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1. Introduction

The pantograph equation is a special type of functional differential equations with proportional
delay. The present study introduces a compound technique incorporating the perturbation method
with a iteration algorithm to solve numerically the delay differential equation of pantograph type. The
pantograph equations became a prime example of delay differential equation in the recent years. Over
the last few years, the continuous and discrete cases of the pantograph equation have been extensively
explored see [1–3].

Different authors discuss linear and non-linear pantograph equations. The solution to the simplest
homogeneous linear pantograph cannot be expressed in terms of elementary functions. We can’t solve
even the simplest non-homogeneous linear pantograph problem using standard approaches like
variation of constants and Laplace transformation. The existence and uniqueness of solutions for the
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linear pantograph equation’s initial value problems change significantly depending on the beginning
locations chosen. In general, the solution to the initial value problem may or may not exist, or may
not be unique. some authors discuss linear pantograph Volterra delay-integro-differential equation and
the multi-terms boundary value problem of fractional pantograph differential equations [4, 5].

It is also possible to obtain additive, multiplicative, and functional separable solutions, as well as
several additional precise solutions. Nonlinear pantograph-type PDEs of a more broad form,
containing one or two arbitrary functions Polyanin et al. [6] examine Nonlinear pantograph-type
diffusion PDEs, exact solutions and the principle of analogy. Recently, many research on
fractional-order pantograph differential equations have recently been published, involving various
operators [7–9], ϕ-Caputo derivative [10], Atangana-Baleanu-Caputo derivative [11, 23, 24].

Furthermore, several scientific scholars have produced results regarding the existence and
uniqueness of solutions for various classes of fractional pantograph equations by applying various
fixed-point theorems as like Shah et al. [12] discussed the dynamics and stability of-fractional
pantograph equations and Houas et al. [13] studied the existence and Ulam stability of fractional
pantograph differential equations with two Caputo-Hadamard derivatives.

Different authors like [14, 15] work on the pantograph-catenary electrical contact system of high
speed railways. The pantograph-catenary electrical contact system, which serves as the only power
entrance, keeps the high-speed train’s power transfer reliable and efficient. A pantograph-catenary
system must take into account the wind, sand, rain, thunder, ice, and snow while designing it due
to the rapid expansion of high-speed trains around the world. Commercialized lines are also being
developed in China to cover isolated areas with severe environments. There are some recent results on
the existence of solutions for fractional integro-differential and fractional differential equations [16,17].

The following fractional integro-differential equation of pantograph type is considered in this work,
along with appropriate initial conditions.CDβ[CDγv(t)] = φ(t, v(t), v(Λt)) +

∫ qt
0

k1(t, s, v(s))ds +
∫ t

0
k2(t, s, v(s))ds, t ∈ J := [0,M],

0Dβ−1
t v(0) = v0 v′(0) = v1.

(1.1)

Where 0 < γ < 1 and 1 < β < 2 as well as Λ, q < 1, φ : J × R × R → R and ki : J × J × R → R are
continuous for i = 1, 2, and CDβ, CDγ are the Caputo fractional derivatives.

We shall first look into the existence and uniqueness of solutions for (1.1). To do so, we turn the
original problem into an equivalent integral equation, then establish the existence and uniqueness of
the solutions using fixed point theorems.

The following is the outline for this paper. We look at some essential preliminaries in section 2. We
discuss the existence and uniqueness of problem (1.1) in section 3. We explore a helpful application
to represent our primary finding in section 4. In section 5, we present some numerical methods. In
section 6, we find some numerical results to show the applicability of our results.

2. Preliminaries

We present some well-known definitions and lemma in this part.

Lemma 2.1. [18,19] Suppose that β > % > 0 and φ ∈ L1([b, d]). At that point D%Iβφ(t) = Iβ−%φ(t), t ∈
[b, d].
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Lemma 2.2. [18, 19] For β > 0 and % > −1, we get

Iβ[(t − s)%] =
Γ(% + 1)

Γ(β + % + 1)
(t − y)β+%.

For % = 0 and y = 0, we get

Iβ[1] =
1

Γ(β + 1)
tβ.

Assume that [b, d] ∈ R be a finite interval as well as suppose that β, γ, ξ ∈ C and R(z) = Re(z) for
z ∈ C. The RL-fractional integral and derivative of order β ∈ C are defined by

(Iβb+φ)(y) =
1

Γ(β)

∫ y

b

φ(y)
(y − s)1−βds, y > b, R(β) > 0, (2.1)

and

(Dβ
b+φ)(y) =

1
Γ(m − β)

dm

dym

∫ y

b

φ(s)
(y − s)β−m+1 ds

=
dm

dym (Im−β
b+ φ)(y), y > b, R(β) ≥ 0.

On the interval [b, d], the Caputo fractional derivative of order β is defined by

(CDβ
b+z)(y) =

(
Dβ

b+

[
z(t) −

m−1∑
k=0

z(k)(b)
k!

(t − b)k
])

(y).

When b = 0, Iβb+z and CDβ
b+z are denoted by Iβz and CDβz. The semi-group features of the fractional

integral operator Iβb+ as well as the fractional differentiation operator Dγ
b+ are given by [19].

Lemma 2.3. Suppose that R(β),R(γ) > 0 as well as φ(y) ∈ C[b, d]. For y ∈ [b, d] the following
statements are true:

(i) (Iβb+ Iγb+φ)(y) = (Iβ+γ
b+ φ)(y).

(ii) (Dβ
b+ Iβb+φ)(y) = φ(y).

(iii) If R(β) > R(γ) at that point

(Dβ
b+ Iβb+φ)(y) = (Iβ−γb+ φ)(y).

(iv) Suppose that m = [R(β) > 0] + 1 for R(β) < N and φm−β(y) = (Im−β
b+ φ)(y) ∈ Cm[b, d], then

(Iβb+ Dβ
b+φ)(y) = φ(y) −

m∑
k=1

φ(m−k)
m−β

Γ(β − k + 1)
(y − a)β−k.

Suppose that Cξ[b, d] be the space of function φ defined on (b, d] in such a way that (y − b)ξφ(y) ∈
C[b, d] along the norm ‖φ‖Cξ

= ‖(y−b)ξφ(y)‖C := supy∈[b,d] |(y−b)ξφ(y)|. Note that for ξ = 0, Cξ[b, d] =

C[b, d]. The continuity of the fractional integral operator Iβb+ from the space Cξ[b, d] into C[b, d] is
discussed in the following lemma ( [19] Lemma 2.8 (a)).
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Lemma 2.4. Suppose that R(β) > 0 and 1 ≥ R(ξ) ≥ 0. If R(ξ) ≤ R(β) at that point the fractional
integral operator Iβb+ is bounded from Cξ[b, d] into C[b, d]

‖Iβb+φ‖C ≤ h‖φ‖Cξ
, h = (d − b)R(β−ξ) Γ(R(β))|Γ(1 − R(ξ))|

|Γ(β)|Γ(1 + R(β − ξ))
.

According to the following ( [19] Lemma 2.21, part (a)) when R(β) < N0 the Riemann-Liouville
fractional integral operator Iβb+ is the left inverse of the Caputo fractional differentiation operator
CDβ

b+ .

Lemma 2.5. Suppose that β ∈ C with 0 < R(β) as well as z(y) ∈ C[b, d]. If R(β) < N, at that point

(CDβ
b+ Iβb+z)(y) = z(y).

The fixed point theorem in [20], first presented by Krasnoselskii, is necessary to show that the existence
of solution for (1.1).

Theorem 2.6. Assume that E be a nonempty and convex closed subset of a Banach space Y. Let S as
well as R be two operators such that

(i) when v,w ∈ E then S v + Rw ∈ E,
(ii) S is continuous and compact,
(iii) R be a contraction mapping.
At that point y ∈ E must exist in such a way that y = S y + Ry.

3. Existence and uniqueness of solution

Consider C(J) be a Banach space along the norm ‖v‖C = supt∈J |v(t)|. We define

(K1v)(t) :=
∫ qt

0
k1(t, s, v(s))ds,

(K2v)(t) :=
∫ t

0
k2(t, s, v(s))ds.

In the next lemma, we present an integral equation that corresponding to Eq (1.1).

Lemma 3.1. Suppose that φ : J ×R ×R→ R as well as ki : J × J ×R→ R are continuous functions.
If and only if v is a solution of the fractional integral equation, then the function v ∈ C(J) fulfils
problem (1.1).

v(t) =
tβ−1

Γ(β)
v0+

v0

(β + γ)Γ(β)Γ(γ)
tβ+γ+

v1

Γ(γ + 1)
tγ+Iβ+γ

0+ (φ(t, v(t), v(Λt)))+Iβ+γ
0+ ((K1v)(t)+(K2v)(t)). (3.1)

Proof. Suppose that v ∈ C(J) to solve the problem (1.1). Using the concept of the Caputo fractional
derivative in Lemma (2.3) (d), we get

CDγv(t) = v(0) + v′(0)t + Iβ0+(φ(t, v(t), v(Λt))) + Iβ0+((K1v)(t) + (K2v)(t))

=
tβ−1

Γ(β)
v0 + v1t + Iβ0+(φ(t, v(t), v(Λt))) + Iβ0+((K1v)(t) + (K2v)(t)),
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apply Iγ0+ on both sides

Iγ0+
CDγv(t) = v(0) +

1
Γ(β)Γ(γ)

∫ t

0
(t − s)β+γ+1v0ds +

1
Γ(γ)

∫ t

0
(t − s)γ−1v1ds

+Iβ+γ
0+ (φ(t, v(t), v(Λt))) + Iβ+γ

0+ ((K1v)(t) + (K2v)(t))

v(t) =
tβ−1

Γ(β)
v0 +

v0

Γ(β)Γ(γ)

[
−

(t − s)β+γ

β + γ

]t

0
+

v1

Γ(γ)

[
−

(t − s)γ

γ

]t

0

+Iβ+γ
0+ (φ(t, v(t), v(Λt))) + Iβ+γ

0+ ((K1v)(t) + (K2v)(t))

=
tβ−1

Γ(β)
v0 +

v0

(β + γ)Γ(β)Γ(γ)
tβ+γ +

v1

γΓ(γ)
tγ

+Iβ+γ
0+ (φ(t, v(t), v(Λt))) + Iβ+γ

0+ ((K1v)(t) + (K2v)(t))

=
tβ−1

Γ(β)
v0 +

v0

(β + γ)Γ(β)Γ(γ)
tβ+γ +

v1

Γ(γ + 1)
tγ

+Iβ+γ
0+ (φ(t, v(t), v(Λt))) + Iβ+γ

0+ ((K1v)(t) + (K2v)(t)).

�

We define
∆ = {(t, s) : 0 ≤ s ≤ t}, ∆q = {(t, s) : qt ≥ s ≥ 0}.

The existence of (1.1) is investigated under the following conditions:
H1 : φ : J × R × R × R → R is continuous and a continuous function exists, b : E → [0,∞) in such a
way that t ∈ [0,T] and vi,wi ∈ R, i = 1, 2.

|φ(t, v1,w1) − φ(t, v2,w2)| ≤ b(t)(|v1 − w1| + |v2 − w2|).

H2 : ki : J × J × R→ R, i = 1, 2 be continuous and there exist b1 : ∆q → [0,∞) and b2 : ∆ → [0,∞)
in such a way that d1(t) :=

∫ qt
0

b1(t, s)ds ∈ C(J), d2(t) :=
∫ t

0
b2(t, s)ds ∈ C(J)

|ki(t, s, y)| ≤ bi(t, s)(1 + |y|).

H3 :
Mβ+γ

Γ(β + γ)
(
‖d1 + d2‖C + 2‖b‖C

)
< 1.

Assume that the closed ball with radius r0 and centre at 0 is Br0 ⊂ C(J) as well as put

φ̃ := sup{|φ(t, 0, 0)| : t ∈ J},

and

r0 :=
1 + tβ−1

Γ(β) |v0| + |v1t| + Mβ+γ

Γ(β+γ)

(
‖d1 + d2‖C + φ̃

)
1 − Mβ+γ

Γ(β+γ)

(
‖d1 + d2‖C + 2‖b‖C

) ,

and define
(S v)(t) :=

(
Iβ0+ Iγ0+

(
(K1v)(s) + (K2v)(s)

)
(t)

)
.
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Lemma 3.2. Suppose that (H1)–(H3) be satisfied, at that point the operator S maps Br0 into itself, and
S : Br0 → Br0 is continuous and compact.

Proof. Step 1: We prove that S (Br0) ⊂ Br0 where Br0 = {v ∈ W : ‖v‖ ≤ r0}. For v ∈ Br0 , for
assumption (H1)

|φ(t, v(t), v(Λt)| ≤ |φ(t, v(t), v(Λt)) − φ(s, 0, 0)| + |φ(s, 0, 0)|
≤ 2b(t)‖v‖ + L1

≤ 2b(t)r0 + L1

|φi(t, v(t), v(Λt)| ≤ |φi(t, v(t), v(Λt)) − φi(s, 0, 0)| + |φi(s, 0, 0)|
≤ 2bi(t)‖v‖ + Li

≤ 2bi(t)r0 + Li, i = 1, 2, ... m.

For t ∈ J using assumptions (H2) and (H3) we have

|(S v)(t)| ≤
(
Iβ+γ
0+ (|(K1v)(s)| + |(K2v)(s)|)

)
(t)

≤

(
Iβ+γ
0+

( ∫ qs

0
b1(s, ξ)dξ +

∫ s

0
b2(s, ξ)dξ

))
≤

Mβ+γ

Γ(β + γ + 1)
(‖d1 + d2‖C) + r0

Mβ+γ

Γ(β + γ + 1)
(‖d1 + d2‖C)

≤ r0. (3.2)

Step 2: S : Br0 → Br0 is continuous. ε > 0 be a fixed point, choose an arbitrary v,w ∈ Br0 in such a
way that ‖v − w‖ ≤ ε. For t ∈ J we get

|(Kiv)(t) − (Kiw)(t)| ≤
∫ t

0
|ki(t, s, v(s)) − ki(t, s,w(s)) ≤ ωr0(ki, ε)M,

where
ωr0(ki, ε) = sup{|ki(t, s, v1) − ki(t, s, v2)| : t, s ∈ J, v1, v2 ∈ [−r0, r0], |v1 − v2| ≤ ε}, (3.3)

for i = 1, 2 using (3.3) we have

|(S v)(t) − (S w)(t)| ≤
(
Iβ+γ
0+ (|(K1v)(s) − (K1w)(s)| + |(K2v)(s) − (K2w)(s)|)

)
(t)

≤
(ωr0(k1, ξ) + ωr0(k2, ξ))Mβ+γ+1

Γ(β + γ + 1)
. (3.4)

We see that ωr0(ki, ε)→ 0, as ε → 0 from the uniform continuity of ki, i = 1, 2 on bounded subsets of
J × R × R. As a result of the inequality (3.4) S : Br0 → Br0 is continuous.

Step 3: An equi-continuous subset of C(J) is S (Br0). Supposition (H2) states that for any v ∈ Br0 as
well as s ∈ J we have
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|(K1v)(s)| ≤
∫ qs

0
|k1(s, ξ, v(ξ))|dξ

≤

∫ qs

0
b1(s, ξ)(1 + |v(ξ)|)dξ

≤ (1 + r0)d1(s), (3.5)

and similarly

|(K2v)(s)| ≤
∫ s

0
|k2(s, ξ, v(ξ))|dξ

≤

∫ s

0
b2(s, ξ)(1 + |v(ξ)|)dξ

≤ (1 + r0)d2(s). (3.6)

Now, let t1, t2 ∈ J and t1 ≤ t2.
By Eqs (3.5) and (3.6), we get

|(S v)(t1) − (S v)(t2)| ≤ |
(
Iβ+γ
0+ (K1v)(s)

)
(t1) −

(
Iβ+γ
0+ (K1v)(s)

)
(t2)|

+ |
(
Iβ+γ
0+ (K2v)(s)

)
(t1) −

(
Iβ+γ
0+ (K2v)(s)

)
(t2)|

≤
r0 + 1

Γ(β + γ)

∫ t

0
(d1 + d2)

( 1
(t1 − s)1−(β+γ) −

1
(t2 − s)1−(β+γ)

)
ds

+
r0 + 1

Γ(β + γ)

∫ t2

t1

(d1 + d2)
(t2 − s)1−(β+γ) ds

≤
‖d1 + d2‖C

Γ(β + γ + 1)
(2(t2 − t1)β+γ + tβ+γ

2 − tβ+γ
1 )(r0 + 1). (3.7)

As t1 → t2, the right hand side of inequality (3.7) tends to zero. We can see from Steps 1–3 and the
Arzela-Ascoli theorem that S : Br0 → Br0 is continuous and compact. �

Theorem 3.3. In the space C(J), problem (1.1) has at least one solution with assumptions (H1)–(H3).

Proof. Define the R operator on C(J) as follows:

(Rv)(t) :=
tβ−1

Γ(β)
v0 + v1t +

(
Iβ+γ
0+ φ(s, v(s), v(Λs))

)
(t).

The operator R is clearly defined and Rv ∈ C(J) for some v ∈ C(J) due to the continuity of φ and
Lemma (2.3).

For any v,w ∈ Br0 , and t ∈ J based on assumptions (H1)–(H3) and inequality (3.2).

|(S v)(t) + (Rw)(t)| ≤ |(S v)(t)| +
tβ−1

Γ(β)
|v0| + |v1t| +

(
Iβ+γ
0+ |φ(s, v(s), v(Λs)) − φ(s, 0, 0)|

)
(t)

+
(
Iβ+γ
0+ a|φ(s, 0, 0)|

)
(t)

≤
tβ−1

Γ(β)
|v0| + |v1t| +

(
Iβ+γ
0+ [d1 + d2]

)
(t) + r0

(
Iβ+γ
0+ [d1 + d2]

)
(t)
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+ 2r0(Iβ+γ
0+ b)(t) +

(
Iβ+γ
0+ |φ(s, 0, 0)|

)
(t)

≤ 1 +
tβ−1

Γ(β)
|v0| + |v1t| +

Mβ+γ

Γ(β + γ + 1)
(‖d1 + d2‖C + φ̃)

+
Mβ+γ

Γ(β + γ + 1)
(‖d1 + d2‖C + 2‖b‖C)r0

≤ r0.

As a result, S v + Rw ∈ Br0 for every v,w ∈ Br0 We can also using (H1) for some v,w ∈ C(J) we get

|(Rv)(t) − (Rw)(t)| ≤
(
Iβ+γ
0+ b(s)[|v(s) − w(s)| − |v(Λs) − w(qs)|]

)
(t)

≤ 2
Mβ+γ

Γ(β + γ + 1)
‖b‖C‖v − w‖C, t ∈ J. (3.8)

B is a contraction mapping, based on assumption (H3) and inequality (3.8). The assumptions of
Theorem (2.6) are thus satisfied by Lemma (3.2). �

Theorem 3.4. If (H1) and (H3) are true, then the following assumption is true.
H4 : ki : J × J × R → R, i = 1, 2 is continuous as well as bi : J × J → [0,∞), i = 1, 2 exist in such a
way that

d1(t) :=
∫ qt

0
b1(t, s)ds ∈ C(J),

d2(t) :=
∫ t

0
b2(t, s)ds ∈ C(J),

and
|ki(t, s, y) − ki(t, s, z)| ≤ ki(t, s)|y − z|.

Then, for J, problem (1.1) has a unique solution.

Proof. It is sufficient to prove that the integral equation (3.1) has a unique solution using Lemma (3.1).
Define the F operator on C(J) as follows:

(F v)(t) :=
tβ−1

Γ(β)
v0 + v1t + (Iβ+γ

0+ φ(s, v(s), v(Λs)))(t) + (Iβ+γ
0+

(
(K1v)(s) + (K2v)(s)

)
)(t). (3.9)

F v ∈ C(J) for any v ∈ C(J) is simply found using the continuity of φ, k1, k2, and Lemma (2.2). F be the
fixed point are the solution of (3.1). In the next section, we show that F is a contraction mapping, and
F has a specific fixed point according to the Banach contraction principle. Suppose that v,w ∈ C(J).
According to (H1) and (H4), for any t ∈ J we get

|(F v)(t) − (Fw)(t)| ≤
1

Γ(β + γ)

∫ t

0

|φ(s, v(s), v(Λs)) − φ(s,w(s),w(Λs))|
(t − s)1−(β+γ) ds

+
1

Γ(β + γ)

∫ t

0

|(K1v)(s) − (K1w)(s)| + |(K1v)(s) − (K2w)(s)|
(t − s)1−(β+γ) ds

≤ 2‖v − w‖C(Iβ+γ
0+ b)(t) + ‖v − w‖C(Iβ+γ

0+ (d1 + d2))(t).

Hence

‖F v − Fw‖ ≤
Mβ+γ

Γ(β + γ + 1)
(2‖b‖C + ‖d1 + d2‖C)‖v − w‖.

By assumption (H3) it prove that F is a contraction mapping. �
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4. Example

Example 4.1. Consider the integro-differential equation given below
CD1.5[CD0.2v(t)] =

tanh(v(t)+v( 1
2 t))

16(1+t2) +
∫ t

8

0
v(s)

1+32
√

t−s
ds +

∫ t

0

(
v(s) sin(t−s)

8 + t−s
8

)
ds, t ∈ [1, 2],

0Dβ−1
t v(0) = v0(0) = 2, v′(0) = 0.

Put

φ(t, y, z) =
tanh(y + z)
16(1 + t2)

, M = 2, β = 1.5, Λ =
1
2
, q =

1
8
,

k1(t, s, y) =
y

1 + 32
√

t − s
, k2(t, s, y) =

y sin(t − s)
8

+
t − s

8
,

b(t) =
1

16(1 + t2)
, b1(t, s) =

1
1 + 32

√
t − s

, b2(t, s) =
t − s

8
.

At that point

|φ(t, y, z) − φ(t, u1, u2)| ≤ b(t)(|y − u1| + |z − u2|),
|k1(t, s, y)| ≤ b1(t, s)|y|, i = 1, 2,
|k2(t, s, y)| ≤ b2(t, s)(1 + |y|),

d1(t) =

∫ qt

0
b1(t, s)ds =

(1 −
√

7
8

16

)√
t,

d2(t) =

∫ t

0
b1(t, s)ds =

t2

16
,

Mβ

Γ(β + 1)
(‖d1 + d2‖C + 2‖b‖C ≈ 0.7387 < 1.

