Research article

Clustering property for quantum Markov chains on the comb graph

  • Received: 28 September 2022 Revised: 10 January 2023 Accepted: 14 January 2023 Published: 31 January 2023
  • MSC : 46L53, 46L60, 82B10, 81Q10

  • Quantum Markov chains (QMCs) on graphs and trees were investigated in connection with many important models arising from quantum statistical mechanics and quantum information. These quantum states generate many important properties such as quantum phase transition and clustering properties. In the present paper, we propose a construction of QMCs associated with an $ XX $-Ising model over the comb graph $ \mathbb N\rhd_0 \mathbb Z $. Mainly, we prove that the QMC associated with the disordered phase, enjoys a clustering property.

    Citation: Abdessatar Souissi, El Gheteb Soueidy, Mohamed Rhaima. Clustering property for quantum Markov chains on the comb graph[J]. AIMS Mathematics, 2023, 8(4): 7865-7880. doi: 10.3934/math.2023396

    Related Papers:

  • Quantum Markov chains (QMCs) on graphs and trees were investigated in connection with many important models arising from quantum statistical mechanics and quantum information. These quantum states generate many important properties such as quantum phase transition and clustering properties. In the present paper, we propose a construction of QMCs associated with an $ XX $-Ising model over the comb graph $ \mathbb N\rhd_0 \mathbb Z $. Mainly, we prove that the QMC associated with the disordered phase, enjoys a clustering property.



