This paper aims to study differential subordination and superordination preserving properties for certain analytic univalent functions with in the open unit disk. In the present investigation, we obtain some subordination and superordination results involving Pascal distribution series for certain normalized analytic functions in the open unit disk. Also we estimate the sandwich results for the same class.
Citation: K. Saritha, K. Thilagavathi. Differential subordination, superordination results associated with Pascal distribution[J]. AIMS Mathematics, 2023, 8(4): 7856-7864. doi: 10.3934/math.2023395
This paper aims to study differential subordination and superordination preserving properties for certain analytic univalent functions with in the open unit disk. In the present investigation, we obtain some subordination and superordination results involving Pascal distribution series for certain normalized analytic functions in the open unit disk. Also we estimate the sandwich results for the same class.
[1] | T. Bulboac, A class of superordination preserving integral operators, Indagat. Math., 13 (2002), 301–311. http://doi.org/10.1016/S0019-3577(02)80013-1 doi: 10.1016/S0019-3577(02)80013-1 |
[2] | T. Bulboaca, Classes of first order differential superordinations, Demonstr. Math., 35 (2002), 287–292. https://doi.org/10.1515/dema-2002-0209 doi: 10.1515/dema-2002-0209 |
[3] | N. Magesh, G. Murugusundaramoorthy, Differential subordinations and superordination for a comprehensive class of analytic functions, SUT J. Math., 44 (2008), 237–255. https://doi.org/10.55937/sut/1234383512 doi: 10.55937/sut/1234383512 |
[4] | N. Magesh, T. Rosy, K. Muthunagi, Subordinations and superordinations results for certain class of analytic functions, Int. J. Math. Sci. Eng. Appl., 3 (2009), 173–182. |
[5] | S. S. Miller, P. T. Mocanu, Differential subordinations: theory and applications, Marcel Dekker Inc., 2000. https://doi.org/10.1201/9781482289817 |
[6] | S. S. Miller, P. T. Mocanu, Subordinations of differential superordinations, Complex Var. Theory Appl., 48 (2003), 815–826. https://doi.org/10.1080/02781070310001599322 doi: 10.1080/02781070310001599322 |
[7] | G. Murugusundaramoorthy, N. Magesh, Differential subordinations and superordinations for analytic functions defined by Dziok-Srivastava linear operator, J. Inequal. Pure Appl. Math., 7 (2006), 1–9. |
[8] | G. Murugusundaramoorthy, N. Magesh, Differential sandwich theorems for analytic functions defined by Hadamard product, Ann. Univ. Mariae Curic Sklodowska, 61 (2007), 117–127. |
[9] | N. Magesh, G. Murugusundaramoorthy, Differential subordinations and superordinations for analytic functions defined by convolution structure, Univ. Babes Bolyai Math., 54 (2009), 83–96. |
[10] | C. Pommerenke, Univalent functions, Vanderhoeck and Rupreeht, 1975. |
[11] | T. N. Shanmugam, V. Ravichandran, S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3 (2006), 8. |
[12] | S. M. El-Deeb, T. Bulboacǎ, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 59 (2019), 301–314. https://doi.org/10.5666/KMJ.2019.59.2.301 doi: 10.5666/KMJ.2019.59.2.301 |