All above relations shows that (H1), (H4) and (H3) are fulfilled.

5. Numerical method

Here, we want to use the Sinc collocation method to approximation the solution of (1.1). Therefore,
the Sinc basis functions must be defined. The following definition is given for the translated Sinc base
functions

S(p, e)(t) = S inc
( t − pe

e

)
, p = 0,±1,±2, ...,

where Sinc(t) on the complete real line (−∞,∞) is given belowS inc(t) =
sin(Πt)

Πt , 0 , t,

1 0 = t.
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Let q and m be the two integers, with the help of the previous basis function, we may approximate the
following function φ(t) on the real line:

φ(t) ≈
m∑

p=−q

φ(pe)S inc
( t − pe

e

)
, t ∈ R, (5.1)

where e represent as step size. Furthermore, we can calculate the integrals on R in the following
manner using the Sinc quadrature rule:∫ ∞

−∞

φ(t)dt ≈ e
m∑

p=−q

φ(pe). (5.2)

Consider the single exponential transformation

χb,d(t) = log
( t − b
d − t

)
.

Consider the inverse function

ϕb,d(ζ) = χ−1
b,d(ζ) =

b + dhζ

hζ + 1
,

creating the infinite strip
B = {ζ ∈ C : |=(ζ)| < l},

the eye shaped domain

D =
{
w : | arg(

v − b
d − v

)| < l
}
.

By using ϕb,d, consider Γ be the image of the real line

Γ = {t ∈ C : t = ϕb,d(ζ), ζ ∈ R}.

We shall define the collocation points in [b, d] as the image of the equidistance points pe for some
constant e in the following manner in order to employ the Sinc collocation method

ϕb,d(pe) =
b + dhpe

hpe + 1
, p = −q, ...,m.

We will be able to approximate the function φ(t) at the finite interval [b, d] using the transformations
χb,d as well as ϕb,d.

φ(t) ≈
m∑

p=−q

φϕb,d(pe)S inc
(χb,d(t) − pe

e

)
, t ∈ [b, d],

where e is a constant, q and m be the non-negative integers. Furthermore, the Sinc quadrature rule in
the finite interval can be defined as∫ d

b
φ(t)dt =

∫ ∞

−∞

φ(ϕb,d(ζ))ϕ′b,d(ζ)dζ ≈ e
m∑

p=−q

φ(ϕb,d(pe))ϕ′b,d(pe).
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Since ϕ′b,d(ζ) =
(ζ−b)(d−ζ)

d−b and ϕb,d(pe) = (d − b)ye + b, we get∫ d

b
φ(y)dy ≈ e

m∑
p=−q

φ(ϕb,d(pe))ϕ′b,d(pe)

= e
m∑

p=−q

φ(ϕb,d(pe))
(ϕb,d(pe) − b)(d − ϕb,d(pe))

d − b

= e(d − b)
m∑

p=−q

φ(ϕb,d(pe))ye(1 − ye). (5.3)

Theorem 5.1. Suppose that φ ∈ Lρ−1,σ−1(E) with∫
ϕ(t+L
|φ(w)|dw→ 0, as t → ∞,

where L = {a j : |a| < l} and

lim
ω→∂D

inf
ω⊆D

∫
ω

| f (w)|dw < ∞.

Taking e =

√
2Πl
σm as well as q = [(σ

ρ
)m] + 1, we get∣∣∣∣∣ ∫ d

b
φ(t)dt − e

m∑
p=−q

φ(ϕb,d(pe))ϕ′b,d(pe)
∣∣∣∣∣ ≤ C1h−

√
2Πlσm,

where C1 is a constant which depends on φ, l, ρ, and σ.
The following theorems prove that for some constants ρ and σ, the relation (5.1) and (5.2) attain

exponential rates of convergence when φ(t) belongs to Lρ,σ(E). For the solution (1.1) using Sinc
collocation method, near the boundary points b and d the solution tends to 0. Define K(t)

K(t) = v(t) − µb(t)v(b) − µd(t)v(d), (5.4)

where µb(t) and µd(t) can be written as

µb(t) =
1

1 + hχb,d(t) , µd(t) =
hχb,d(t)

1 + hχb,d(t) .

We have
lim
t→b

µb(t) = 1, lim
t→d

µb(t) = 0, lim
t→b

µd(t) = 0, lim
t→d

µd(t) = 1.

So, by using Sinc basis functions, the function K(t) can be approximated as shown below

K(t) ≈
m∑

p=−q

φ(ϕb,d(pe))S inc
(χb,d(t) − pe

e

)
. (5.5)

Using (5.4) and (5.5) we must define the approximate solution given below

wm(t) = c−qµb(t) +

m−1∑
p=−q+1

cpS inc
(χb,d(t) − pe

e

)
+ cmµd(t). (5.6)
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Substituting the solution wm(t) in (3.9), we get

wm(t) =
tβ−1

Γ(β)
v0 + v1t + (Iβ+γ

0+ φ(s, vm(s), vm(Λs)))(t) +
(
Iβ+γ
0+

(
(K1vm)(s) + (K2vm)(s)

))
(t). (5.7)

Define some operators

(S v)(t) = (Iβ+γ
0+ φ(s, vm(s), vm(Λs))(t),

(Rv)(t) =
(
Iβ+γ
0+ (K1vm)(s)

)
(t),

(Pv)(t) =
(
Iβ+γ
0+ (K2vm)(s)

)
(t),

since, relation (5.7) can be written as

wm(t) =
tβ−1

Γ(β)
v0 + v1t + (S v)(t) + (Rv)(t) + (Pv)(t). (5.8)

Define rp ∈ [0, 1] as

rp = ϕ0,1(pē) =
hpē

hpē + 1
, p = −q, · · ·,m,

with ē
√

2Πl
(β+γ)q and m = [(β + γ)q] + 1, using relation (5.3) with rp, we get

(S v)(t) =
1

Γ(β + γ)

∫ t

0

φ(s, vm(s), vm(Λs))
(t − s)1−(β+γ) ds

≈
1

Γ(β + γ)
ēt

q∑
p=−m

φ
(
ϕ0,t(pē), vm(ϕ0,t(pē)), vm(Λϕ0,t(pē))

)
t1−(β+γ)(1 − rp)1−(β+γ) rp(1 − rp)

=
1

Γ(β + γ)
ēt

q∑
p=−m

φ
(
ϕ0,t(pē), vm(ϕ0,t(pē)), vm(Λϕ0,t(pē))

)
rp(1 − rp)β+γ, (5.9)

for (Rv)(t), we get

(Rv)(t) =
(
Iβ+γ
0+ (K1vm)(s)

)
(t) =

1
Γ(β + γ)

∫ t

0

K1(vm(s))
(t − s)1−(β+γ) ds

=
1

Γ(β + γ)

∫ t

0

∫ qs
0

k1(s,w, vm(w))dw

(t − s)1−(β+γ) ds

'
1

Γ(β + γ)

∫ t

0

ēqs
∑q

a=−m k1
(
s, ϕ0,qs(aē),wm(ϕ0,qs(aē))

)
ra(1 − ra)

(t − s)1−(β+γ) ds

'
1

Γ(β + γ)

q∑
p=−m

×
ēqϕ0,t(pē)

∑q
a=−m k1

(
ϕ0,t(pē), ϕ0,qϕ0,t(pē)(aē),wm(ϕ0,qϕ0,t(pē)(aē))

)
ra(1 − ra)

t1−(β+γ)(1 − rp)1−(β+γ) rp(1 − rp)

'
1

Γ(β + γ)
ētβ+γ

q∑
p=−m

ēqϕ0,t(pē)
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a=−m

k1(ϕ0,t(pē), ϕ0,qϕ0,t(pē)(aē),wm(ϕ0,qϕ0,t(pē)(aē))ra(1 − ra)
}
rp(1 − rp)β+γ. (5.10)

For (Pv)(t), we have

(Pv)(t) =
(
Iβ+γ
0+ (K2vm)(s)

)
(t)

1
Γ(β + γ)

∫ t

0

∫ s

0
k2(s,w, vm(w))dw

(t − s)1−(β+γ) ds

'
1

Γ(β + γ)

∫ t

0

ēs
∑q

a=−m k2
(
s, ϕ0,s(aē),wm(ϕ0,s(aē))

)
ra(1 − ra)

(t − s)1−(β+γ) ds

'
1

Γ(β + γ)

q∑
p=−m

×
ēϕ0,t(pē)

∑q
a=−m k2

(
ϕ0,t(pē), ϕ0,ϕ0,t(pē)(aē),wm(ϕ0,ϕ0,t(pē)(aē))

)
ra(1 − ra)

t1−(β+γ)(1 − rp)1−(β+γ) rp(1 − rp)

'
1

Γ(β + γ)
ētβ+γ

q∑
p=−m

ēϕ0,t(pē)

{ q∑
a=−m

k1(ϕ0,t(pē), ϕ0,ϕ0,t(pē)(aē),wm(ϕ0,ϕ0,t(pē)(aē))ra(1 − ra)
}
rp(1 − rp)β+γ, (5.11)

when (5.9)–(5.11) are substituted into (5.8), we obtain

wm(t) =
tβ−1

Γ(β)
v0 + v1t +

1
Γ(β + γ)

ēt
q∑

p=−m

φ
(
ϕ0,t(pē), vm(ϕ0,t(pē)), vm(Λϕ0,t(pē))

)
rp(1 − rp)β+γ

+
1

Γ(β + γ)
ētβ+γ

q∑
p=−m

ēqϕ0,t(pē)

×

{ q∑
a=−m

k1(ϕ0,t(pē), ϕ0,qϕ0,t(pē)(aē),wm(ϕ0,qϕ0,t(pē)(aē))ra(1 − ra)
}
rp(1 − rp)β+γ

+
1

Γ(β + γ)
ētβ+γ

q∑
p=−m

ēϕ0,t(pē)

×

{ q∑
a=−m

k1(ϕ0,t(pē), ϕ0,ϕ0,t(pē)(aē),wm(ϕ0,ϕ0,t(pē)(aē))ra(1 − ra)
}
rp(1 − rp)β+γ. (5.12)

Define the points tk ∈ [0,T]
tk = ϕ0,T(ke), k = −q, · · ·,m,

where e =
√

Πl
(β+γ)q . By definition of ϕb,d(t), we obtain


ϕ0,tk(pē) = tkrp

ϕ0,ϕ0,tk (pē)(aē) = qtkrpra

ϕ0,ϕ0,tk (pē)(aē) = tkrpra.

(5.13)
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Using (5.13), we have

wm(t) =
tβ−1

Γ(β)
v0 + v1t +

1
Γ(β + γ)

ētβ+γ

q∑
p=−m

φ
(
tkrp,wm(tkrp),wm(Λtkrp)

)
rp(1 − rp)β+γ

+
1

Γ(β + γ)
ētβ+γ

q∑
p=−m

ēqtkrp

×

( q∑
a=−m

k1
(
tkrp, qtkrpra,wm(qtkrpra)

)
ra(1 − ra)

)
rp(1 − rp)β+γ

+
1

Γ(β + γ)
ētβ+γ

q∑
p=−m

ēqtkrp

×

( q∑
a=−m

k2
(
tkrp, tkrpra,wm(tkrpra)

)
ra(1 − ra)

)
rp(1 − rp)β+γ, k = −q, ...,m.

Newton iteration method used to solve the above relationship.

6. Numerical results

In this part, we find the numerical results for Example (4.1) to check the applicability of Sinc
collocation method. In Table 1, SE means single exponential. If we indicate by E1 as well as E2 the
greatest absolute errors calculated with q = q1 and q2. The practical orders of convergence can be
obtained by using the following formula

Order =
log(E1/E2)
log(q2/q1)

.

In order to compare our method with other ones given in [21, 22]. For different values of q =

2, 4, 8, 16, we solved Example (4.1) and tabulated the results at specific places in Table 1. Furthermore,
we displayed the largest absolute errors at equidistant points in Table 2.

∆1 = {0.01, 0.02, ...1.99}.

Table 1. Finding approximate solutions for Example (4.1).

y\q 2 4 8 16
0.1 1.9892643553 1.9921014240 1.9915311325 1.9915647310
0.4 1.9685783192 1.9662758325 1.9665941826 1.9666284065
0.7 1.9349773042 1.9321150218 1.9314874599 1.9314539434
1.0 1.8769375177 1.8767757148 1.8766451890 1.8766312223
1.3 1.7937897759 1.7942987234 1.7942908009 1.7942769155
1.6 1.6804986790 1.6794220904 1.6789060214 1.6788558248
1.9 1.5285659506 1.5283296781 1.5275487916 1.5274909626
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Table 2. Maximum absolute errors at equidistant points ∆1.

q SE Order Time
2 3.97 × 10−3 – 0.572
4 8.42 × 10−4 2.23 1.131
8 7.35 × 10−5 3.51 7.247
16 2.17 × 10−7 5.07 97.54
32 1.70 × 10−9 6.99 2034

7. Conclusions

Our manuscript is mainly focused on mixed derivative for fractional differential equations of order
1 < β < 2 and 0 < γ < 1. Applying the main tools from the fractional calculus, fixed point theorem,
integro-differential equation, we propose the definition of α-mild solutions and obtain the existence
and uniqueness dependence of the solution. Furthermore, we construct some important supposition to
prove some important results. Finally, we provide an application to show the applicability of our main
points.
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