |
M. Azam, M. S. A. Khan, S. Yang, A decision-making approach for the evaluation of information security management under complex intuitionistic fuzzy set environment, J. Math., 2022 (2022), 9704466. https://doi.org/10.1155/2022/9704466 doi: 10.1155/2022/9704466
![]() |
[36] | R. Nandhinii, D. Amsaveni, On bipolar complex intuitionistic fuzzy graphs, TWMS J. Appl. Eng. Math., 12 (2022), 92–106. |
[37] |
N. Yaqoob, M. Gulistan, S. Kadry, H. A. Wahab, Complex intuitionistic fuzzy graphs with application in cellular network provider companies, Mathematics, 7 (2019), 35. https://doi.org/10.3390/math7010035 doi: 10.3390/math7010035
![]() |
[38] |
G. Huang, L. Xiao, W. Pedrycz, D. Pamucar, G. Zhang, L. Martínez, Design alternative assessment and selection: A novel Z-cloud rough number-based BWM-MABAC model, Inform. Sci., 603 (2022), 149–189. https://doi.org/10.1016/j.ins.2022.04.040 doi: 10.1016/j.ins.2022.04.040
![]() |
[39] |
L. Xiao, G. Huang, W. Pedrycz, D. Pamucar, L. Martínez, G. Zhang, A q-rung orthopair fuzzy decision-making model with new score function and best-worst method for manufacturer selection, Inform. Sci., 608 (2022), 153–177. https://doi.org/10.1016/j.ins.2022.06.061 doi: 10.1016/j.ins.2022.06.061
![]() |
[40] |
G. Huang, L. Xiao, W. Pedrycz, G. Zhang, L. Martinez, Failure mode and effect analysis using T-Spherical fuzzy maximizing deviation and combined comparison solution methods, IEEE T. Reliab., 2022, 1–22. https://doi.org/10.1109/TR.2022.3194057 doi: 10.1109/TR.2022.3194057
![]() |
[41] | A. Al-Husban, A. R. Salleh, Complex fuzzy group based on complex fuzzy space, Glob. J. Pure Appl. Math., 12 (2016), 1433–1450. |
[42] | M. O. Alsarahead, A. G. Ahmad, Complex fuzzy subgroups, Appl. Math. Sci., 11 (2017), 2011–2021. |
[43] | M. O. Alsarahead, A. G. Ahmad, Complex fuzzy subrings, Int. J. Pure Appl. Math., 117 (2017), 563–577. |
[44] | M. O. Alsarahead, A. G. Ahmad, Complex fuzzy soft subgroups, J. Qual. Meas. Anal., 13 (2017), 17–28. |
[45] | W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Set. Syst., 8 (1982), 133–139. |
[46] |
H. Alolaiyan, H. A. Alshehri, M. H. Mateen, D. Pamucar, M. Gulzar, A novel Algebraic structure of (α, β)-complex fuzzy subgroups, Entropy, 23 (2021), 992. https://doi.org/10.3390/e23080992 doi: 10.3390/e23080992
![]() |
[47] |
R. Al-Husbana, A. R. Salleh, A. G. Ahmad, Complex intuitionistic fuzzy group subrings, AIP Confer. P., 1784 (2016), 05006. https://doi.org/10.1063/1.4966825 doi: 10.1063/1.4966825
![]() |
[48] | R. Al-Husbana, A. R. Salleh, A. G. Ahmad, Complex intuitionistic fuzzy normal subgroup, Int. J. Pure Appl. Math., 115 (2017), 455–466. |
[49] |
F. Xiao, W. Pedrycz, Negation of the quantum mass function for multisource quantum information fusion with its application to pattern classification, IEEE T. Pattern Anal. Mach. Intell., 2022, 35420983. https://doi.org/10.1109/TPAMI.2022.3167045 doi: 10.1109/TPAMI.2022.3167045
![]() |
[50] |
F. Xiao, Z. Cao, C. Lin, A complex weighted discounting multisource information fusion with its application in pattern classification, IEEE T. Knowl. Data Eng., 2022, 1–16. https://doi.org/10.1109/TKDE.2022.3206871 doi: 10.1109/TKDE.2022.3206871
![]() |
[51] |
F. Xiao, Generalized quantum evidence theory, Appl. Intell., 2022 (2022). https://doi.org/10.1007/s10489-022-04181-0 doi: 10.1007/s10489-022-04181-0
![]() |
[52] |
F. Xiao, CEQD: a complex mass function to predict interference effects, IEEE T. Cybernetics, 52 (2022), 7402–7414. https://doi.org/10.1109/TCYB.2020.3040770 doi: 10.1109/TCYB.2020.3040770
![]() |
[53] |
G. Huang, L. Xiao, G. Zhang, Assessment and prioritization method of key engineering characteristics for complex products based on cloud rough numbers, Adv. Eng. Inform., 49 (2021), 101309. https://doi.org/10.1016/j.aei.2021.101309 doi: 10.1016/j.aei.2021.101309
![]() |
[54] |
G. Huang, L. Xiao, G. Zhang, Decision-making model of machine tool remanufacturing alternatives based on dual interval rough number clouds, Eng. Appl. Artif. Intell., 104 (2021), 104392. https://doi.org/10.1016/j.engappai.2021.104392 doi: 10.1016/j.engappai.2021.104392
![]() |
1. | Bhagawati Prasad Joshi, Akhilesh Singh, B. K. Singh, Quaternion Intuitionistic Fuzzy Fusion Process: Applications to the Classification of Photo-Voltic-Solar-Power Plants, 2024, 1562-2479, 10.1007/s40815-024-01798-w | |
2. | Zhuonan Wu, Zengtai Gong, Algebraic structure of some complex intuitionistic fuzzy subgroups and their homomorphism, 2025, 10, 2473-6988, 4067, 10.3934/math.2025189 |