A complex intuitionistic fuzzy set is a generalization framework to characterize several applications in decision making, pattern recognition, engineering, and other fields. This set is considered more fitting and coverable to Intuitionistic Fuzzy Sets (IDS) and complex fuzzy sets. In this paper, the abstraction of (${{\alpha _{1, 2}}, {\beta _{1, 2}}}$) complex intuitionistic fuzzy sets and (${{\alpha _{1, 2}}, {\beta _{1, 2}}}$)-complex intuitionistic fuzzy subgroups were introduced regarding to the concept of complex intuitionistic fuzzy sets. Besides, we show that (${{\alpha _{1, 2}}, {\beta _{1, 2}}}$)-complex intuitionistic fuzzy subgroup is a general form of every complex intuitionistic fuzzy subgroup. Also, each of (${{\alpha _{1, 2}}, {\beta _{1, 2}}}$)-complex intuitionistic fuzzy normal subgroups and cosets are defined and studied their relationship in the sense of the commutator of groups and the conjugate classes of group, respectively. Furthermore, some theorems connected the (${{\alpha _{1, 2}}, {\beta _{1, 2}}}$)-complex intuitionistic fuzzy subgroup of the classical quotient group and the set of all (${{\alpha _{1, 2}}, {\beta _{1, 2}}}$)-complex intuitionistic fuzzy cosets were studied and proved. Additionally, we expand the index and Lagrange's theorem to be suitable under (${{\alpha _{1, 2}}, {\beta _{1, 2}}}$)-complex intuitionistic fuzzy subgroups.
Citation: Doaa Al-Sharoa. (α1, 2, β1, 2)-complex intuitionistic fuzzy subgroups and its algebraic structure[J]. AIMS Mathematics, 2023, 8(4): 8082-8116. doi: 10.3934/math.2023409
A complex intuitionistic fuzzy set is a generalization framework to characterize several applications in decision making, pattern recognition, engineering, and other fields. This set is considered more fitting and coverable to Intuitionistic Fuzzy Sets (IDS) and complex fuzzy sets. In this paper, the abstraction of (${{\alpha _{1, 2}}, {\beta _{1, 2}}}$) complex intuitionistic fuzzy sets and (${{\alpha _{1, 2}}, {\beta _{1, 2}}}$)-complex intuitionistic fuzzy subgroups were introduced regarding to the concept of complex intuitionistic fuzzy sets. Besides, we show that (${{\alpha _{1, 2}}, {\beta _{1, 2}}}$)-complex intuitionistic fuzzy subgroup is a general form of every complex intuitionistic fuzzy subgroup. Also, each of (${{\alpha _{1, 2}}, {\beta _{1, 2}}}$)-complex intuitionistic fuzzy normal subgroups and cosets are defined and studied their relationship in the sense of the commutator of groups and the conjugate classes of group, respectively. Furthermore, some theorems connected the (${{\alpha _{1, 2}}, {\beta _{1, 2}}}$)-complex intuitionistic fuzzy subgroup of the classical quotient group and the set of all (${{\alpha _{1, 2}}, {\beta _{1, 2}}}$)-complex intuitionistic fuzzy cosets were studied and proved. Additionally, we expand the index and Lagrange's theorem to be suitable under (${{\alpha _{1, 2}}, {\beta _{1, 2}}}$)-complex intuitionistic fuzzy subgroups.
[1] | K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 1–6. |
[2] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[3] | E. Szmidt, J. Kacprzyk, Intuitionistic fuzzy sets in some medical applications, In: International conference on computational intelligence, 2206 (2001), 148–151. https://doi.org/10.1007/3-540-45493-4_19 |
[4] | Z. Wang, F. Xiao, W. Ding, Interval-valued intuitionistic fuzzy jenson-shannon divergence and its application in multi-attribute decision making, Appl. Intell., 2022, 16168–16184. https://doi.org/10.1007/s10489-022-03347-0 doi: 10.1007/s10489-022-03347-0 |
[5] | J. Liu, J. Mai, H. Li, B. Huang, Y. Liu, On three perspectives for deriving three-way decision with linguistic intuitionistic fuzzy information, Inform. Sci., 588 (2022), 350–380. https://doi.org/10.1016/j.ins.2021.12.072 doi: 10.1016/j.ins.2021.12.072 |
[6] | F. Bilgili, F. Zarali, M. F. Ilgün, C. Dumrul, Y. Dumrul, The evaluation of renewable energy alternatives for sustainable development in Turkey using intuitionistic fuzzy-TOPSIS method, Renew. Energ., 189 (2022), 1443–1458. https://doi.org/10.1016/j.renene.2022.03.058 doi: 10.1016/j.renene.2022.03.058 |
[7] | S. Zeng, J. Zhou, C. Zhang, J. M. Merigó, Intuitionistic fuzzy social network hybrid MCDM model for an assessment of digital reforms of manufacturing industry in China, Technol. Forecast. Soc., 176 (2022), 121435. https://doi.org/10.1016/j.techfore.2021.121435 doi: 10.1016/j.techfore.2021.121435 |
[8] | A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. |
[9] | W. J. Liu, 1982. Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Set. Syst., 8 (1982), 133–139. |
[10] | E. Yetkin, N. Olgun, Direct product of fuzzy groups and fuzzy rings, Int. Math. Forum., 6 (2011), 1005–1015. |
[11] | F. A. Azam, A. A. Mamun, F. Nasrin, Anti-fuzzy ideal of ring, Annal, Fuzzy Math. Inform., 5 (2013), 349–360. |
[12] | R. Kellil, Sum and product of fuzzy ideals of ring, Int. J. Math. Comput. Sci., 13 (2018), 187–205. |
[13] | J. G. Kim, Fuzzy orders relative to fuzzy subgroups, Inform. Sci., 80 (1994), 341–348. https://doi.org/10.1016/0020-0255(94)90084-1 doi: 10.1016/0020-0255(94)90084-1 |
[14] | N. Ajmal, Homomorphism of fuzzy groups, correspondence theorem and fuzzy quotient groups, Fuzzy Set. Syst., 61 (1994), 329–339. |
[15] | A. K. Ray, On product of fuzzy subgroups, Fuzzy Set. Syst., 105 (1999), 181–183. |
[16] | R. Biswas, Intuitionistic fuzzy subgroups, Math. Fortum., 10 (1989), 37–46. |
[17] | P. K. Sharma, (α, β)-cut of intuitionistic fuzzy groups, Int. Math. Forum., 6 (2011), 2605–2614. |
[18] | P. K. Sharma, On intuitionistic anti-fuzzy subgroup of a group, Int. J. Math. Appl. Statist., 3 (2012), 147–153. |
[19] | P. K. Sharma, t- intuitionistic fuzzy subgroups, Int. J. Fuzzy Math. Syst., 2 (2012), 233–243. |
[20] | P. K.Sharma, t-intuitionitic fuzzy quotient group, Adv. Fuzzy Math., 7 (2012), 1–9. |
[21] | P. K. Sharma, On intuitionistic fuzzy abelian subgroups, Adv. Fuzzy Set. Syst., 12 (2012), 1–16. |
[22] | P. K.Sharma, Relationship between alpha-(Anti) fuzzy subgroups and (α, β)-(Anti) fuzzy subgroups, Int. Rev. Pure Appl. Math., 8 (2012), 133–140. |
[23] | P. K. Sharma, A. Duggal, Intuitionistic fuzzy Bi-ideals in a rings, P. Int. Confer. Sci. Comput., 7 (2013), 816–822. |
[24] | K. A. Dib, On fuzzy spaces and fuzzy group theory, Inform. Sci., 80 (1994), 253–282. https://doi.org/10.1016/0020-0255(94)90079-5 doi: 10.1016/0020-0255(94)90079-5 |
[25] | K. A. Dib, N. L. Youssef, Fuzzy Cartesian product, fuzzy relations and fuzzy functions, Fuzzy Set. Syst., 41 (1991), 299–315. |
[26] | K. A. Dib, A. A. M. Hassan, The fuzzy normal subgroup, Fuzzy Set. Syst., 98 (1998), 393–402. |
[27] | M. F. Marashdeh, A. R. Salleh, Intuitionistic fuzzy groups, Asian J. Algebra, 2 (2009), 1–10. |
[28] | M. F. Marashdeh, A. R. Salleh, The intuitionistic fuzzy normal subgroup, Int. J. Fuzzy Logic Intell. Syst., 10 (2010), 82–88. https://doi.org/10.5391/IJFIS.2010.10.1.082 doi: 10.5391/IJFIS.2010.10.1.082 |
[29] | D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 (2002), 450–461. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119 |
[30] | D. Ramot, M. Friedman, G. Langholz, A. Kandel, Complex fuzzy logic, IEEE Trans. Fuzzy Syst., 11 (2003), 171–186. https://doi.org/10.1109/TFUZZ.2003.814832 doi: 10.1109/TFUZZ.2003.814832 |
[31] | A. S. M. Alkouri, A. R. Salleh, Complex Atanassov's intuitionistic fuzzy sets, AIP Confer. P., 1482 (2012), 464–470, https://doi.org/10.1063/1.4757515 doi: 10.1063/1.4757515 |
[32] | A. S. M. Alkouri, A. R. Salleh, Complex Atanassov's intuitionistic fuzzy relation, Abstr. Appl. Anal., 2013 (2013), 287382. https://doi.org/10.1155/2013/287382 doi: 10.1155/2013/287382 |
[33] | A. S. M. Alkouri, A. R. Salleh, Some operations on complex Atanassov's intuitionistic fuzzy sets, AIP Confer. P., 1571 (2013), 987. https://doi.org/10.1063/1.4858782 doi: 10.1063/1.4858782 |
[34] | T. Mahmood, Z. Ali, S. Baupradist, R. Chinram, Analysis and applications of Bonferroni mean operators and TOPSIS method in complete cubic intuitionistic complex fuzzy information systems, Symmetry, 14 (2022), 533. https://doi.org/10.3390/sym14030533 doi: 10.3390/sym14030533 |
[35] | M. Azam, M. S. A. Khan, S. Yang, A decision-making approach for the evaluation of information security management under complex intuitionistic fuzzy set environment, J. Math., 2022 (2022), 9704466. https://doi.org/10.1155/2022/9704466 doi: 10.1155/2022/9704466 |
[36] | R. Nandhinii, D. Amsaveni, On bipolar complex intuitionistic fuzzy graphs, TWMS J. Appl. Eng. Math., 12 (2022), 92–106. |
[37] | N. Yaqoob, M. Gulistan, S. Kadry, H. A. Wahab, Complex intuitionistic fuzzy graphs with application in cellular network provider companies, Mathematics, 7 (2019), 35. https://doi.org/10.3390/math7010035 doi: 10.3390/math7010035 |
[38] | G. Huang, L. Xiao, W. Pedrycz, D. Pamucar, G. Zhang, L. Martínez, Design alternative assessment and selection: A novel Z-cloud rough number-based BWM-MABAC model, Inform. Sci., 603 (2022), 149–189. https://doi.org/10.1016/j.ins.2022.04.040 doi: 10.1016/j.ins.2022.04.040 |
[39] | L. Xiao, G. Huang, W. Pedrycz, D. Pamucar, L. Martínez, G. Zhang, A q-rung orthopair fuzzy decision-making model with new score function and best-worst method for manufacturer selection, Inform. Sci., 608 (2022), 153–177. https://doi.org/10.1016/j.ins.2022.06.061 doi: 10.1016/j.ins.2022.06.061 |
[40] | G. Huang, L. Xiao, W. Pedrycz, G. Zhang, L. Martinez, Failure mode and effect analysis using T-Spherical fuzzy maximizing deviation and combined comparison solution methods, IEEE T. Reliab., 2022, 1–22. https://doi.org/10.1109/TR.2022.3194057 doi: 10.1109/TR.2022.3194057 |
[41] | A. Al-Husban, A. R. Salleh, Complex fuzzy group based on complex fuzzy space, Glob. J. Pure Appl. Math., 12 (2016), 1433–1450. |
[42] | M. O. Alsarahead, A. G. Ahmad, Complex fuzzy subgroups, Appl. Math. Sci., 11 (2017), 2011–2021. |
[43] | M. O. Alsarahead, A. G. Ahmad, Complex fuzzy subrings, Int. J. Pure Appl. Math., 117 (2017), 563–577. |
[44] | M. O. Alsarahead, A. G. Ahmad, Complex fuzzy soft subgroups, J. Qual. Meas. Anal., 13 (2017), 17–28. |
[45] | W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Set. Syst., 8 (1982), 133–139. |
[46] | H. Alolaiyan, H. A. Alshehri, M. H. Mateen, D. Pamucar, M. Gulzar, A novel Algebraic structure of (α, β)-complex fuzzy subgroups, Entropy, 23 (2021), 992. https://doi.org/10.3390/e23080992 doi: 10.3390/e23080992 |
[47] | R. Al-Husbana, A. R. Salleh, A. G. Ahmad, Complex intuitionistic fuzzy group subrings, AIP Confer. P., 1784 (2016), 05006. https://doi.org/10.1063/1.4966825 doi: 10.1063/1.4966825 |
[48] | R. Al-Husbana, A. R. Salleh, A. G. Ahmad, Complex intuitionistic fuzzy normal subgroup, Int. J. Pure Appl. Math., 115 (2017), 455–466. |
[49] | F. Xiao, W. Pedrycz, Negation of the quantum mass function for multisource quantum information fusion with its application to pattern classification, IEEE T. Pattern Anal. Mach. Intell., 2022, 35420983. https://doi.org/10.1109/TPAMI.2022.3167045 doi: 10.1109/TPAMI.2022.3167045 |
[50] | F. Xiao, Z. Cao, C. Lin, A complex weighted discounting multisource information fusion with its application in pattern classification, IEEE T. Knowl. Data Eng., 2022, 1–16. https://doi.org/10.1109/TKDE.2022.3206871 doi: 10.1109/TKDE.2022.3206871 |
[51] | F. Xiao, Generalized quantum evidence theory, Appl. Intell., 2022 (2022). https://doi.org/10.1007/s10489-022-04181-0 doi: 10.1007/s10489-022-04181-0 |
[52] | F. Xiao, CEQD: a complex mass function to predict interference effects, IEEE T. Cybernetics, 52 (2022), 7402–7414. https://doi.org/10.1109/TCYB.2020.3040770 doi: 10.1109/TCYB.2020.3040770 |
[53] | G. Huang, L. Xiao, G. Zhang, Assessment and prioritization method of key engineering characteristics for complex products based on cloud rough numbers, Adv. Eng. Inform., 49 (2021), 101309. https://doi.org/10.1016/j.aei.2021.101309 doi: 10.1016/j.aei.2021.101309 |
[54] | G. Huang, L. Xiao, G. Zhang, Decision-making model of machine tool remanufacturing alternatives based on dual interval rough number clouds, Eng. Appl. Artif. Intell., 104 (2021), 104392. https://doi.org/10.1016/j.engappai.2021.104392 doi: 10.1016/j.engappai.2021.104392 |