    加载中


    [1] L. Accardi, Noncommutative Markov chains, Proc. Int. Sch. Math. Phys., 1974,268–295.
    [2] L. Accardi, A. Frigerio, Markovian cocycles, Proc. R. Ir. Acad., 83 (1983), 251–263.
    [3] L. Accardi, F. Mukhamedov, A. Souissi, Construction of a new class of quantum Markov fields, Adv. Oper. Theory, 1 (2016), 206–218. https://doi.org/10.22034/aot.1610.1031 doi: 10.22034/aot.1610.1031
    [4] L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree Ⅰ: niqueness of the associated chain with $XY$-model on the Cayley tree of order two, Inf. Dimens. Anal., 14 (2011), 443–463. https://doi.org/10.1142/S021902571100447X doi: 10.1142/S021902571100447X
    [5] L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree Ⅱ: phase transitions for the associated chain with $XY$-model on the Cayley tree of order three, Ann. Henri Poincaré, 12 (2011), 1109–1144. https://doi.org/10.1007/s00023-011-0107-2 doi: 10.1007/s00023-011-0107-2
    [6] L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree Ⅲ: Ising model, J. Stat. Phys., 157 (2014), 303–329. https://doi.org/10.1007/s10955-014-1083-y doi: 10.1007/s10955-014-1083-y
    [7] L. Accardi, A. Souissi, E. G. Soueidy, Quantum Markov chains: a unification approach, Inf. Dimens. Anal., 23 (2020), 2050016. https://doi.org/10.1142/S0219025720500162 doi: 10.1142/S0219025720500162
    [8] L. Accardi, Y. G. Lu, A. Souissi, A Markov–Dobrushin inequality for quantum channels, Open Sys. Inf. Dyn., 28 (2021), 2150018. https://doi.org/10.1142/S1230161221500189 doi: 10.1142/S1230161221500189
    [9] L. Accardi, H. Ohno, F. Mukhamedov, Quantum Markov fields on graphs, Inf. Dimens. Anal., 13 (2010), 165–189. https://doi.org/10.1142/S0219025710004000 doi: 10.1142/S0219025710004000
    [10] L. Accardi, F. Fagnola, Quantum interacting particle systems, World Scientific, 2002.
    [11] S. Attal, F. Petruccione, C. Sabot, I. Sinayskiy, Open quantum random walks, J. Stat. Phys., 147 (2012), 832–852. https://doi.org/10.1007/s10955-012-0491-0 doi: 10.1007/s10955-012-0491-0
    [12] O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics I, Springer Verlag, 1987.
    [13] A. Barhoumi, A. Souissi, Recurrence of a class of quantum Markov chains on trees, Chaos Solitons Fract., 164 (2022), 112644. https://doi.org/10.1016/j.chaos.2022.112644 doi: 10.1016/j.chaos.2022.112644
    [14] R. Carbone, Y. Pautrat, Open quantum random walks: reducibility, period, ergodic properties, Ann. Henri Poincaré, 17 (2016), 99–135.
    [15] J. I. Cirac, D. Perez-Garcia, N. Schuch, F. Verstraete, Matrix product unitaries, structure, symmetries, and topological invariants, J. Stat. Mech. Theory Exp., 2017 (2017), 083105. https://doi.org/10.1088/1742-5468/aa7e55 doi: 10.1088/1742-5468/aa7e55
    [16] A. Dhahri, F. Mukhamedov, Open quantum random walks, quantum Markov chains and recurrence, Rev. Math. Phys., 31 (2019), 1950020. https://doi.org/10.1142/S0129055X1950020X doi: 10.1142/S0129055X1950020X
    [17] F. Fidaleo, Fermi Markov states, J. Oper. Theory, 66 (2011), 385–414.
    [18] F. Fidaleo, F. Mukhamedov, Diagonalizability of non homogeneous quantum Markov states and associated von Neumann algebras, arXiv, 24 (2004), 401–418. https://doi.org/10.48550/arXiv.math/0411200 doi: 10.48550/arXiv.math/0411200
    [19] M. Fannes, B. Nachtergaele, R. F. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys., 144 (1992), 443–490. https://doi.org/10.1007/BF02099178 doi: 10.1007/BF02099178
    [20] M. Fannes, B. Nachtergaele, R. F. Werner, Ground states of VBS models on Cayley trees, J. Stat. Phys., 66 (1992), 939–973. https://doi.org/10.1007/BF01055710 doi: 10.1007/BF01055710
    [21] Y. Feng, N. Yu, M. Ying, Model checking quantum Markov chains, J. Comput. Sys. Sci., 79 (2013), 1181–1198. https://doi.org/10.1016/j.jcss.2013.04.002 doi: 10.1016/j.jcss.2013.04.002
    [22] J. A. Hartigan, Statistical theory in clustering, J. Classif., 2 (1985), 63–76. https://doi.org/10.1007/BF01908064 doi: 10.1007/BF01908064
    [23] V. Liebscher, Markovianity of quantum random fields, Quantum Probab. White Noise Anal., 15 (2003), 151–159. https://doi.org/10.1142/9789812704290-0011 doi: 10.1142/9789812704290-0011
    [24] A. Mohari, Spontaneous SU2(C) symmetry breaking in the ground states of quantum spin chain, J. Math. Phys., 59 (2018), 111701. https://doi.org/10.1063/1.5078597 doi: 10.1063/1.5078597
    [25] F. Mukhamedov, S. El Gheteb, Uniqueness of quantum Markov chain associated with $XY$-Ising model on the Cayley tree of order two, Open Syst. Inf. Dyn., 24 (2017), 175010. https://doi.org/10.1142/S123016121750010X doi: 10.1142/S123016121750010X
    [26] F. Mukhamedov, S. El Gheteb, Clustering property of quantum Markov chain associated to XY-model with competing Ising interactions on the Cayley tree of order two, Math. Phys. Anal. Geom., 22 (2019), 10. https://doi.org/10.1007/s11040-019-9308-6 doi: 10.1007/s11040-019-9308-6
