This study researches the bipartite fixed-time output containment control problem of heterogeneous linear MASs with signed digraphs. The leaders' states can be estimated by a designed distributed bipartite compensator. Furthermore, each follower is allocated a time-varying coupling weight, an adaptive bipartite fixed-time protocol is raised which can estimate the leader's system matrix but also the leader's state. On the foundation of control protocols, followers' outputs are included by the convex hull constituted by leaders' outputs. In addition, by utilizing the Lyapunov function theory, some abundant speculative knowledges are deduced to guarantee adaptive bipartite fixed-time output containment of multi-agent systems. Finally, the feasibility of the anticipant theoretical results is verified by a set of simulation examples.
Citation: Zihan Liu, Xisheng Zhan, Jie Wu, Huaicheng Yan. Bipartite fixed-time output containment control of heterogeneous linear multi-agent systems[J]. AIMS Mathematics, 2023, 8(3): 7419-7436. doi: 10.3934/math.2023373
This study researches the bipartite fixed-time output containment control problem of heterogeneous linear MASs with signed digraphs. The leaders' states can be estimated by a designed distributed bipartite compensator. Furthermore, each follower is allocated a time-varying coupling weight, an adaptive bipartite fixed-time protocol is raised which can estimate the leader's system matrix but also the leader's state. On the foundation of control protocols, followers' outputs are included by the convex hull constituted by leaders' outputs. In addition, by utilizing the Lyapunov function theory, some abundant speculative knowledges are deduced to guarantee adaptive bipartite fixed-time output containment of multi-agent systems. Finally, the feasibility of the anticipant theoretical results is verified by a set of simulation examples.
[1] | Y. Wang, Z. Zeng, X. Liu, Z. Liu, Input-to-state stability of switched linear systems with unstabilizable modes under DoS attacks, Automatica, 146 (2022), 110607. http://doi.org/10.1016/j.automatica.2022.110607 doi: 10.1016/j.automatica.2022.110607 |
[2] | X. Zhan, J. Wu, T. Jiang, X. Jiang, Optimal performance of networked control systems under the packet dropouts and channel noise, ISA Trans., 58 (2015), 214–221. http://doi.org/10.1016/j.isatra.2015.05.012 doi: 10.1016/j.isatra.2015.05.012 |
[3] | M. Li, H. Chen, R. Zhang, An input dead zones considered adaptive fuzzy control approach for double pendulum cranes with variable rope lengths, IEEE ASME Trans. Mech., 27 (2022), 3385–3396. http://doi.org/10.1109/TMECH.2021.3137818 doi: 10.1109/TMECH.2021.3137818 |
[4] | X. Du, X. Zhan, J. Wu, H. Yan, Performance analysis of MIMO information time-delay system under bandwidth, cyber-attack, and gaussian white noise, IEEE Trans. Syst. Man Cybern. Syst., in press. http://doi.org/10.1109/TSMC.2022.3211620 |
[5] | W. Zou, P. Shi, Z. Xiang, Y. Shi, Finite-time consensus of second-order switched nonlinear multi-agent systems, IEEE Trans. Neural Netw. Learn. Syst., 31 (2020), 1757–1762. http://doi.org/10.1109/TNNLS.2019.2920880 doi: 10.1109/TNNLS.2019.2920880 |
[6] | Z. Xu, C. Li, Y. Han, Impulsive consensus of nonlinear multi-agent systems via edge event-triggered control, IEEE Trans. Neural Netw. Learn. Syst., 31 (2020), 1995–2004. http://doi.org/10.1109/TNNLS.2019.2927623 doi: 10.1109/TNNLS.2019.2927623 |
[7] | K. Chen, J. Wang, Y. Zhang, Z. Liu, Leader-following consensus for a class of nonlinear strick-feedback multiagent systems with state timedelays, IEEE Trans. Syst. Man Cybern. Syst., 50 (2020), 2351–2361. http://doi.org/10.1109/TSMC.2018.2813399 doi: 10.1109/TSMC.2018.2813399 |
[8] | T. Han, W. Zheng, Bipartite output consensus for heterogeneous multi-agent systems via output regulation approach, IEEE Trans. Circuits II, 68 (2021), 281–285. http://doi.org/10.1109/TCSII.2020.2993057 doi: 10.1109/TCSII.2020.2993057 |
[9] | C. Altafini, Consensus problems on networks with antagonistic interactions, IEEE Trans. Autom. Control, 58 (2013), 935–946. http://doi.org/10.1109/TAC.2012.2224251 doi: 10.1109/TAC.2012.2224251 |
[10] | Y. Yang, J. Tan, D. Yue, X. Xie, W. Yue, Observer-Based containment control for a class of nonlinear multiagent systems with uncertainties, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 588–600. http://doi.org/10.1109/TSMC.2018.2875515 doi: 10.1109/TSMC.2018.2875515 |
[11] | W. Wang, H. Liang, Y. Pan, T. Li, Prescribed performance adaptive fuzzy containment control for nonlinear multiagent systems using disturbance observer, IEEE Trans. Cybern., 50 (2020), 3879–3891. http://doi.org/10.1109/TCYB.2020.2969499 doi: 10.1109/TCYB.2020.2969499 |
[12] | Y. Zhou, H. Zhang, L. Yu, S. Sun, Cooperative bipartite containment control for heterogeneous networks with structurally balanced graph, IEEE Trans. Circuits II, 68 (2021), 2885–2889. http://doi.org/10.1109/TCSII.2021.3059074 doi: 10.1109/TCSII.2021.3059074 |
[13] | X. Zhang, J. Wu, X. Zhan, T. Han, H. Yan, Observer-based adaptive time-varying formation-containment tracking for multi-agent system with bounded unknown input, IEEE Trans. Syst. Man Cybern. Syst., in press. http://doi.org/10.1109/TSMC.2022.3199410 |
[14] | W. Jiang, G. Wen, Z. Peng, T. Huang, A. Rahmani, Fully distributed formation-containment control of heterogeneous linear multiagent systems, IEEE Trans. Autom. Control, 64 (2019), 3889–3896. http://doi.org/10.1109/TAC.2018.2887409 doi: 10.1109/TAC.2018.2887409 |
[15] | Y. Liu, H. Zhang, Z. Shi, Z. Gao, Neural-network-based finite-time bipartite containment control for fractional-order multi-agent systems, IEEE Trans. Neural Netw. Learn. Syst., in press. http://doi.org/10.1109/TNNLS.2022.3143494 |
[16] | Z. Liu, X. Zhan, T. Han, H. Yan, Distributed adaptive finite-time bipartite containment control of linear multi-agent systems, IEEE Trans. Circuits II, 69 (2022), 4354–4358. http://doi.org/10.1109/TCSII.2022.3180118 doi: 10.1109/TCSII.2022.3180118 |
[17] | L. Zhao, J. Yu, Q. Wang, Adaptive finite-time containment control of uncertain multiple manipulator systems, IEEE Trans. Cybern., 52 (2022), 2067–2071. http://doi.org/10.1109/TCYB.2020.2981090 doi: 10.1109/TCYB.2020.2981090 |
[18] | Y. Li, F. Qu, S. Tong, Observer-based fuzzy adaptive finite-time containment control of nonlinear multiagent systems with input delay, IEEE Trans. Cybern., 51 (2021), 126–137. http://doi.org/10.1109/TCYB.2020.2970454 doi: 10.1109/TCYB.2020.2970454 |
[19] | W. Xiao, H. Ren, Q. Zhou, H. Li, R. Lu, Distributed finite-time containment control for nonlinear multiagent systems with mismatched disturbances, IEEE Trans. Cybern., 52 (2022), 6939–6948. http://doi.org/10.1109/TCYB.2020.3042168 doi: 10.1109/TCYB.2020.3042168 |
[20] | C. Yuan, W. Zeng, Output containment control of heterogeneous multi-agent systems with leaders of bounded inputs: An adaptive finite-time observer approach, J. Franklin Inst., 356 (2019), 3419–3442. http://doi.org/10.1016/j.jfranklin.2018.12.022 doi: 10.1016/j.jfranklin.2018.12.022 |
[21] | T. Xu, G. Lv, Z. Duan, Z. Sun, J. Yu, Distributed fixed-time triggering-based containment control for networked nonlinear agents under directed graphs, IEEE Trans. Circuits I, 67 (2020), 3541–3552. http://doi.org/10.1109/TCSI.2020.2991101 doi: 10.1109/TCSI.2020.2991101 |
[22] | L. Wang, X. Liu, J. Cao, X. Hu, Fixed-time containment control for nonlinear multi-agent systems with external disturbances, IEEE Trans. Circuits II, 69 (2022), 459–463. http://doi.org/10.1109/TCSII.2021.3091484 doi: 10.1109/TCSII.2021.3091484 |
[23] | Q. Ma, G. Zhou, E. Li, Adaptive bipartite output consensus of heterogeneous linear multi-agent systems with antagonistic interactions, Neurocomputing, 373 (2020), 50–55. http://doi.org/10.1016/j.neucom.2019.09.067 doi: 10.1016/j.neucom.2019.09.067 |
[24] | D. Meng, Bipartite containment tracking of signed networks, Automatica, 79 (2017), 282–289. http://doi.org/10.1016/j.automatica.2017.01.044 doi: 10.1016/j.automatica.2017.01.044 |
[25] | H. Zhang, Y. Zhou, Y. Liu, J. Sun, Cooperative bipartite containment control for multiagent systems based on adaptive distributed observer, IEEE Trans. Cybern., 52 (2022), 5432–5440. http://doi.org/10.1109/TCYB.2020.3031933 doi: 10.1109/TCYB.2020.3031933 |
[26] | Z. Zhu, B. Hu, Z. Guan, D. Zhang, T. Li, Observer-based bipartite containment control for singular multi-agent systems over signed digraphs, IEEE Trans. Circuits I, 68 (2021), 444–457. http://doi.org/10.1109/TCSI.2020.3026323 doi: 10.1109/TCSI.2020.3026323 |
[27] | Q. Zhou, W. Wang, H. Liang, M. Basin, B. Wang, Observer-based event-triggered fuzzy adaptive bipartite containment control of multiagent systems with input quantization, IEEE Trans. Fuzzy Syst., 29 (2021), 372–384. http://doi.org/10.1109/TFUZZ.2019.2953573 doi: 10.1109/TFUZZ.2019.2953573 |
[28] | Y. Wu, D. Meng, Z. Wu, Bipartite containment fluctuation behaviors of cooperative-antagonistic networks with time-varying topologies, IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), 7391–7400. http://doi.org/10.1109/TSMC.2022.3154757 doi: 10.1109/TSMC.2022.3154757 |
[29] | L. Wang, J. Wu, X. Zhan, T. Han, H. Yan, Fixed-time bipartite containment of multi-agent systems subject to disturbance, IEEE Access, 8 (2020), 77679–77688. http://doi.org/10.1109/ACCESS.2020.2989517 doi: 10.1109/ACCESS.2020.2989517 |
[30] | Y. Wu, H. Ma, M. Chen, H. Li, Observer-based fixed-time adaptive fuzzy bipartite containment control for multi-agent systems with unknown hysteresis, IEEE Trans. Fuzzy Syst., 30 (2021), 1302–1312. http://doi.org/10.1109/TFUZZ.2021.3057987 doi: 10.1109/TFUZZ.2021.3057987 |
[31] | Z. Zhu, Z. Guan, Y. Chen, X. Zheng, Finite-time and fixed-time bipartite containment control of cooperative-antagonistic networks: a unified framework, 2022. http://doi.org/10.36227/techrxiv.19212888 |
[32] | X. Guo, H. Ma, H. Liang, H. Zhang, Command-filter-based fixed-time bipartite containment control for a class of stochastic multiagent systems, IEEE Trans. Syst. Man Cybern. Syst., 52 (2021), 3519–3529. http://doi.org/10.1109/TSMC.2021.3072650 doi: 10.1109/TSMC.2021.3072650 |
[33] | H. Zhang, J. Duan, Y. Wang, Z. Gao, Bipartite fixed-time output consensus of heterogeneous linear multiagent systems, IEEE Trans. Cybern., 51 (2021), 548–557. http://doi.org/10.1109/TCYB.2019.2936009 doi: 10.1109/TCYB.2019.2936009 |