Let $ F $ be a normlized Hecke-Maaß form for the congruent subgroup $ \Gamma_0(N) $ with trivial nebentypus. In this paper, we study the problem of the level aspect estimates for the exponential sum
$ \mathscr{L}_F(\alpha) = \sum\limits_{n\le X} A_F(n, 1)e(n \alpha). $
As a result, we present an explicit non-trivial bound for the sum $ \mathscr{L}_F(\alpha) $ in the case of $ N = P $. In addition, we investigate the magnitude for the non-linear exponential sums with the level being explicitly determined from the sup-norm's point of view as well.
Citation: Fei Hou. On the exponential sums estimates related to Fourier coefficients of $ GL_3 $ Hecke-Maaß forms[J]. AIMS Mathematics, 2023, 8(4): 7806-7816. doi: 10.3934/math.2023392
Let $ F $ be a normlized Hecke-Maaß form for the congruent subgroup $ \Gamma_0(N) $ with trivial nebentypus. In this paper, we study the problem of the level aspect estimates for the exponential sum
$ \mathscr{L}_F(\alpha) = \sum\limits_{n\le X} A_F(n, 1)e(n \alpha). $
As a result, we present an explicit non-trivial bound for the sum $ \mathscr{L}_F(\alpha) $ in the case of $ N = P $. In addition, we investigate the magnitude for the non-linear exponential sums with the level being explicitly determined from the sup-norm's point of view as well.
[1] | A. Corbett, Voronoĭ summation for $GL_n$: collusion between level and modulus, Am. J. Math., 143 (2021), 1361–1395. http://dx.doi.org/10.1353/ajm.2021.0034 doi: 10.1353/ajm.2021.0034 |
[2] | D. Godber, Additive twists of Fourier coefficients of modular forms, J. Number Theory, 133 (2013), 83–104. http://dx.doi.org/10.1016/j.jnt.2012.07.010 doi: 10.1016/j.jnt.2012.07.010 |
[3] | G. Harcos, P. Michel, The subconvexity problem for Rankin-Selberg $L$-functions and equidistribution of Heegner points, Ⅱ, Invent. Math., 163 (2006), 581–655. http://dx.doi.org/10.1007/s00222-005-0468-6 doi: 10.1007/s00222-005-0468-6 |
[4] | G. Hardy, J. Littlewood, Some problems of Diophantine approximation, Acta Math., 37 (1914), 193–239. http://dx.doi.org/10.1007/BF02401834 doi: 10.1007/BF02401834 |
[5] | F. Hou, A explicit Voronoï formula for $SL_3(\mathbb{R})$ newforms underlying the symmetric square lifts in the level aspect, Pre-print, 2021. |
[6] | H. Iwaniec, E. Kowalski, Analytic number theory, New York: Colloquium Publications, 2004. http://dx.doi.org/dx.doi.org/10.1090/coll/053 |
[7] | H. Iwaniec, W. Luo, P. Sarnak, Low lying zeros of families of $L$-functions, Publications Mathématiques de l'Institut des Hautes Scientifiques, 91 (2000), 55–131. http://dx.doi.org/10.1007/BF02698741 doi: 10.1007/BF02698741 |
[8] | I. Khayutin, P. Nelson, R. Steiner, Theta functions, fourth moments of eigenforms, and the sup-norm problem Ⅱ, arXiv: 2207.12351. |
[9] | S. Kumar, K. Mallesham, S. Singh, Non-linear additive twist of Fourier coefficients of $GL(3)$ Maass forms, arXiv: 1905.13109. |
[10] | X. Li, Additive twists of Fourier coefficients of $GL(3)$ Maass forms, Proc. Amer. Math. Soc., 142 (2014), 1825–1836. http://dx.doi.org/10.1090/S0002-9939-2014-11909-5 doi: 10.1090/S0002-9939-2014-11909-5 |
[11] | X. Li, M. Young, Additive twists of Fourier coefficients of symmetric-square lifts, J. Number Theory, 132 (2012), 1626–1640. http://dx.doi.org/10.1016/j.jnt.2011.12.017 doi: 10.1016/j.jnt.2011.12.017 |
[12] | S. Miller, Cancellation in additively twisted sums on $GL(n)$, Am. J. Math., 128 (2006), 699–729. http://dx.doi.org/10.1353/ajm.2006.0027 doi: 10.1353/ajm.2006.0027 |
[13] | H. Montgomery, R. Vaughan, Exponential sums with multiplicative coefficients, Invent. Math., 43 (1977), 69–82. http://dx.doi.org/10.1007/BF01390204 doi: 10.1007/BF01390204 |
[14] | Z. Ye, The second moment of Rankin-Selberg $L$-function and hybrid subconvexity bound, arXiv: 1404.2336. |
[15] | F. Zhou, The Voronoi formula on $GL(3)$ with ramification, arXiv: 1806.10786. |