
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(3): 7419–7436.
DOI:10.3934/math.2023373
Received: 01 November 2022
Revised: 16 December 2022
Accepted: 23 December 2022
Published: 16 January 2023

Research article

Bipartite fixed-time output containment control of heterogeneous linear
multi-agent systems

Zihan Liu1, Xisheng Zhan1,∗, Jie Wu1 and Huaicheng Yan2

1 School of Electrical Engineering and Automation, Hubei Normal University, Huangshi, Hubei
435002, China

2 School of Information Science and Engineering, East China University of Science and Technology,
Shanghai 200237, China

* Correspondence: Email: xisheng519@126.com.

Abstract: This study researches the bipartite fixed-time output containment control problem of
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1. Introduction

Cooperative control of multi-agent systems has aroused profound interest over the past couple of
decades on account of its extensive applications in disparate fields, such as smart grids, transportation,
sensor networks [1–4], etc. Consensus is a widespread study orientation of cooperative control,
which has produced some classical literatures [5–8]. Thereinto, the previously mentioned pluri-
plusieurs leaders control of MASs is diffusely applied during the practice, which can be regarded
as the containment control problem. Containment control, as a normalized problem of distributed
cooperative control, has developed into a consequential and vital area, in which the aim is to design an
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appropriate distributed director that the dynamic convex hull constituted by leaders are guaranteed
to include all followers in MASs. So far, fruitful results have been achieved on this topic, see,
e.g., [9–15]. In addition, this multi-agent systems is also divided into homogeneity and heterogeneity.
In contrast to homogeneous multi-agent systems, there are heterogeneous multi-agent systems in which
the dynamics of each agent is not identical. In reality, the situation is even more complex, and it is clear
that typical examples of heterogeneous multi-agent systems are much more common than the overly
simple homogeneous multi-intelligent systems. The study of cooperative control of heterogeneous
multi-intelligent systems is therefore more realistic and challenging, and also has more promising
applications.

With respect to the research of containment control (CC) problem, the rate of convergence is the
key index to judge the quality of the designed CC protocols. It’s worth noting that the forthcoming CC
protocols only ensure asymptotic realization of containment control, which illustrates that containment
control can not be completed in finite time. Nevertheless, it is often advisable to implement CC
in a limited time frame in engineering applications. As a matter of fact, finite-time CC has many
other advantages besides faster convergence rate, such as higher control precision and better anti-
interference. Therefore, the finite-time CC problem has been investigated [16–20]. For instance,
a finite-time adaptive containment control method for a nonlinear multi-agent system with actuator
failures and mismatched disturbances was raised in [19], and it is proved that the errors of the control
system are stable in finite time in the presence of actuator faults. In [20], an observer-based two-layer
distributed containment control protocol was raised to overcome the related finite-time containment
problem.

Notice that the setup time largely rests with the agents’ the premier conditions in the finite-time
protocols. It’s hard to calculate settling time accurately since it’s often difficult to obtain the exact
information on the initial state of the agents, which restrict the use of the finite-time CC protocols in
practical applications. As a result, a fixed-time control method can be applied, in which an upper limit
on the settling time can be confirmed independently of initial conditions. In recent years, distributed
fixed-time control for nonlinear networked systems is discussed in [21] by using event/self-triggered
method over directed graphs, so that the estimated settling time can be determined independently of
the initial states of networked agents. In [22], the fixed-time containment control for second-order
nonlinear multi-agent systems (MASs) is studied and a novel non-singular terminal sliding mode
control protocol is designed to guarantee FTCC with distributed nonlinear MASs.

Beware that the communication links in the literature above are all non-negative. That is to
say, all the relationships between agents are collaborative. Nevertheless, signed networks are more
common than traditional multi-agent systems networks. In other words, the simultaneity between
collaboration and competition relationships is more logical and appropriate. This type of problem
is named the bipartite containment control problem [23], where the interaction among agents can
be effectively modeled by signed graph, and the antagonistic/cooperative interaction between agents
can be represented by negative and positive arcs respectively. Lately, the bipartite CC problem has
been discussed [24–28]. Particularly, in [24], the bipartite containment tracking problem of a class of
signed graphs leader-following networks was studied, and it was proved that leader-following networks
can converge to symmetric trajectories containing the same convex hull and the same modulus but
different signs of each leading trajectory. And taking [27] as an example, based on the nonlinear
decomposition method of input quantization, an event-triggered control scheme was developed by
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utilizing backstepping technology, which was based on a nonlinear decomposition approach of input
quantization. Notwithstanding consequential achievement have been made in bipartite CC, and what
is noteworthy is that little work has been done to deal with the finite/fixed-time bipartite containment
control problems [29–32]. As far as we know, the system dynamics of the above problem are different
from this paper, so there are problems that have not been solved.

Motivated by the aforesaid argumentation, the darrein target of this paper is to settle the problem
of bipartite fixed-time output containment control for heterogeneous linear multi-agent systems with
signed digraphs. Among others, the primary contributions of the article are given as follows.

(i) Inspired by [12] and [13], the text proposes a bipartite containment control protocol combined
with an adaptive algorithm that estimates the system matrix of the leader and also the state of the
leader. On the basis of the control protocol, the multiple agents in the system no longer depend on
global information, which saves many measurement resources;

(ii) The bipartite containment control studied in this paper is achieved with a fixed time premise.
A large number of results have been produced on containment control of multi-agent systems in
asymptotic time. In contrast, containment control under fixed-time algorithms has many advantages,
such as high accuracy and robustness of control, in addition to the fast convergence. Part of the
inspiration for this thought is from [17, 20, 23];

(iii) Different from [28–32]. In this article, the object of study is linear time-invariant system.
However, the problem of bipartite fixed-time output containment control on this base is comparatively
few researched up till now.

The remainder of this article are the following: Section II renders preliminaries and Section III
describes problem statement. The main results are shown in Section IV. The simulation results are
shown in Section V. At last, in Section VI, some conclusions are presented.

2. Preliminaries

R stands for the set of real numbers. RN is the set of real N × 1 vectors, and we use RN×M to
denote the set of real N ×M matrices. In this paper, graph theory is utilized to signify the competitive-
cooperative relationship between agents in MASs. A bunch of N+W agents as an illustration, their
relationship can be represented by G = (V,E,A), a weighed digraph, which is composed of a node set
V = {v1, v2, ..., vn}, an adjacency matrixA = [ai j] ∈ R(N+W)×(N+W) and an edge set E ⊆ V×V,

(
v j, vi

)
∈

E denotes an edge representing agent i can acquire information from agent j, wherein, agent j and

agent i are adjacent. And the in-degree matrix is denoted by D = diag
{

N∑
j=1

∣∣∣a1 j

∣∣∣, N∑
j=1

∣∣∣a2 j

∣∣∣, ..., N∑
j=1

∣∣∣aN j

∣∣∣}.

Thereby, It can be calculated that Laplacian matrix L = D − A. In addition, there is a group V
consist of two subgroupsV1 andV2,and define it by equations thatV1 ∩ V2 = ∅ andV1 ∪ V2 = V,
which means if v j and vi are existing the identical subgroup ai j > 0; or else ai j < 0. In particular, the
collaboration and competition are severally indicated by ai j > 0 and ai j < 0. Furthermore, the signed
digraph G can also be called structural balance diagram. Finally, σi = 1, if vi ∈ V1, and σi = −1, if
vi ∈ V2, respectively, which represents a symbolic parameter.

Lemma 1. [33] Let q =
[
qT

1 , q
T
2 , ..., q

T
N

]T
∈ RNn , in which qi ∈ Rn, i = 1, 2, ...,N, afterwards, the

inequality below holds:

qT sig(q)α ≥ n−αN
1−α

2
(
qT q

) 1+α
2
, (2.1)
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where α > 1.

Lemma 2. [33] Let q =
[
qT

1 , q
T
2 , ..., q

T
N

]T
∈ RNn , in which qi ∈ Rn, i = 1, 2, ...,N, afterwards, the

inequality below holds:

qT sig(q)β ≥
(
qT q

) 1+β
2
, (2.2)

where β ∈ (0, 1).

Lemma 3. [21] There is a positive definite function continuously V (q) : Rn → R+
0 , in which β ∈

(0, 1),α > 1 and a, b, c > 0, we have

V̇ (q) + aV (q) + b(V (q))α + c(V (q))β ≤ 0, q ∈ Rn\ {0} . (2.3)

Afterwards, the settling time are as follows

T <
1

a (1 − β)
ln

(a + c
c

)
+

1
b (α − 1)

. (2.4)

Lemma 4. In this scenario, H∗ = DHD and H therein are positive definite, in which H is defined
later in (9).

Lemma 5. [9] If and only if ∃D ∈ D, i.e., DAD, is a non-negative matrix, the digraph G is
structurally equilibrium. Furthermore,D can determine the bilaterality of the agents.

3. Problem statement

In this paper, F = {v1, v2, ..., vN} can be considered as the followers set and the set of leaders is
expressed by R = {vN+1, vN+2, ..., vN+W}. On account of the graph theory, a heterogeneous linear multi-
agent system is reckoned, then, the followers are expressed as hereunder mentioned:{

ẋi = Aixi + Biui,

yi = Cixi, i ∈ F ,
(3.1)

where xi ∈ R
N and yi ∈ R

Q are the state and the output of the i-th follower, severally, ui ∈ R
P is the

input of the ith follower, and Ai, Bi,Ci are the matrices with compatible dimensions. The leaders can
be described by {

ω̇k = A0ωk,

yk = C0ωk, k ∈ R,
(3.2)

where ωk ∈ R
N is the state of the k-th leader and yk ∈ R

Q is the output of the k-th leader, separately.

Definition 1. In the case of (1 − λ)x + λy ∈ C, the set C ⊆ RN is convex for any x, y ∈ C and any
λ ∈ [0, 1]. Let

YL = {yn+1,−yn+1, yn+2,−yn+2, ..., yn+m,−yn+m}

be the leaders’ outputs set and the inverted sign. Co(YL) is the minimal convex set including the whole
points in YL. In other words, the convex hull of YL is the combination of all convex of points.
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Definition 2. under the circumstance of the signed graph G, the above-mentioned problem of the
systems (5) and (6) can be settled by the following guidelines:

First of all, to deal with the problem of bipartite output containment control, the output containment
control problem need be solved foremost. No matter what the starting statuses of multi-agent system
are, the convex hull that the outputs of leaders contain will embrace some followers’ outputs.

lim
t→∞

dist(yi,Co(YL(t))) = 0, i ∈ F .

Accordingly, the leaders’ inverse output trajectories will include the outputs of other followers.

Assumption 1. The eigenvalues of the matrix A0 have zero real parts.

Assumption 2. Bi are of full-row ranks, i = 1, 2, ...,N.

Assumption 3. For i = 1, 2, ...,N, There are solutions (Xi,Ui), i = 1, 2, ...,N, that satisfy the formulas
below:

AiXi + BiUi = XiA0,

CiXi −C0 = 0.
(3.3)

Assumption 4. The G is structurally equilibrium, there are at least one leader that has a directed
spanning tree to it.

Ahead of researching more, the output containment error is caused by:

ei =
∑
j∈Ni

∣∣∣ai j

∣∣∣ (yi − sgn(ai j)y j) +

N+W∑
r=N+1

|aik| (yi − σiyk),i ∈ F . (3.4)

Turn the equation thereinbefore into matrix modality, hence let e = col(e1, e2, ..., eN), y =

col(y1, y2, ..., yN), then (8) can be represented as

e = (H ⊗ In)y −
N+W∑

r=N+1

(A0k ⊗ In)ȳk, (3.5)

where yk = (σ1σ2...σN)T ⊗ yk, A0k = diag {|a1k| , |a2k| , ..., |aNk|} and H =
N+W∑

r=N+1
(1/W)L +A0k. In

accordance with the problem in Definition 2, satisfy lim
t→∞

ei = 0,

lim
t→∞

yi = lim
t→∞

N+W∑
r=N+1

ζikyk, k ∈ F , (3.6)

in which ζik ∈ R indicates the element of H−1A0k1N . This manifests the bipartite output containment
control problem can be settled by treating it as a adjustment problem of driving the e→ 0.

4. Main results

In this section, we propose two main results of the article for the fixed-time bipartite containment
control problem.
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4.1. Bipartite fixed-time observer

In order to realize the above fixed-time bipartite output containment control of heterogeneous
MASs, we present a protocol as follow:{

ui = K1
i xi + K2

i fi − d1K3
i sig{xi − Xi (t) fi}

α̃
− d2K3

i sig{xi − Xi (t) fi}
β̃,

ḟi = A0 fi − µ1Pςi − µ2sig{Pςi}
α
− µ3sig{Pςi}

β,
(4.1)

where K1
i ,K

2
i ,K

3
i ∈ RP×N will be designed later in the Theorem 3. P ∈ Rn0×n0 > 0, d1 > 0, d2 > 0,

α > 0, β > 0, µ1 > 0, µ2 > 0, µ3 > 0, α̃ > 1 and β̃ ∈ (0, 1). ςi indicates the metrical information
gathered by the i-th agent alternating with its neighbors, which is defined as:

ςi
∆
=

N∑
j=1

∣∣∣ai j

∣∣∣ ( fi − sgn
(
ai j

)
f j

)
+

N+W∑
k=N+1

|aik| ( fi − σiωk), (4.2)

in which ai j and aik are the the adjacency matrix A’s elements, and it can take another form as follow:

ς = (H ⊗ In) f −
N+W∑

k=N+1

(A0k ⊗ In) ω̄. (4.3)

Define the error variable f̄ = f − (H ⊗ IN)−1
N+W∑

k=N+1
(A0k ⊗ In) ω̄. Then

˙̄f = ((IN ⊗ A0) − µ1 (H ⊗ P)) f̄ − µ2sig
{
(H ⊗ P) f̄

}α
− µ3sig

{
(H ⊗ P) f̄

}β
. (4.4)

Afterwards, we have the result as follow.

Theorem 1. Assume that Assumptions 1 and 4 are tenable for systems (6) and (11). Then, lim
t→T

f̄ = 0
holds if µ1 > 1/λ1, µ2 > 0, µ3 > 0, α > 1, β ∈ (0, 1), P satisfies

AT
0 P + PA0 − 2P2 + cIn0 = 0, (4.5)

where c > 0, and λ1 = λmin (H). Besides, the setup time are as follow

T < T ∗ ∆
=

2λmax(Γ)
cλ1(1−β) ln

 cλ1
2µ3λmax(Γ)

[
λmin(Γ2)
λmax(Γ)

]− 1+β
2

+ 1

 +
nα0 N

α−1
2

µ2(α−1)

[
λmin(Γ2)
λmax(Γ)

]− 1+α
2
, (4.6)

where Γ = H ⊗ P, Γ2 = H2 ⊗ P2.

Proof. On the condition of Assumption 4, H is positive definite and symmetrical. Next, there is an
orthometric U ∈ RN×N , meeting UHUT = J = diag {λ1, λ2, ..., λN}.

Thinking about V = f̄ T (H ⊗ P) f̄ as the preselected Lyapunov function for the system (14). Let
f̃ =

(
U ⊗ In0

)
f̄ and ξ = (H ⊗ P) f̄ . Take the time derivative of V with respect to (14) as follows

V̇ = f̄ T
[(
H ⊗

(
AT

0 P + PA0

))]
f̄ − 2µ1 f̄ T

(
H2 ⊗ P2

)
f̄

−2µ2 f̄ T (H ⊗ P) sig
{
(H ⊗ P) f̄

}α
− 2µ3 f̄ T (H ⊗ P) sig

{
(H ⊗ P) f̄

}β
= f̃ T

[
J ⊗

(
AT

0 P + PA0

)
− 2µ1

(
J2 ⊗ P2

)]
f̄ − 2µ2ξ

T sig{ξ}α − 2µ3ξ
T sig{ξ}β

=
N∑

i=1
f̃ T
i λi

(
AT

0 P + PA0 − 2µ1λiP2
)

f̃i − 2µ2ξ
T sig{ξ}α − 2µ3ξ

T sig{ξ}β.

(4.7)
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Due to µ1 > 1/λ1 and (15), one has

N∑
i=1

f̃ T
i λi

(
AT

0 P + PA0 − 2µ1λiP2
)

f̃i ≤ −cλ1

N∑
i=1

f̃ T
i f̃i ≤ −

cλ1
λmax(Γ)V. (4.8)

In line with Lemma 1 and Lemma 2, one has

−2µ2ξ
T sig{ξ}α − 2µ3ξ

T sig{ξ}β ≤ −2µ2n−α0 N
1−α

2

[
λmin(Γ2)
λmax(Γ)

] 1+α
2 V

1+α
2 − 2µ3

[
λmin(Γ2)
λmax(Γ)

] 1+β
2

V
1+β

2 . (4.9)

Combining (18) and (19) with (17), it can be obtained

V̇ ≤ − cλ1
λmax(Γ)V − 2µ2n−α0 N

1−α
2

[
λmin(Γ2)
λmax(Γ)

] 1+α
2
× V

1+α
2 − 2µ3

[
λmin(Γ2)
λmax(Γ)

] 1+β
2

V
1+β

2 . (4.10)

On account of β ∈ (0, 1) and α > 1, it can be testified that
[
(1 + β)/2

]
∈ (0, 1) and [(1 + α)/2] > 1

establish. In light of Lemma 3, f̄ = 0 is fast stable globally in fixed-time. Hence, lim
t→T

f̄ = 0 holds, and
T satisfies the (16) inequality. The proof is done. �

Afterwards, we will demonstrate that the control protocol designed on the base of the fixed-time
observers is workable. The proof is similar to the demonstration of Theorem 3, so the procedure will
be omitted.

4.2. Adaptive bipartite fixed-time observer

In the previous section, we propose the fixed-time protocol to achieve the bipartite containment
problem by a distributed bipartite compensator. Nonetheless, take note to the bipartite fixed-time
observer, which is related to the leader’s matrix A0 and the overall agents topology. In fact, it’s not
practical in many aspects that every follower needs to get A0. In another aspect, followers do not know
the global information in effect, in particular with grand MASs scale.

Based on the above reasons, we devise an adaptive bipartite fixed-time protocol ulteriorly, satisfying
lim
t→Ts

(A0i − A0) = 0 and lim
t→T

f̄ = 0. Thereinto, the bipartite fixed-time observer can not merely complete

the estimation of leader state and matrix A0 simultaneously, but also avert relying on the global
information.

The design form of the adaptive bipartite fixed-time protocol is written as:
ui = K1

i xi + K2
i (t) fi − d1K3

i sig{xi − Xi fi}
α̃
− d2K3

i sig{xi − Xi fi}
β̃,

Ȧ0i = −κ1sig{ϑi}
γ
− κ2sig{ϑi}

δ,

ḟi = A0i fi − ciςi − µ2sig{ςi}
α
− µ3sig{ςi}

β,

ċi = ςT
i ςi, ci (0) = ci0,

(4.11)

where A0i ∈ Rn0×n0 is the estimation of A0 in the protocol above, ϑi =
N∑

j=1

∣∣∣ai j

∣∣∣ (A0i − A0 j

)
+ ai0 (A0i − A0),

and ci is coupling gain. κ1 > 0, κ2 > 0, µ2 > 0, µ3 > 0, γ > 0, δ > 0, α > 0 and β > 0 are the parameters
which will be confirmed soon. Similarly, K1

i ,K
2
i (t) ,K3

i ∈ RP×N will be designed later in the Theorem 3.
Afterwards, we have the result as follow.
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Theorem 2. Assume that Assumptions 1 and 4 are tenable for systems (6) and (21). Next, it gets: i)
lim
t→Ts

(A0i − A0) = 0 holds if κ1 > 0, κ2 > 0, γ > 1 and δ ∈ (0, 1); ii) The setup times upper limit T and Ts

are stationary, which have no connection with the initial conditions. Furthermore, each ci converges
to a certain bounded value.

Proof. We prove the above separately.
i) Provide a matrix error Ā0i = A0i − A0, and let Ā0 =

[
ĀT

01, Ā
T
02, ..., Ā

T
0N

]T
. The following form can

be readily obtained:

˙̄A0 = −κ1sig
{(
H∗ ⊗ In0

)
Ā0

}γ
− κ2sig

{(
H∗ ⊗ In0

)
Ā0

}δ
, (4.12)

in whichH∗ is positive and symmetric, as described in Lemma 5.
The operation

〈
Ā0

〉
j
, j = 1, 2, ..., n0, is defined to represent the jth column of Ā0. Next, it get

˙̄A0 = −κ1sig
{(
H∗ ⊗ In0

)
Ā0

}γ
− κ2sig

{(
H∗ ⊗ In0

)
Ā0

}δ
. (4.13)

Let V
(〈

Ā0

〉
j

)
=

〈
Ā0

〉T

j

(
H∗ ⊗ In0

) 〈
Ā0

〉
j
, and ξ j =

(
H∗ ⊗ In0

) 〈
Ā0

〉
j
. The time derivative of V

(〈
Ā0

〉
j

)
with respect to (23) can be expressed

V̇
(〈

Ā0

〉
j

)
= −2κ1

〈
Ā0

〉T

j

(
H∗ ⊗ In0

)
sig

{(
H∗ ⊗ In0

) 〈
Ā0

〉
j

}γ
−2κ2

〈
Ā0

〉T

j

(
H∗ ⊗ In0

)
sig

{(
H∗ ⊗ In0

) 〈
Ā0

〉
j

}δ
= −2κ1ξ

T
j sig

{
ξ j

}γ
− 2κ2ξ

T
j sig

{
ξ j

}δ
≤ −2κ1n−γ0 N

1−γ
2

(
ξT

j ξ j

) 1+γ
2
− 2κ2

(
ξT

j ξ j

) 1+δ
2

≤ −2κ1n−γ0 N
1−γ

2

[
λmin(H∗2)
λmax(H∗)

] 1+γ
2

V
(〈

Ā0

〉
j

) 1+γ
2
− 2κ2

[
λmin(H∗2)
λmax(H∗)

] 1+δ
2

V
(〈

Ā0

〉
j

) 1+δ
2
,

(4.14)

where Lemmas 1 and 2 are utilized.
By the above,

〈
Ā0

〉
j
= 0 is stable globally in fixed-time. The setup time

Ts( j) < T ∗s( j)
∆
= 1

κ2(1−δ)

[
λmin(H∗2)
λmax(H∗)

]− 1+δ
2

+
nγ0 N

γ−1
2

κ1(γ−1)

[
λmin(H∗2)
λmax(H∗)

]− 1+γ
2
. (4.15)

In addition, Ā0 is stable globally in fixed-time with the settling time Ts < T ∗s
∆
=

max
{
T ∗s(1),T

∗
s(2), ...,T

∗
s(n0)

}
. Hence, lim

t→Ts
(A0i − A0) = 0 holds. ii) Define the error f̄ = f −

(H ⊗ IN)−1
N+W∑

k=N+1
(A0k ⊗ In)ω, and let f̄ =

[
f̄ T
1 , f̄ T

2 , ..., f̄ T
N

]T
. The augmented system can be obtained

˙̄f = ḟ − (H ⊗ In)−1
N+W∑

k=N+1
(A0k ⊗ In) (In ⊗ A0)ω

= (IN ⊗ A0 − ci (H ⊗ In)) f̄ − µ2sig
{(
H ⊗ In0

)
f̄
}α
− µ3sig

{(
H ⊗ In0

)
f̄
}β

+Ã0i f̄ + (H ⊗ IN)−1
N+W∑

k=N+1
(A0k ⊗ In) Ã0i (1N ⊗ ω),

(4.16)
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where Ã0I = blockdiag
(
Ā01, Ā02, ..., Ā0N

)
. Let V1 = f̄ T (

H ⊗ In0

)
f̄ and V2 =

N∑
i=1

(ci − θ)2, in which θ

is a positive constant to be confirmed. Afterwards, for systems (21) and (26), V = V1 + V2 can be
regarded as an alternative Lyapunov function.

The time derivative of V1 with respect to (26) are following when t ∈ (0,Ts)

V̇1 = 2 f̄
(
H ⊗ In0

) ˙̄f
= f̄ T

[
H ⊗

(
AT

0 + A0

)
− 2ci

(
H2 ⊗ In0

)]
f̄ + 2 f̄ T (

H ⊗ In0

)
Ã0i f̄

−2µ2 f̄ T (
H ⊗ In0

)
sig

{(
H ⊗ In0

)
f̄
}α
− 2µ3 f̄ T (

H ⊗ In0

)
sig

{(
H ⊗ In0

)
f̄
}δ

+2 f̄ T
N+W∑

k=N+1
(A0k ⊗ In) Ã0i (1N ⊗ ω).

(4.17)

The time derivative of V2 with respect to (21) can be indicated as

V̇2 = 2
N∑

i=1

(ci − θ) ςT
i ςi. (4.18)

Let f̃ =
(
U ⊗ In0

)
f̄ and ς =

(
H ⊗ In0

)
f̄ . In accordance with Lemma 1 and Lemma 2, the following

can be obtained:

V̇ = V̇1 + V̇2

= f̄ T
[
J ⊗

(
AT

0 + A0

)
− 2θ

(
J2 ⊗ In0

)]
f̄ + 2 f̄ T (

H ⊗ In0

)
Ã0i f̄

−2µ2ς
T sig{ς}α − 2µ3ς

T sig{ς}β + 2 f̄ T
N+W∑

k=N+1
(A0k ⊗ In) Ã0i (1N ⊗ ω)

≤
N∑

i=1
f̃ T
i λi

(
AT

0 + A0 − 2θλiIn0

)
f̃i − 2µ2n−α0 N

1−α
2

(
ςTς

) 1+α
2

−2µ3

(
ςTς

) 1+β
2

+ 2 f̄ T (
H ⊗ In0

)
Ã0i f̄ + (1N ⊗ ω)T (1N ⊗ ω)

+ f̄ T ×
N+W∑

k=N+1
(A0k ⊗ In) Ã0iÃT

0i

N+W∑
k=N+1

(A0k ⊗ In)T f̄ .

(4.19)

There exists a θ > 0 that AT
0 + A0 − 2θλiIn0 is Hurwitz. In light of the proof of i), it is understood

that Ã0i = 0 is fixed-time stable globally. Let χ1 =
(
H ⊗ In0

)
Ã0i and χ2 =

N+W∑
k=N+1

(A0k ⊗ In) Ã0i. In finite

time, both χ1 and χ2 converge to 0. After that, there are bounded constants c0, c1 and c2, thus making
the following fact true:

V̇ ≤ −2µ2n−α0 N
1−α

2

(
ςTς

) 1+α
2
− 2µ3

(
ςTς

) 1+β
2

+ c1
λmin(H)V1 + c2

λmin(H)V1 + c0

≤ −2µ2n−α0 N
1−α

2

[
λmin(H2)
λmin(H)

] 1+α
2

V
1+α

2
1 − 2µ3

[
λmin(H2)
λmin(H)

] 1+β
2

V
1+β

2
1 + c1+c2

λmin(H)V1 + c0,
(4.20)

where c0 ≥ (1N ⊗ x0)T (1N ⊗ x0). On account of the fact that c1+c2
λmin(H) , V and c0 are bounded. Hence, f̄

and ci are bounded. Therefore, V (Ts) is also bounded.
On the condition of t ∈ [Ts,∞], Ã0i = 0. The time derivative of V1 with respect to (26) can be equal

to
V̇1 = f̄ T

[
H ⊗

(
AT

0 + A0

)
− 2ci

(
H2 ⊗ In0

)]
f̄

−2µ2 f̄ T (
H ⊗ In0

)
sig

{(
H ⊗ In0

)
f̄
}α

−2µ3 f̄ T (
H ⊗ In0

)
sig

{(
H ⊗ In0

)
f̄
}β
.

(4.21)
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The time derivative of V2 along (21) is (28). We have

V̇ = V̇1 + V̇2 = f̄ T
[
H ⊗

(
AT

0 + A0

)]
f̄

−2θ
N∑

i=1
ςT

i ςi − 2µ2ζ
T sig{ζ}α − 2µ3ζ

T sig{ζ}β

≤ −2µ2n−α0 N
1−α

2

[
λmin(H2)
λmin(H)

] 1+α
2

V
1+α

2
1 − 2µ3

[
λmin(H2)
λmin(H)

] 1+β
2

V
1+β

2
1 .

(4.22)

Distinctly, f̄ , ci and V are bounded. There are θ > 0 up to ∆c = max {θ − ci, i = 1, 2, ...,N} > 0.
Next

V̇1 = V̇ − V̇2 ≤ −2µ2n−α0 N
1−α

2

[
λmin(H2)
λmax(H)

] 1+α
2

V
1+α

2
1

−2µ3

[
λmin(H2)
λmax(H)

] 1+β
2

V
1+β

2
1 +

2∆cλmax(H2)
λmin(H) V1.

(4.23)

Let $1 =

[
µ3(1−ψ1)λmin(H)

∆cλmax(H2)

](2/1−β)[
λmin(H2)
λmax(H)

][(1+β)/1−β]
, where ψ1 ∈ (0, 1). Define a bounded set Ξ1 ={

f̄ (Ts)
∣∣∣ f̄ (Ts)T (

H ⊗ In0

)
f̄ (Ts) ≤ $1

}
.

If f̄ (Ts) ∈ Ξ1, then

V̇1 ≤ −2µ2n−α0 N
1−α

2

[
λmin(H2)
λmax(H)

] 1+α
2

V
1+α

2
1 − 2ψ1µ3

[
λmin(H2)
λmax(H)

] 1+β
2

V
1+β

2
1 . (4.24)

Thus, f̄ = 0 is fixed-time stable globally. If f̄ (Ts) < Ξ1, then V1 (Ts) > $1.There is a bounded
τ > Ts, so that for t ≥ τ, f̄ (t) ∈ Ξ1. It is annotated by reducing it to fallacy. Assume the mentioned
conclusion is invalid. So the following inequality is true for all τ:

V (Ts) ≥ V (Ts) − V (τ)

≥
∫ τ

Ts

{
2µ2n−α0 N

1−α
2

[
λmin(H2)
λmax(H)

] 1+α
2

V
1+α

2
1 +2µ3

[
λmin(H2)
λmax(H)

] 1+β
2

V
1+β

2
1

 ds

>

{
2µ2n−α0 N

1−α
2

[
λmin(H2)
λmax(H)

] 1+α
2
$

1+α
2

1 +2µ3

[
λmin(H2)
λmax(H)

] 1+β
2
$

1+β
2

1

 (τ − Ts)

∆
= ρ (τ − Ts) .

(4.25)

From (35), V (Ts) has no bound as τ → ∞, which contradicts the truth that V (Ts) is bounded.
Hence, the result is correct. The time for f̄ (Ts) to enter the set Ξ1 is calculated as

τ =
V (Ts)
ρ

+ Ts. (4.26)

Let $2 =

[
∆cλmax(H2)nα0 N[(α−1)/2]

(µ2(1−ψ2)λmin(H))

](2/α−1)[
λmax(H)
λmin(H2)

][(1+α)/(α−1)]
, where ψ2 ∈ (0, 1). Define a bounded Ξ2 ={

f̄ (Ts)
∣∣∣ f̄ (Ts)T (

H ⊗ In0

)
f̄ (Ts) ≥ $2

}
, If f̄ (Ts) ∈ Ξ2, we have

V̇1 ≤ −2ψ2µ2n−α0 N
1−α

2

[
λmin(H2)
λmax(H)

] 1+α
2

V
1+α

2
1 − 2µ3

[
λmin(H2)
λmax(H)

] 1+β
2

V
1+β

2
1 . (4.27)
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It’s known from the above proof that lim
t→T

[
fi − (H ⊗ IN)−1

N+W∑
k=N+1

(A0k ⊗ In)ωk

]
= 0 holds. It can be

seen from (21) that ci is increasing monotonically. Combining the boundedness of ci and the global
fixed-time stability of f̄ in the above analysis, each coupling gain converges to a bounded value. The
final demostration is done. �

4.3. Control protocol design

Then, we will show that control protocol designed according to adaptive fixed-time observers is
feasible.

Theorem 3. For MASs (5) and (6), assume that Assumptions 1–4 hold and that an adaptive bipartite
fixed-time observer is designed via Theorem 2. If K1

i satisfies Ai + BiK1
i is Hurwitz , K2

i (t) = Ui (t) −
K1

i Xi (t), and K3
i satisfies BiK3

i = Ini×ni , the bipartite output containment problem can be solved by the
control protocol (21).

Proof. Let K̄2
i (t) = K2

i (t) − K2
i , X̄i(t) = Xi(t) − Xi, x̄i = xi − (H ⊗ IN)−1

N+W∑
k=N+1

(A0k ⊗ In) Xiω̄, and

x̂i = xi − Xi fi. Thus, we have

˙̄xi = ẋi − (H ⊗ IN)−1
N+W∑

k=N+1
(A0k ⊗ In) Xi ˙̄ω

=
(
Ai + BiK1

i

)
xi + BiK2

i (t)
(

f̄i + (H ⊗ IN)−1
N+W∑

k=N+1
(A0k ⊗ In) ω̄

)
−d1sig

{
xi −

(
X̄i (t) + Xi

)
fi

}α̃
− d2sig

{
xi −

(
X̄i (t) + Xi

)
fi

}β̃
−(H ⊗ IN)−1

N+W∑
k=N+1

(A0k ⊗ In) Xi (In ⊗ A0) ω̄

=
(
Ai + BiK1

i

)
xi + BiK2

i (t) f̄ + BiK̄2
i (t) (H ⊗ IN)−1

N+W∑
k=N+1

(A0k ⊗ In) ω̄

+Bi

(
Ui − K1

i Xi

)
(H ⊗ IN)−1

N+W∑
k=N+1

(A0k ⊗ In) ω̄ − d1sig
{
x̄i − Xi f̄i − X̄i (t) fi

}α̃
−d2sig

{
x̄i − Xi f̄i − X̄i (t) fi

}β̃
− (H ⊗ IN)−1

N+W∑
k=N+1

(A0k ⊗ In) Xi (In ⊗ A0) ω̄

=
(
Ai + BiK1

i

)
xi − d1sig

{
x̄i − Xi f̄i − X̄i (t) fi

}α̃
− d2sig

{
x̄i − Xi f̄i − X̄i (t) fi

}β̃
+BiK2

i (t) f̄i + BiK̄2
i (t) (H ⊗ IN)−1

N+W∑
k=N+1

(A0k ⊗ In) ω̄

(4.28)

Due to the boundedness of K̄2
i (t), X̄i (t), and f̄i, one easily knows that x̄i when t ∈ (0,max {T,Tmax}).

According to the previous analysis, the first three variables are all 0 when t ∈ (max {T,Tmax} ,∞). Let
Aiσ = Ai + BiK1

i . Then, we have

˙̄xi = Aiσ x̄i − d1sig{x̄i}
α̃
− d2sig{x̄i}

β̃ (4.29)

A candidate Lyapunov function Viσ = x̄T
i x̄i for the system (39) is considered. The time derivative of
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Viσ along (39) can be acquired

V̇iσ = x̄T
i

(
AT

iσ + Aiσ

)
x̄i − 2d1 x̄T

i sig{x̄i}
α̃
− 2d2 x̄T

i sig{x̄i}
β̃

≤ λmax

(
AT

iσ + Aiσ

)
Viσ − 2d1

ni∑
m=1

∣∣∣x̄i(m)

∣∣∣1+α̃
− 2d2

ni∑
m=1

∣∣∣x̄i(m)

∣∣∣1+β̃

≤ λmax

(
AT

iσ + Aiσ

)
Viσ − 2d1n−α̃i V

1+α̃
2

iσ − 2d2n−β̃i V
1+β̃

2
iσ .

(4.30)

In accordance with Lemma 3, x̄i = 0 has global fast fixed time stability. It can be derived that
x̄ =

[
x̄T

1 , x̄
T
2 , ..., x̄

T
N

]T
= 0 is fast fixed-time stable globally. Thus, we have

lim
t→Tc

(
yi − (H ⊗ IN)−1

N+W∑
k=N+1

(A0k ⊗ In) yk

)
= lim

t→Tc
Ci x̄i = 0. (4.31)

The proof is done. �

Corollary 1. For (5) and (6), assume that Assumptions 1-4 hold and that a bipartite fixed-time observer
is designed via Theorem 1. If K1

i satisfies Ai + BiK1
i is Hurwitz , K2

i = Ui − K1
i Xi, and K3

i satisfies
BiK3

i = Ini×ni , the bipartite output containment problem can be solved by the control protocol (11). The
solution of the regulator (7) is (Xi,Ui), and the same control parameters as in Theorem 3.

5. Numerical example

In this section, the validity of Theorem 2 is substantiated by two sets of numerical simulation.
Consider the MASs in Figure 1, which includes four followers and two leaders. It is obvious that the
digraph accords with Assumption 4 and is signed.

Figure 1. Signed digraph.

It’s observed that 1,2,3,4 represent followers and the others are leaders in Figure 1. In addition, it’s
revealed that the digraph G is structurally balanced and has two competing subgroup V1 = 1, 3 and
V2 = 2, 4. Choose the relevant matrices as follows:

A1 =

(
0 1
−2 −0.8

)
, A2 =

(
0 1
−1.5 −1

)
, A3 =

(
0 1
−1 −1.2

)
, A4 =

(
0 1
−0.5 −1.4

)
,

A0 =

(
0 1
−1 0

)
, B1 = B2 = B3 = B4 =

(
1 0
0 1

)
, C1 = C2 = C3 = C4 =

(
1 0

)
.
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K1
1 =

(
0 0

0.5 0.4

)
, K2

1 =

(
0 0

0.5 0.4

)
, K1

2 =

(
0 0

0.25 0.4

)
, K2

2 =

(
0 0

0.25 0.6

)
,

K1
3 =

(
0 0
−1 0.6

)
, K2

3 =

(
0 0
1 0.6

)
, K1

4 =

(
0 0
−0.3 0.7

)
, K2

4 =

(
0 0
−0.2 0.7

)
,

K3
1 = K3

2 = K3
3 = K3

4 =

(
1 0
0 1

)
.

It can be testified that Assumptions 1–4 hold. In a general way, since the agents’ initial parameters
are selected at random, two sets of simulation diagrams are shown here to demonstrate generality.

According to Theorem 1, correlation parameters are selected as d1 = d2 = 1, µ1 = µ2 = 1.5, α = 1.2,
β = 0.5, α̃ = 1.3, β̃ = 0.3. Besides, K2

i are confirmed by Ui − K1
i Xi, and the solution of the regulator

equations (7) is (Xi,Ui) . The evolutions in the agents’ output yi over time are plotted in Figures 2 and 3.
It is obvious to see that the two followers’ output tracks (light blue and green lines) extend to the interior
of the range invested by the leaders’ output trajectories . Conversely, the outputs of the remaining two
followers (purple and black lines) are opposite to the inverse tracks of the leaders’ outputs. Thus,
the adaptive protocol (21) supports the implementation of bipartite output containment control. In the
end, the variations of adaptive coupling weights ci(t) assigned to each follower are shown in Figures 4
and 5. In addition, the bipartite containment output errors are represented in Figures 6 and 7, which
can converge quickly to zero.

Figure 2. First set of agents’ outputs yi(t).

Figure 3. Second set of agents’ outputs yi(t).
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Figure 4. First set of adaptive coupling weights ci(t).

Figure 5. Second set of adaptive coupling weights ci(t).

Figure 6. First set of output errors of agents ei(t).
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Figure 7. Second set of output errors of agents ei(t).

6. Conclusions

In this paper, the discussion and design of bipartite fixed-time output containment control for a class
of linear time-invariant system is investigated. By constructing a bipartite compensator distributively.
The problem of bipartite output containment is treated as the escalation of adjustment problem
of multiagent systems. Two protocols are proposed in order to realize bipartite fixed-time output
containment control. Using the Lyapunov function theory and the descriptor systems stability method,
some abundant criteria are deduced to guarantee adaptive bipartite fixed-time output containment of
multi-agent systems. In the end, the feasibility of the anticipant theoretical results is verified by a set
of simulation examples. In our prospective work, we are willing to study the bipartite predefined-time
containment problem of more sophisticated MASs.
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