    [27] F. Mukhamedov, S. El Gheteb, Factors generated by $XY$-model with competing Ising interactions on the Cayley tree, Ann. Henri Poincaré, 21 (2020), 241–253. https://doi.org/10.1007/s00023-019-00853-9 doi: 10.1007/s00023-019-00853-9
    [28] F. Mukhamedov, A. Barhoumi, A. Souissi, Phase transitions for quantum Markov chains associated with Ising type models on a Cayley tree, J. Stat. Phys., 163 (2016), 544–567. https://doi.org/10.1007/s10955-016-1495-y doi: 10.1007/s10955-016-1495-y
    [29] F. Mukhamedov, A. Barhoumi, A. Souissi, On an algebraic property of the disordered phase of the Ising model with competing interactions on a Cayley tree, Math. Phys. Anal. Geom., 19 (2016), 21. https://doi.org/10.1007/s11040-016-9225-x doi: 10.1007/s11040-016-9225-x
    [30] F. Mukhamedov, A. Barhoumi, A. Souissi, S. El Gheteb, A quantum Markov chain approach to phase transitions for quantum Ising model with competing $XY$-interactions on a Cayley tree, J. Math. Phys., 61 (2020), 093505. https://doi.org/10.1063/5.0004889 doi: 10.1063/5.0004889
    [31] F. Mukhamedov, U. Rozikov, On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras, J. Stat. Phys., 114 (2004), 825–848. https://doi.org/10.1023/B:JOSS.0000012509.10642.83 doi: 10.1023/B:JOSS.0000012509.10642.83
    [32] F. Mukhamedov, U. A. Rozikov, On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras Ⅱ, J. Stat. Phys., 119 (2005), 427–446. https://doi.org/10.1007/s10955-004-2056-3 doi: 10.1007/s10955-004-2056-3
    [33] F. Mukhamedov, A. Souissi, Types of factors generated by quantum Markov states of Ising model with competing interactions on the Cayley tree, Inf. Dimens. Anal., 23 (2020), 2050019. https://doi.org/10.1142/S0219025720500198 doi: 10.1142/S0219025720500198
    [34] F. Mukhamedov, A. Souissi, Quantum Markov states on Cayley trees, J. Math. Anal. Appl., 473 (2019), 313–333. https://doi.org/10.1016/j.jmaa.2018.12.050 doi: 10.1016/j.jmaa.2018.12.050
    [35] F. Mukhamedov, A. Souissi, Diagonalizability of quantum Markov states on trees, J. Stat. Phys., 182, (2021), 9. https://doi.org/10.1007/s10955-020-02674-1 doi: 10.1007/s10955-020-02674-1
    [36] F. Mukhamedov, A. Souissi, Refinement of quantum Markov states on trees, J. Stat. Mech., 2021 (2021), 083103. https://doi.org/10.1088/1742-5468/ac150b doi: 10.1088/1742-5468/ac150b
    [37] F. Mukhamedov, A. Souissi, Entropy for quantum Markov states on trees, J. Stat. Mech., 2022 (2022), 093101. https://doi.org/10.1088/1742-5468/ac8740 doi: 10.1088/1742-5468/ac8740
    [38] F. Mukhamedov, A. Souissi, T. Hamdi, Quantum Markov chains on comb graphs: Ising model, Proc. Steklov Inst. Math., 313 (2021), 178–192. https://doi.org/10.1134/S0081543821020176 doi: 10.1134/S0081543821020176
    [39] F. Mukhamedov, A. Souissi, T. Hamdi, Open quantum random walks and quantum Markov chains on trees Ⅰ: phase transitions, Open Syst. Inf. Dyn., 29 (2022), 2250003. https://doi.org/10.1142/S1230161222500032 doi: 10.1142/S1230161222500032
    [40] F. Mukhamedov, A. Souissi, T. Hamdi, A. A. Andolsi, Open quantum random walks and quantum Markov chains on trees Ⅱ: the recurrence, arXiv, 2022. https://doi.org/10.48550/arXiv.2208.04320 doi: 10.48550/arXiv.2208.04320
    [41] R. Orús, A practical introduction of tensor networks: matrix product states and projected entangled pair states, Ann. Phys., 349 (2014), 117–158. https://doi.org/10.1016/j.aop.2014.06.013 doi: 10.1016/j.aop.2014.06.013
    [42] S. Rommer, S. Ostlund, A class of ansatz wave functions for 1D spin systems and their relation to DMRG, Phys. Rev., 55 (1997), 2164. https://doi.org/10.1103/PhysRevB.55.2164 doi: 10.1103/PhysRevB.55.2164
    [43] P. Singh, S. S. Bose, A quantum-clustering optimization method for COVID-19 CT scan image segmentation, Expert Syst. Appl., 185 (2021), 115637. https://doi.org/10.1016/j.eswa.2021.115637 doi: 10.1016/j.eswa.2021.115637
    [44] A. Souissi, A class of quantum Markov fields on tree-like graphs: Ising-type model on a Husimi tree, Open Syst. Inf. Dyn., 28 (2021), 2150004. https://doi.org/10.1142/S1230161221500049 doi: 10.1142/S1230161221500049
    [45] A. Souissi, On stopping rules for tree-indexed quantum Markov chains, Inf. Dim. Anal., (2022). https://doi.org/10.1142/S0219025722500308 doi: 10.1142/S0219025722500308
    [46] A. Souissi, M. Mukhamedov, A. Barhoumi, Tree-homogeneous quantum Markov chains, Int. J. Theor. Phys., 62 (2023), 19. https://doi.org/10.1007/s10773-023-05276-1 doi: 10.1007/s10773-023-05276-1
    [47] O. R. Zaïane, A. Foss, C. H. Lee, W. Wang, On data clustering analysis: scalability, constraints, and validation, Adv. Knowl. Discovery Data Min., 28 (2022), 2030. https://doi.org/10.1007/3-540-47887-6-4 doi: 10.1007/3-540-47887-6-4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1020) PDF downloads(73) Cited by(5)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog