Research article Special Issues

Fixed point theorems via auxiliary functions with applications to two-term fractional differential equations with nonlocal boundary conditions

  • Received: 28 October 2022 Revised: 08 January 2023 Accepted: 10 January 2023 Published: 16 January 2023
  • MSC : 47H10, 47H09, 54H25

  • In this study, the $ (h $-$ \varphi)_R $ and $ (h $-$ \varphi)_M $-contractions with two metrics endowed with a directed graph are examined using auxiliary functions. We propose a set of criteria that guarantees the existence of common fixed points for our contractions. This leads to a generalization of previous results in the literature. Towards our accomplishments, we establish affirmative results that demonstrate solutions to a class of nonlinear two-term fractional differential equations with nonlocal boundary conditions. To further corroborate our major findings, we also provide instances.

    Citation: Teeranush Suebcharoen, Watchareepan Atiponrat, Khuanchanok Chaichana. Fixed point theorems via auxiliary functions with applications to two-term fractional differential equations with nonlocal boundary conditions[J]. AIMS Mathematics, 2023, 8(3): 7394-7418. doi: 10.3934/math.2023372

    Related Papers:

  • In this study, the $ (h $-$ \varphi)_R $ and $ (h $-$ \varphi)_M $-contractions with two metrics endowed with a directed graph are examined using auxiliary functions. We propose a set of criteria that guarantees the existence of common fixed points for our contractions. This leads to a generalization of previous results in the literature. Towards our accomplishments, we establish affirmative results that demonstrate solutions to a class of nonlinear two-term fractional differential equations with nonlocal boundary conditions. To further corroborate our major findings, we also provide instances.



    加载中


    [1] C. Tian, T. Jin, X. Yang, Q. Liu, Reliability analysis of the uncertain heat conduction modelImage 1, Comput. Math. Appl., 119 (2022), 131–140. https://doi.org/10.1016/j.camwa.2022.05.033 doi: 10.1016/j.camwa.2022.05.033
    [2] T. Y. Wu, Long waves in ocean and coastal waters, J. Eng. Mech., 107 (1981), 501–522. https://doi.org/10.1061/JMCEA3.0002722 doi: 10.1061/JMCEA3.0002722
    [3] L. Lay, H. Kanamori, C. Ammon, M. Nettles, S. Ward, R. Aster, et al., The great Sumatra-Andaman earthquake of 26 December 2004, Science, 308 (2004), 1127–1133. https://doi.org/10.1126/science.1112250 doi: 10.1126/science.1112250
    [4] R. C. Smith, J. Hill, G. S. Collins, M. D. Piggott, S. C. Kramer, S. D. Parkinson, et al., Comparing approaches for numerical modelling tsunami generation by deformable submarine slides, Ocean Model., 100 (2016), 125–140. https://doi.org/10.1016/j.ocemod.2016.02.007 doi: 10.1016/j.ocemod.2016.02.007
    [5] B. Wongsaijai, K. Poochinapan, Optimal decay rates of the dissipative shallow water waves modeled by coupling the RosenauRLW equation and the Rosenau-Burgers equation with power of nonlinearity, Appl. Math. Comput., 405 (2021), 126202. https://doi.org/10.1016/j.amc.2021.126202 doi: 10.1016/j.amc.2021.126202
    [6] S. Arora, T. Mathur, S. Agarwal, K. Tiwari, P. Gupta, Applications of fractional calculus in computer vision: a survey, Neurocomputing, 489 (2022), 407–428. https://doi.org/10.1016/j.neucom.2021.10.122 doi: 10.1016/j.neucom.2021.10.122
    [7] T. Jin, X. Yang, Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market, Math. Comput. Simul., 190 (2021), 203–221. https://doi.org/10.1016/j.matcom.2021.05.018 doi: 10.1016/j.matcom.2021.05.018
    [8] C. D. Constantinescu, J. M. Ramirez, W. R. Zhu, An application of fractional differential equations to risk theory, Finance Stoch., 23 (2019), 1001–1024. https://doi.org/10.1007/s00780-019-00400-8 doi: 10.1007/s00780-019-00400-8
    [9] Q. Li, Y. Zhou, X. Zhao, X. Ge, Fractional order stochastic differential equation with application in European option pricing, Discrete Dyn. Nature Soc., 2014 (2014), 621895. https://doi.org/10.1155/2014/621895 doi: 10.1155/2014/621895
    [10] X. Jiang, M. Xu, H. Qi, The fractional diffusion model with an absorption term and modified Fick's law for non-local transport processes, Nonlinear Anal.: Real World Appl., 11 (2010), 262–269. https://doi.org/10.1016/j.nonrwa.2008.10.057 doi: 10.1016/j.nonrwa.2008.10.057
    [11] A. Atangana, Fractional operators with constant and variable order with application to Geo-Hydrology, London: Academic Press, 2018. https://doi.org/10.1016/C2015-0-05711-2
    [12] Z. Jiao, Y. Chen, I. Podlubny, Distributed-order dynamic systems-stability, simulation, applications and perspectives, London: Springer, 2012.
    [13] L. L. Ferras, N. J. Ford, M. L. Morgado, M. Rebelo, G. H. McKinley, J. M. Nobrega, Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries, Comput. Fluids, 174 (2018), 14–33. https://doi.org/10.1016/j.compfluid.2018.07.004 doi: 10.1016/j.compfluid.2018.07.004
    [14] J. S. Duan, D. C. Hu, Y. Q. Chen, Simultaneous characterization of relaxation, creep, dissipation, and hysteresis by fractional-order constitutive models, Fractal Fract., 36 (2021), 14–33. https://doi.org/10.3390/fractalfract5020036 doi: 10.3390/fractalfract5020036
    [15] P. B. Dubovski, J. Slepoi, Analysis of solutions of some multi-term fractional Bessel equations, Fract. Calc. Appl. Anal., 24 (2021), 1380–1408. https://doi.org/10.1515/fca-2021-0059 doi: 10.1515/fca-2021-0059
    [16] S. Choudhary, V. Daftardar-Gejji, Nonlinear multi-order fractional differential equations with periodic/anti-periodic boundary conditions, Fract. Calc. Appl. Anal., 17 (2014), 333–347. https://doi.org/10.2478/s13540-014-0172-6 doi: 10.2478/s13540-014-0172-6
    [17] J. Čermák, T. Kisela, Stability properties of two-term fractional differential equations, Nonlinear Dyn., 80 (2015), 1673–1684. https://doi.org/10.1007/s11071-014-1426-x doi: 10.1007/s11071-014-1426-x
