Research article Special Issues

Existence and uniqueness results for mixed derivative involving fractional operators

  • Received: 12 November 2022 Revised: 05 January 2023 Accepted: 09 January 2023 Published: 16 January 2023
  • MSC : 34K37, 47A10, 49J15

  • In this article, we discuss the existence and uniqueness results for mix derivative involving fractional operators of order $ \beta\in (1, 2) $ and $ \gamma\in (0, 1) $. We prove some important results by using integro-differential equation of pantograph type. We establish the existence and uniqueness of the solutions using fixed point theorem. Furthermore, one application is likewise given to represent our fundamental results.

    Citation: Abeer Al Elaiw, Farva Hafeez, Mdi Begum Jeelani, Muath Awadalla, Kinda Abuasbeh. Existence and uniqueness results for mixed derivative involving fractional operators[J]. AIMS Mathematics, 2023, 8(3): 7377-7393. doi: 10.3934/math.2023371

    Related Papers:

  • In this article, we discuss the existence and uniqueness results for mix derivative involving fractional operators of order $ \beta\in (1, 2) $ and $ \gamma\in (0, 1) $. We prove some important results by using integro-differential equation of pantograph type. We establish the existence and uniqueness of the solutions using fixed point theorem. Furthermore, one application is likewise given to represent our fundamental results.



    加载中


    [1] A. A. Alderremy, R. Shah, N. A. Shah, S. Aly, K. Nonlaopan, Evaluation of fractional-order pantograph delay differential equation via modified Laguerre wavelet method, Symmetry, 14 (2022), 2356. https://doi.org/10.3390/sym14112356 doi: 10.3390/sym14112356
    [2] J. Hajishafieiha, S. Abbasbandy, Numerical approach for solving the fractional pantograph delay differential equations, Complexity, 2022 (2022), 4134892. https://doi.org/10.1155/2022/4134892 doi: 10.1155/2022/4134892
    [3] M. M. Al-Sawalha, A. S. Alshehry, K. Nonlaopon, R. Shah, O. Y. Ababneh, Fractional view analysis of delay differential equations via numerical method, AIMS Math., 7 (2022), 20510–20523. https://doi.org/10.3934/math.20221123 doi: 10.3934/math.20221123
    [4] M. B. Ali Khan, T. Abdeljawad, K. Shah, G. Alil, H. Khan, A. Khan, Study of a nonlinear multi-terms boundary value problem of fractional pantograph differential equations, Adv. Differ. Equ., 2021 (2021), 143. https://doi.org/10.1186/s13662-021-03313-z doi: 10.1186/s13662-021-03313-z
    [5] J. Zhao, Y. Cao, Y. Xu, Tau approximate solution of linear pantograph Volterra delay-integro-differential equation, Comput. Appl. Math., 39 (2020), 46. https://doi.org/10.1007/s40314-020-1080-5 doi: 10.1007/s40314-020-1080-5
    [6] A. D. Polyanin, V. G. Sorokin, Nonlinear pantograph-type diffusion PDEs: Exact solutions and the principle of analogy, Mathematics, 9 (2021), 511. https://doi.org/10.3390/math9050511 doi: 10.3390/math9050511
    [7] M. Houas, Existence and stability of fractional pantograph differential equations with Caputo-Hadamard type derivative, Turkish J. Ineq., 4 (2020), 1–10.
    [8] M. A. Darwish, K. Sadarangani, Existence of solutions for hybrid fractional pantograph equations, Appl. Anal. Discrete Math. 9 (2015), 150–167.
    [9] D. Vivek, K. Kanagarajan, S. Sivasundaram, On the behavior of solutions of Hilfer-Hadamard type fractional neutral pantograph equations with boundary conditions, Commun. Appl. Anal., 22 (2018), 211–232.
    [10] I. Ahmad, P. Kumam, T. Abdeljawad, F. Jarad, P. Borisut, M. A. Demba, et al., Existence and uniqueness results for $\varphi$-Caputo implicit fractional pantograph differential equation with generalized anti-periodic boundary condition, Adv. Differ. Equ., 2020 (2020), 555. https://doi.org/10.1186/s13662-020-03008-x doi: 10.1186/s13662-020-03008-x
    [11] M. S. Abdo, T. Abdeljawad, K. D. Kucche, M. A. Alqudah, S. M. Saeed, M. B. Jeelani, On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative, Adv. Differ. Equ., 2021 (2021), 65. https://doi.org/10.1186/s13662-021-03229-8 doi: 10.1186/s13662-021-03229-8
    [12] K. Shah, D. Vivek, K. Kanagarajan, Dynamics and stability of $\psi$-fractional pantograph equations with boundary conditions, Bol. Soc. Parana. Mat., 39 (2021), 43–55. https://doi.org/10.5269/bspm.41154 doi: 10.5269/bspm.41154
    [13] M. Houas, Existence and Ulam stability of fractional pantograph differential equations with two Caputo-Hadamard derivatives, Acta Univ. Apulensis, 63 (2020), 35–49.
    [14] G. Wu, K. Dong, Z. Xu, S. Xiao, W. Wei, H. Chen, et al., Pantograph-catenary electrical contact system of high-speed railways: recent progress, challenges, and outlooks, Rail. Eng. Sci., 30 (2022), 437–467. https://doi.org/10.1007/s40534-022-00281-2 doi: 10.1007/s40534-022-00281-2
    [15] H. Wang, D. Zheng, P. Huang, W. Yan, Design optimisation of railway pantograph-catenary systems with multiple objectives, Vehicle Syst. Dyn., 2022. https://doi.org/10.1080/00423114.2022.2151921 doi: 10.1080/00423114.2022.2151921
    [16] H. Jafari, N. A. Tuan, R. M. Ganji, A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations, J. King Saud Univ.-Sci., 33 (2021), 101185. https://doi.org/10.1016/j.jksus.2020.08.029 doi: 10.1016/j.jksus.2020.08.029
    [17] G. Deng, Y. Yang, E. Tohidi, High accurate pseudo-spectral Galerkin scheme for pantograph type Volterra integro-differential equations with singular kernels, Appl. Math. Comput., 396 (2021), 125866. https://doi.org/10.1016/j.amc.2020.125866 doi: 10.1016/j.amc.2020.125866
    [18] L. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006.
    [20] A. Granas, J. Dugundji, Elementary fixed point theorems, In: Fixed point theory, Springer, New York: Springer, 2003, 9–84. https://doi.org/10.1007/978-0-387-21593-8_2
    [21] A. H. Bhrawy, A. A. Al-Zahrani, Y. A. Alhamed, D. Baleanu, A new generalized Laguerre-Gauss collocation scheme for numerical solution of generalized fractional pantograph equations, Rom. J. Phys., 59 (2014), 646–657.
    [22] A. Pedas, E. Tamme, Numerical solution of nonlinear fractional differential equations by spline collocation methods, J. Comput. Appl. Math., 255 (2014), 216–230. https://doi.org/10.1016/j.cam.2013.04.049 doi: 10.1016/j.cam.2013.04.049
    [23] M. B. Jeelani, A. S. Alnahdi, M. A. Almalahi, M. S. Abdo, H. A. Wahash, N. H. Alharthi, Qualitative analyses of fractional integro-differential equations with a variable order under the Mittag-Leffler power law, J. Funct. Spaces, 2022 (2022), 6387351. https://doi.org/10.1155/2022/6387351 doi: 10.1155/2022/6387351
    [24] M. B. Jeelani, A. S. Alnahdi, M. A. Almalahi, M. S. Abdo, H. A. Wahash, M. A. Abdelkawy, Study of the Atangana-Baleanu-Caputo type fractional system with a generalized Mittag-Leffler kernel, AIMS Math., 7 (2022), 2001–2018. https://doi.org/10.3934/math.2022115 doi: 10.3934/math.2022115
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(947) PDF downloads(56) Cited by(0)

Article outline

Figures and Tables

Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog