This paper derives the expressions for spacelike ruled surfaces with stationary Disteli-axis by means of the E. Study map. This provides the ability to compute a set of Lorentzian curvature functions which define the local shape of spacelike ruled surfaces. Consequently, some well-known formulae of surface theory at Lorentzian line space and their geometrical explanations are obtained and examined. Lastly, a characterization for a spacelike line trajectory to be a constant Disteli-axis is derived and investigated in detail.
Citation: Fatemah Mofarreh, Rashad A. Abdel-Baky. Spacelike ruled surfaces with stationary Disteli-axis[J]. AIMS Mathematics, 2023, 8(4): 7840-7855. doi: 10.3934/math.2023394
This paper derives the expressions for spacelike ruled surfaces with stationary Disteli-axis by means of the E. Study map. This provides the ability to compute a set of Lorentzian curvature functions which define the local shape of spacelike ruled surfaces. Consequently, some well-known formulae of surface theory at Lorentzian line space and their geometrical explanations are obtained and examined. Lastly, a characterization for a spacelike line trajectory to be a constant Disteli-axis is derived and investigated in detail.
[1] | O. Bottema, B. Roth, Theoretical kinematics, New York: Dover Publications Inc, 1979. |
[2] | A. Karger, J. Novak, Space kinematics and Lie groups, New York: Gordon and Breach Science Publishers, 1985. |
[3] | H. Pottman, J. Wallner, Computational line geometry, Berlin: Springer-Verlag, 2001. http://dx.doi.org/10.1007/978-3-642-04018-4 |
[4] | R. Abdel-Baky, F. Al-Solamy, A new geometrical approach to one-parameter spatial motion, J. Eng. Math., 60 (2008), 149–172. http://dx.doi.org/10.1007/s10665-007-9139-5 doi: 10.1007/s10665-007-9139-5 |
[5] | R. Abdel-Baky, R. Al-Ghefari, On the one-parameter dual spherical motions, Comput. Aided Geom. D., 28 (2011), 23–37. http://dx.doi.org/10.1016/j.cagd.2010.09.007 doi: 10.1016/j.cagd.2010.09.007 |
[6] | R. Al-Ghefari, R. Abdel-Baky, Kinematic geometry of a line trajectory in spatial motion, J. Mech. Sci. Technol., 29 (2015), 3597–3608. http://dx.doi.org/10.1007/s12206-015-0803-9 doi: 10.1007/s12206-015-0803-9 |
[7] | R. Abdel-Baky, On the curvature theory of a line trajectory in spatial kinematics, Commun. Korean Math. Soc., 34 (2019), 333–349. http://dx.doi.org/10.4134/CKMS.c180087 doi: 10.4134/CKMS.c180087 |
[8] | M. Gungor, S. Ersoy, M. Tosun, Dual Lorentzian spherical motions and dual Euler-Savary formula, Eur. J. Mech. A-Solid., 28 (2009), 820–826. http://dx.doi.org/10.1016/j.euromechsol.2009.03.007 doi: 10.1016/j.euromechsol.2009.03.007 |
[9] | F. Taş, R. Abdel-Baky, On a spacelike line congruence which has the parameter ruled surfaces as principal ruled surfaces, Int. Electron. J. Geom., 12 (2019), 135–143. http://dx.doi.org/10.36890/iejg.545870 doi: 10.36890/iejg.545870 |
[10] | R. Abdel-Baky, Timelike line congruence in the dual Lorentzian 3-space $\mathbb{D}_{1}^{3}$, Int. J. Geom. Methods M., 16 (2019), 1950126. http://dx.doi.org/10.1142/S0219887819501263 doi: 10.1142/S0219887819501263 |
[11] | N. Alluhaibi, R. Abdel-Baky, On the one-parameter Lorentzian spatial motions, Int. J. Geom. Methods M., 16 (2019), 1950197. http://dx.doi.org/10.1142/S0219887819501974 doi: 10.1142/S0219887819501974 |
[12] | R. Abdel-Baky, Y. Unluturk, A new construction of timelike ruled surfaces with stationarfy Disteli-axis, Honam Math. J., 42 (2020), 551–568. http://dx.doi.org/10.5831/HMJ.2020.42.3.551 doi: 10.5831/HMJ.2020.42.3.551 |
[13] | N. Alluhaibi, R. Abdel-Baky, M. Naghi, On the Bertrand offsets of timelike ruled surfaces in Minkowski 3-space, Symmetry, 14 (2022), 673. http://dx.doi.org/10.3390/sym14040673 doi: 10.3390/sym14040673 |
[14] | R. Abdel-Baky, F. Mofarreh, A study on the Bertrand offsets of timelike ruled surfaces in Minkowski 3-space, Symmetry, 14 (2022), 783. http://dx.doi.org/10.3390/sym14040783 doi: 10.3390/sym14040783 |
[15] | B. O'Neil, Semi-Riemannian geometry with applications to relativity, New York: Academic Press, 1983. |
[16] | J. Walfare, Curves and surfaces in Minkowski space, Ph. D. Thesis, K. U. Leuven, 1995. |
[17] | U. Pekmen, Some characterizations of Lorentzian spherical spacelike curves, Mathematica Moravica, 3 (1999), 33–37. |
[18] | K. Sprott, B. Ravani, Cylindrical milling of ruled surfaces, Int. J. Adv. Manuf. Technol., 38 (2008), 649–656. http://dx.doi.org/10.1007/s00170-007-1133-6 doi: 10.1007/s00170-007-1133-6 |
[19] | A. Calleja, P. Bo, H. Gonzalez, M. Barton, L. de Lacalle, Highly accurate 5-axis flank CNC machining with conical tools, Int. J. Adv. Manuf. Technol., 97 (2018), 1605–1615. http://dx.doi.org/10.1007/s00170-018-2033-7 doi: 10.1007/s00170-018-2033-7 |
[20] | N. Alluhaibi, R. Abdel-Baky, On the kinematic-geometry of one-parameter Lorentzian spatial movement, Int. J. Adv. Manuf. Technol., 121 (2022), 7721–7731. http://dx.doi.org/10.1007/s00170-022-09812-x doi: 10.1007/s00170-022-09812-x |