    [18] J. Čermák, T. Kisela, Asymptotic stability of dynamic equations with two fractional terms: continuous versus discrete case, Fract. Calc. Appl. Anal., 18 (2015), 437–458. https://doi.org/10.1515/fca-2015-0028 doi: 10.1515/fca-2015-0028
    [19] B. Ahmad, N. Alghamdi, A. Alsaedi, S. K. Ntouyas, Multi-term fractional diferential equations with nonlocal boundary conditions, Open Math., 16 (2018), 1519–1536. https://doi.org/10.1515/math-2018-0127 doi: 10.1515/math-2018-0127
    [20] J. Tariboon, A. Samadi, S. K. Ntouyas, Nonlocal boundary value problems for Hilfer generalized proportional fractional differential equations, Fractal. Fract., 6 (2022), 1519–1536. https://doi.org/10.3390/fractalfract6030154 doi: 10.3390/fractalfract6030154
    [21] M. Stojanovic, Existence-uniqueness result for a nonlinear $n$-term fractional equation, J. Math. Anal. Appl., 353 (2009), 244–255. https://doi.org/10.1016/j.jmaa.2008.11.056 doi: 10.1016/j.jmaa.2008.11.056
    [22] J. Čermák, T. Kisela, Stability properties of two-term fractional differential equations, Nonlinear Dyn., 80 (2015), 1673–1684. https://doi.org/10.1007/s11071-014-1426-x doi: 10.1007/s11071-014-1426-x
    [23] D. G. Ky, L. V. Thinh, H. T. Tuan, Existence, uniqueness and asymptotic behavior of solutions to two-term fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 115 (2022), 106751. https://doi.org/10.1016/j.cnsns.2022.106751 doi: 10.1016/j.cnsns.2022.106751
    [24] T Jin, X. Yang, H. Xia, H. Ding, R. Hui, Reliability index and option pricing formulas of the first-hitting time model based on the uncertain fractional-order differential equation with Caputo type, Fractals, 29 (2021), 2150012. https://doi.org/10.1142/S0218348X21500122 doi: 10.1142/S0218348X21500122
    [25] P. W. Eloe, B. Ahmad, Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions, Appl. Math. Lett., 18 (2005), 521–527. https://doi.org/10.1016/j.aml.2004.05.009 doi: 10.1016/j.aml.2004.05.009
    [26] Y. Sun, Positive solutions for third-order three-point nonhomogeneous boundary value problems, Appl. Math. Lett., 22 (2009), 45–51. https://doi.org/10.1016/j.aml.2008.02.002 doi: 10.1016/j.aml.2008.02.002
    [27] B. Liu, Positive solutions of a nonlinear three-point boundary value problem, Comput. Math. Appl., 44 (2002), 201–211. https://doi.org/10.1016/S0898-1221(02)00141-4 doi: 10.1016/S0898-1221(02)00141-4
    [28] M. A. Almalahi, O. Bazighifan, S. K. Panchal, S. S. Askar, G. I. Oros, Analytical study of two nonlinear coupled hybrid systems involving generalized hilfer fractional operators, Fractal Fract., 5 (2021), 178. https://doi.org/10.3390/fractalfract5040178 doi: 10.3390/fractalfract5040178
    [29] S. S. Redhwan, S. L. Shaikh, M. S. Abdo, W. Shatanawi, K. Abodayeh, M. A. Almalahi, et al., Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions, AIMS Math., 7 (2022), 1856–1872. https://doi: 10.3934/math.2022107 doi: 10.3934/math.2022107
    [30] I. Suwan, M. S. Abdo, T. Abdeljawad, M. M. Matar, A. Boutiara, M. A. Almalahi, Existence theorems for $\psi$-fractional hybrid systems with periodic boundary conditions, AIMS Math., 7 (2022), 171–186. https://doi: 10.3934/math.2022010 doi: 10.3934/math.2022010
    [31] B. Wongsaijai, P. Charoensawan, T. Suebcharoen, W. Atiponrat, Common fixed point theorems for auxiliary functions with applications in fractional differential equation, Adv. Differ. Equ., 2021 (2021), 503. https://doi.org/10.1186/s13662-021-03660-x doi: 10.1186/s13662-021-03660-x
    [32] R. Suparatulatorn, P. Charoensawan, K. Poochinapan, S. Dangskul, An algorithm for the split feasible problem and image restoration, RACSAM, 115 (2021), 12. https://doi.org/10.1007/s13398-020-00942-z doi: 10.1007/s13398-020-00942-z
    [33] R. Suparatulatorn, P. Charoensawan, K. Poochinapan, Inertial self-adaptive algorithm for solving split feasible problems with applications to image restoration, Math. Meth. Appl. Sci., 42 (2019), 7268–7284. https://doi.org/10.1002/mma.5836 doi: 10.1002/mma.5836
    [34] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2007), 1359–1373. https://doi.org/10.1090/S0002-9939-07-09110-1 doi: 10.1090/S0002-9939-07-09110-1
    [35] M. R. Alfuraidan, The contraction principle for multivalued mappings on a modular metric space with a graph, Canad. Math. Bull., 59 (2016), 3–12. https://doi.org/10.4153/CMB-2015-029-x doi: 10.4153/CMB-2015-029-x
    [36] M. R. Alfuraidan, Remarks on Caristi's fixed point theorem in metric spaces with a graph, Fixed Point Theory Appl., 2014 (2014), 240. https://doi.org/10.1186/1687-1812-2014-240 doi: 10.1186/1687-1812-2014-240
    [37] M. R. Alfuraidan, Remarks on monotone multivalued mappings on a metric space with a graph, J. Ineq. Appl., 2015 (2015), 202. https://doi.org/10.1186/s13660-015-0712-6 doi: 10.1186/s13660-015-0712-6
    [38] I. Beg, A. R. Butt, S. Radojevi$\acute{c}$, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl., 60 (2010), 1214–1219. https://doi.org/10.1016/j.camwa.2010.06.003 doi: 10.1016/j.camwa.2010.06.003
    [39] F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal., 75 (2012), 3895–3901. https://doi.org/10.1016/j.na.2012.02.009 doi: 10.1016/j.na.2012.02.009
    [40] H. Afshari, H. Alsulami, E. Karapınar, On the extended multivalued Geraghty type contractions, J. Nonlinear Sci. Appl., 9 (2016), 4695–4706. https://doi.org/10.22436/jnsa.009.06.108 doi: 10.22436/jnsa.009.06.108
    [41] M. Asadi, E. Karapınar, A. Kumar, A $\alpha$-$\psi$-Geraghty contractions on generalized metric spaces, Fixed Point Theory Appl., 2014 (2014), 423. https://doi.org/10.1186/1029-242X-2014-423 doi: 10.1186/1029-242X-2014-423
    [42] S. H. Cho, J. S. Bae, E. Karapınar, Fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, J. Inequal. Appl., 2013 (2013), 329. https://doi.org/10.1186/1687-1812-2013-329 doi: 10.1186/1687-1812-2013-329
    [43] E. Karapınar, A discussion on ''$\alpha$-$\psi$-Geraghty contraction type mappings", Filomat, 28 (2014), 761–766. https://doi.org/10.2298/FIL1404761K doi: 10.2298/FIL1404761K
    [44] E. Karapınar, $\alpha$-$\psi$-Geraghty contraction type mappings and some related fixed point results, Filomat, 28 (2014), 37–48. https://doi.org/10.2298/FIL1401037K doi: 10.2298/FIL1401037K
    [45] E. Karapınar, H. Alsulami, M. Noorwali, Some extensions for Geragthy type contractive mappings, J. Inequal. Appl., 2015 (2015), 303. https://doi.org/10.1186/s13660-015-0830-1 doi: 10.1186/s13660-015-0830-1
    [46] E. Karapınar, B. Samet, A note on '$\psi$-Geraghty type contractions', Fixed Point Theory Appl., 2014 (2014), 26. https://doi.org/10.1186/1687-1812-2014-26 doi: 10.1186/1687-1812-2014-26
    [47] P. Charoensawan, W. Atiponrat, Common fixed point and coupled coincidence point theorems for Geraghty's type contraction mapping with two metrics endowed with a directed graph, Hindawi J. Math., 2017 (2017), 5746704. https://doi.org/10.1155/2017/5746704 doi: 10.1155/2017/5746704
    [48] J. Martínez-Moreno, W. Sintunavarat, Y. J. Cho, Common fixed point theorems for Geraghty's type contraction mappings using the monotone property with two metrics, Fixed Point Theory Appl., 2015 (2015), 174. https://doi.org/10.1186/s13663-015-0426-y doi: 10.1186/s13663-015-0426-y
    [49] R. S. Adiguzel, U. Aksoy, E. Karapınar, I. M. Erhan, On the solutions of fractional differential equations via Geraghty type hybrid contractions, Appl. Comput. Math., 20 (2021), 313–333. http://hdl.handle.net/20.500.12416/5881
    [50] H. Afshari, S. Kalantari, D. Baleanu, Solution of fractional differential equations via $\alpha-\phi$-Geraghty type mappings, Adv. Differ. Equ., 2018 (2018), 347. https://doi.org/10.1186/s13662-018-1807-4 doi: 10.1186/s13662-018-1807-4
    [51] X. Fu, Existence results for fractional differential equations with three-point boundary conditions, Adv. Differ. Equ., 2013 (2013), 257. https://doi.org/10.1186/1687-1847-2013-257 doi: 10.1186/1687-1847-2013-257
    [52] E. Karapınar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equ., 2019 (2019), 421. https://doi.org/10.1186/s13662-019-2354-3 doi: 10.1186/s13662-019-2354-3
    [53] R. P. Agarwal, D. O'Regan, Fixed point theory for generalized contractions on spaces with two metrics, J. Math. Anal. Appl., 248 (2000), 402–414. https://doi.org/10.1006/jmaa.2000.6914 doi: 10.1006/jmaa.2000.6914
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1258) PDF downloads(66) Cited by(2)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog