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1. Introduction

One of the most interesting areas in scientific study is regarding natural phenomena, which many
researchers have previously investigated in mathematical models through differential operators, see for
instance [1–6]. Currently, mathematicians are paying a lot of attention to the fractional differential
operator since it has been widely used in a variety of fields, including the risk-controlled financial
market [7–9], engineering and scientific fields [10–14]. To be more precise, recent advances in
multi-term fractional differential equations can be found in [15–23]. Moreover, research in fractional
derivatives of type Caputo and integral operators was performed in [24]. Additionally, the nonlinear
two-term fractional differential equations were intensively studied with some scientific publications
related to the nonlocal BVPs equations, which are pertinent to the developing topic in [19, 20, 25–27].
It is worth mentioning that the existence and uniqueness of a solution to a differential equation are
frequently obtained by using the concepts of fixed point theorem, as seen in [28–33]. Therefore, fixed
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point theory has played an important role in the study of fractional differential operators.
The idea of a fixed point theorem for metric spaces endowed with graphs was initially proposed

by Jachymski [34] in 2008. Since then, other researchers have focused on this concept in a variety
of spaces endowed with graphs, see [35–39] for instance. One of the most significant consequences
of this generalization is the extension of the well-known Banach contraction principle to the case of
metric spaces endowed with graphs, see [35, 38].

There are various ways that mathematicians could investigate fixed point theory. One can consider
contractions with Geraghty functions, which are among the most influential ideas in this area,
see [40–48] for further information. In 2017, Charoensawan and Atiponrat [47] introduced a new class
of contractions, namely θ-φ-contractions, which are of Geraghty’s type. Now, let us recall essential
concepts that will be considered throughout this paper below.

Definition 1.1. [47] Suppose that (X, d) is a metric space endowed with a directed graph G =

(V(G), E(G)), and µ, δ : X → X are functions. Let us define the following sets:

X(µ, δ) :={u ∈ X : (µu, δu) ∈ E(G)},
C(µ, δ) :={u ∈ X : µu = δu},

and

Cm(µ, δ) :={u ∈ X : µu = δu = u}.

We note that C(µ, δ) is the set of all coincidence points of µ and δ. Additionally, Cm(µ, δ) is the set of
all common fixed points of µ and δ.

Lemma 1.2. [47] Let (X, d) be a metric space endowed with a directed graph G = (V(G), E(G)), and
let µ, δ : X → X be functions. If C(µ, δ) , ∅, then X(µ, δ) , ∅.

Definition 1.3. [47] Let G = (V(G), E(G)) be a directed graph, and let µ, δ : X → X be functions. We
say that µ is δ-edge preserving with respect to G whenever for each x ∈ X,

if (δx, δy) ∈ E(G), then (µx, µy) ∈ E(G).

Definition 1.4. [47] Let (X, d) and (Y, d′) be metric spaces, and let µ : X → Y and δ : X → X
be functions. We say that µ is δ-Cauchy on X whenever for any sequence {xn} in X with {δxn} being
Cauchy in (X, d), the sequence {µxn} is Cauchy in (Y, d′).

On the other hand, Martinez-Moreno et al. [48] demonstrated fascinating results on common fixed
point theorems for Geraghty’s type contraction mappings employing the monotone property with two
metrics as a consequence of d-compatibility and δ-uniform continuity. This motivates us to investigate
metric spaces equipped with two distance functions in our work.

Due to their numerous scientific applications, fractional differential equations have garnered a lot
of attention from mathematicians in recent years. As can be seen, for example, in [49–52], that
fixed point theory has strongly contributed to the knowledge of fractional differential equations. In
addition, it is worth emphasizing that our recent work is inspired by Karapınar’s investigation of the
fixed point theorem using auxiliary functions in [52], which provided insight into its usefulness for
fractional differential equations. Therefore, in this research, we replace θ-φ contraction mappings with
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auxiliary functions to improve the outcomes in [31,47]. This enables us to derive actual criteria for the
existence of common fixed points in the setting of auxiliary functions endowed with two metrics and a
directed graph. Subsequently, we provide the applications for a class of nonlinear two-term fractional
differential equations in our third section.

2. Main results

Study results about the existence of common fixed points for auxiliary functions with two metrics
endowed with a directed graph are presented in this section. Let us first define the classes of functions
that will be taken into account in this task.

Assume that ϕ : [0,∞)→ [0,∞) is a function with the properties listed below:

• ϕ is increasing and continuous,
• ϕ(r) = 0 if and only if r = 0.

The set of all functions ϕ satisfying the aforementioned constraints will be referred to as Φ going
forward.

In spired by [52], we define the class A(X) consisting all auxiliary functions h : X × X → [0, 1]
such that

if lim
n→∞

h(xn, yn) = 1, then lim
n→∞

d(xn, yn) = 0 (2.1)

for all sequences {xn} and {yn} in X with {d(xn, yn)} is decreasing, where (X, d) is a metric space.

Example 2.1. [52] Let h1, h2 : R × R→ [0, 1], for all x, y ∈ R, defined by

(1) h1(x, y) = c for some c ∈ (0, 1),

(2) h2(x, y) =
1

1 + x + y
.

Then h1, h2 ∈ A(X).

Lemma 2.2. For a sequence {xn} in a metric space (X, d) and a function δ : X → X such that

lim
n→∞

d(δxn, δxn+1) = 0,

if {δxn} is not a Cauchy sequence, then there exists ε > 0 such that, for all k ∈ N, there are nk,mk ∈ N

with nk > mk ≥ k satisfying nk is the smallest number such that

d(δxnk , δxmk) ≥ ε and d(δxnk−1, δxmk) < ε.

Then, we obtain
ε = lim

k→∞
d(δxmk , δxnk) = lim

k→∞
d(δxmk+1, δxnk+1).

Proof. Suppose that {δxn} is not Cauchy. By definition, there is a positive number ε > 0 such that for
all k ∈ N, there are nk,mk ∈ N with nk > mk ≥ k satisfying nk is the smallest number such that

d(δxnk , δxmk) ≥ ε and d(δxnk−1, δxmk) < ε.
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This means

ε ≤ d(δxmk , δxnk)
≤ d(δxmk , δxnk−1) + d(δxnk−1, δxnk)
< ε + d(δxnk−1, δxnk). (2.2)

Letting k → ∞ and applying the fact that lim
n→∞

d(δxn, δxn+1) = 0, we receive

lim
k→∞

d(δxmk , δxnk) = ε > 0. (2.3)

Consider, by the triangle inequality, that

d(δxmk , δxnk) ≤ d(δxmk , δxmk+1) + d(δxmk+1, δxnk+1) + d(δxnk+1, δxnk),

and
d(δxm(k+1), δxnk+1) ≤ d(δxm(k+1), δxmk) + d(δxmk , δxnk) + d(δxnk , δxnk+1).

Then, we obtain

d(δxmk , δxnk) − d(δxmk , δxmk+1) − d(δxnk+1, δxnk)
≤ d(δxmk+1, δxnk+1)
≤ d(δxmk+1, δxmk) + d(δxmk , δxnk) + d(δxnk , δxnk+1).

By
lim
n→∞

d(δxn, δxn+1) = 0,

and taking k to∞ in (2.2), we obtain

ε = lim
k→∞

d(δxmk , δxnk) ≤ lim
k→∞

d(δxmk+1, δxnk+1) ≤ lim
k→∞

d(δxmk , δxnk) = ε.

Thus,
lim
k→∞

d(δxmk+1, δxnk+1) = lim
k→∞

d(δxmk , δxnk) = ε.

�

Here, we are ready to define a new category of contractions defined as follows. Let (X, d, µ, δ,G)
refer to a structure throughout this work that has the properties listed below:

• X , ∅ and (X, d) is a metric space,
• X is endowed with a directed grahp G = (V(G), E(G)),
• µ and δ are self mappings,
• µ is δ-edge preserving with respect to G.

Lemma 2.3. On (X, d, µ, δ,G). Let a sequence {xn} in X such that

lim
n→∞

δxn = lim
n→∞

µxn = u,

where u ∈ X and (δxn−1, δxn) ∈ E(G). If µ is G-continuous, with µ and δ being d-compatible, then
u ∈ C(µ, δ).
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Proof. Let {xn} in X such that
lim
n→∞

δxn = lim
n→∞

µxn = u,

where u ∈ X, and (δxn−1, δxn) ∈ E(G). Additionally, we conclude that

lim
n→∞

d(δµxn, µδxn) = 0 (2.4)

due to µ and δ being d-compatible. Finally, we consider

d(δu, µu) ≤ d(δu, δµxn) + d(δµxn, µδxn) + d(µδxn, µu).

By combining the continuity of δ with the notion that µ is G-continuous, (δxn−1, δxn) ∈ E(G) and
using (2.4), it can be concluded that d(δu, µu) = 0 when n→ ∞. As a result, δu = µu, which indicates
that u is a coincidence point of µ and δ. Thus, u ∈ C(µ, δ). �

Definition 2.4. On (X, d, µ, δ,G). If the following criteria are satisfied, the pair (µ, δ) will be referred
to as an (h-ϕ)R-contraction with regard to d. There exists h ∈ A(X) and ϕ ∈ Φ with (δx, δy) ∈ E(G) for
x, y ∈ X, we have

ϕ(d(µx, µy)) ≤ h(δx, δy)ϕ(R(δx, δy)),

where R : X × X → [0,∞) is defined by

R(δx, δy) = max
{

d(δx, µx)d(µy, δy)
d(δx, δy)

+ |d(δx, δy) − d(δx, µx)|,

d(δx, δy) + |d(δx, µx) − d(δy, µy)|,
d(δx, µx) + |d(δx, δy) − d(δy, µy)|,
d(δy, µy) + |d(δx, δy) − d(δx, µx)|,

d(δx, µy) + d(δy, µx) + |d(δx, δy) − d(µx, µy)|
2

}
,

for x, y ∈ X.

The result in [47] can be applied to the case of auxiliary functions owing to the aforementioned
definition. In actuality, we are now prepared to demonstrate and present our key findings. The
motivation for the following theorem comes from [53] and incorporates two metrics.

Theorem 2.5. On (X, d′, µ, δ,G), let (X, d′) be a complete metric space, and let d be another metric
on X. Assume that (µ, δ) is an (h-ϕ)R-contraction with respect to d and that the following criteria are
satisfied.

(1) δ : (X, d′)→ (X, d′) is continuous, and δ(X) is d′-closed,
(2) µ(X) ⊆ δ(X),
(3) The transitivity property of E(G) holds,
(4) If d � d′, suppose that µ : (X, d)→ (X, d′) is δ-Cauchy on X,
(5) µ : (X, d′)→ (X, d′) is G-continuous, and µ and δ are d′-compatible.

Consequently, it can be seen that

X(µ, δ) , ∅ ⇐⇒ C(µ, δ) , ∅.
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Proof. (⇐) This derives from Lemma 1.2.
(⇒) Assume that X(µ, δ) , ∅ and x0 ∈ X with (δx0, µx0) ∈ E(G). According to the assumption that

µ(X) ⊆ δ(X) and µ(x0) ∈ X, we could establish a sequence {xn} in X such that δxn = µxn−1 for every
n ∈ N. If there exists n0 ∈ N such that δxn0 = δxn0−1, then xn0−1 is a coincidence point of µ and δ. We
may therefore now assume that δxn , δxn−1 for all n ∈ N.

Because (δx0, µx0) = (δx0, δx1) ∈ E(G) and µ is δ-edge preserving with respect to G, it is precise
to state that (µx0, µx1) = (δx1, δx2) ∈ E(G). We obtain (δxn−1, δxn) ∈ E(G) for every n ∈ N through
mathematical induction. As (µ, δ) is an (h-ϕ)R-contraction with respect to d, for each n ≥ 0,

ϕ(d(δxn+1, δxn+2)) = ϕ(d(µxn, µxn+1))
≤ h(δxn, δxn+1)ϕ(R(δxn, δxn+1))
≤ ϕ(R(δxn, δxn+1)). (2.5)

Additionally, a straightforward calculation demonstrates that

R(gxn, gxn+1) = max
{

d(δxn, µxn)d(µxn+1, δxn+1)
d(δxn, δxn+1)

+ |d(δxn, δxn+1) − d(δxn, µxn)|,

d(δxn, δxn+1) + |d(δxn, µxn) − d(δxn+1, µxn+1)|,
d(δxn, µxn) + |d(δxn, δxn+1) − d(δxn+1, µxn+1)|,
d(δxn+1, µxn+1) + |d(δxn, δxn+1) − d(δxn, µxn)|,

d(δxn, µxn+1) + d(δxn+1, µxn) + |d(δxn, δxn+1) − d(µxn, µxn+1)|
2

}
= max

{
d(δxn, δxn+1)d(δxn+2, δxn+1)

d(δxn, δxn+1)
+ |d(δxn, δxn+1) − d(δxn, δxn+1)|,

d(δxn, δxn+1) + |d(δxn, δxn+1) − d(δxn+1, δxn+2)|,
d(δxn, δxn+1) + |d(δxn, δxn+1) − d(δxn+1, δxn+2)|,
d(δxn+1, δxn+2) + |d(δxn, δxn+1) − d(δxn, δxn+1)|,

d(δxn, δxn+2) + d(δxn+1, δxn+1) + |d(δxn, δxn+1) − d(δxn+1, δxn+2)|
2

}
= max

{
d(δxn+2, δxn+1),

d(δxn, δxn+1) + |d(δxn, δxn+1) − d(δxn+1, δxn+2)|,
d(δxn, δxn+1) + |d(δxn, δxn+1) − d(δxn+1, δxn+2)|,
d(δxn+1, δxn+2),

d(δxn, δxn+2) + |d(δxn, δxn+1) − d(δxn+1, δxn+2)|
2

}
.

If we denote by
gn = d(δxn, δxn+1).

As d(δxn, δxn+2) ≤ d(δxn, δxn+1) + d(δxn+1, δxn+2), we get

R(δxn, δxn+1) ≤ max
{
δn+1, δn + |δn − δn+1|,

δn + δn+1 + |δn − δn+1|

2

}
.
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Now, suppose that δn is not decreasing, then there exists C ∈ N such that δC ≤ δC+1 so we have

R(δxC, δxC+1) ≤ δC+1.

By the inequality (2.5) and the property of ϕ, we obtain

ϕ(δC+1) ≤ h(δxC, δxC+1)ϕ(R(δxC, δxC+1)) ≤ h(δxC, δxC+1)ϕ(δC+1) ≤ ϕ(δC+1).

Since for every n ∈ N, δxn , δxn−1, we have δC+1 = d(δxC+1, δxC+2) > 0 which follows from the above
inequality, we get h(δxC, δxC+1) = 1. By the fact that h ∈ A(X), we obtain d(δxC, δxC+1) = 0. It is a
contradiction. Therefore, δn is decreasing, δn > δn+1 for all n ≥ 0, we have

R(δxn, δxn+1) ≤ max{2δn − δn+1, δn, δn+1} = R∗(n).

Since δn is bounded below, the sequence converges. Let

lim
n→∞

δn = L ≥ 0.

Contrarily, suppose that L > 0. Due to the property of ϕ, lim
n→∞

ϕ(δn) = ϕ(L) > 0. By (2.5), it is
demonstrated that

ϕ(δn+1) = ϕ(d(µxn, µxn+1))
≤ h(δxn, δxn+1)ϕ(R(δxn, δxn+1))
≤ h(δxn, δxn+1)ϕ(R∗(n))
≤ ϕ(R∗(n)).

In the inequality above, when we take n→ ∞, we obtain

1 = lim
n→∞

ϕ(δn+1)
ϕ(R∗(n))

≤ lim
n→∞

h(δxn, δxn+1) ≤ 1.

Therefore, lim
n→∞

h(δxn, δxn+1) = 1. According to the notion of auxiliary functions,

lim
n→∞

d(δxn, δxn+1) = lim
n→∞

δn = 0,

which contradicts to the assumption. So, lim
n→∞

d(δxn, δxn+1) = 0.
The sequence {δxn} has to be Cauchy, as we will demonstrate next. Contrarily, suppose that {δxn}

is not Cauchy. Then there exists ε > 0 such that, for all k ∈ N, there are nk,mk ∈ N with nk > mk ≥ k
satisfying nk is the smallest number such that

d(δxnk , δxmk) ≥ ε and d(δxnk−1, δxmk) < ε.

By Lemma 2.2, this implies

lim
k→∞

d(δxmk+1, δxnk+1) = lim
k→∞

d(δxmk , δxnk) = ε.
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We determine that (δxmk , δxnk) ∈ E(G) for each k ∈ N owing to the transitivity property of E(G). As a
result,

ϕ(d(δxmk+1, δxnk+1)) = ϕ(d(µxmk , µxnk))
≤ h(δxmk , δxnk)ϕ(R(δxmk , δxnk)), (2.6)

where

R(δxmk , δxnk)

= max
{

d(δxmk , µxmk)d(µxnk , δxnk)
d(δxmk , δxnk)

+ |d(δxmk , δxnk) − d(δxmk , µxmk)|,

d(δxmk , δxnk) + |d(δxmk , µxmk) − d(δxnk , µxnk)|,
d(δxmk , µxmk) + |d(δxmk , δxnk) − d(δxnk , µxnk)|,
d(δxnk , µxnk) + |d(δxmk , δxnk) − d(δxmk , µxmk)|,

d(δxmk , µxnk) + d(δxnk , µxmk) + |d(δxmk , δxnk) − d(µxmk , µxnk)|
2

}

= max
{

d(δxmk , δxmk+1)d(δxnk+1, δxnk)
d(δxmk , δxnk)

+ |d(δxmk , δxnk) − d(δxmk , δxmk+1)|,

d(δxmk , δxnk) + |d(δxmk , δxmk+1) − d(δxnk , δxnk+1)|,
d(δxmk , δxmk+1) + |d(δxmk , δxnk) − d(δxnk , δxnk+1)|,
d(δxnk , δxnk+1) + |d(δxmk , δxnk) − d(δxmk , δxmk+1)|,

d(δxmk , δxnk+1) + d(δxnk , δxmk+1) + |d(δxmk , δxnk) − d(δxmk+1, δxnk+1)|
2

}
.

Since lim
n→∞

d(δxn, δxn+1) = 0, applying the preceding equality with k → ∞ means that

lim
k→∞

R(δxmk , δxnk) = lim
k→∞

d(δxmk , δxnk) = ε > 0.

Combining the aforementioned fact with the inequality (2.6), we obtain

1 = lim
k→∞

ϕ(d(δxmk , δxnk))
ϕ(R(δxmk , δxnk))

≤ lim
k→∞

h(δxmk , δxnk) ≤ 1.

As a result, lim
k→∞

h(δxmk , δxnk) = 1. Then, lim
k→∞

d(δxmk , δxnk) = 0, which contradicts to (2.3). That {δxn} is
Cauchy in (X, d) must therefore be true.

In the following part, we demonstrate that in the metric space (X, d′), {δxn} is also Cauchy. The
proof is simple when d ≥ d′. The case d � d′ is therefore taken into consideration. Let ε > 0. We
conclude that {µxn} is Cauchy in (X, d′) since {δxn} is Cauchy in (X, d) and µ is δ-Cauchy on X. So,
there exists N0 ∈ N such that

d′(δxn+1, δxm+1) = d′(µxn, µxm) < ε, ∀n,m ≥ N0.

The sequence {δxn} is therefore Cauchy in (X, d′).
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Since δ(X) is a d′-closed subset of (X, d′), which is complete, it follows that u = δx ∈ δ(X) exists
satisfying

lim
n→∞

δxn = lim
n→∞

µxn = u.

Since assumption (5), by Lemma 2.3 which indicates that u is a coincidence point of µ and δ. Thus,
u ∈ C(µ, δ). �

We analyze the scenario in which the two metrics d and d′ coincide in our next theorem.

Definition 2.6. On (X, d, µ, δ,G). If the following criteria are satisfied, the pair (µ, δ) will be referred
to as an (h-ϕ)M-contraction with regard to d. There exists h ∈ A(X) and ϕ ∈ Φ with (δx, δy) ∈ E(G)
for x, y ∈ X, we have

ϕ(d(µx, µy)) ≤ h(δx, δy)ϕ(M(δx, δy)),

where M : X × X → [0,∞) is defined by

M(δx, δy) = max
{

d(δx, µx)[1 + d(δy, µy)]
1 + d(δx, δy)

+ |d(δx, δy) − d(δx, µx)|,

d(δy, µy)[1 + d(δx, µx)]
1 + d(δx, δy)

+ |d(δx, δy) − d(δx, µx)|,

d(δx, δy) + |d(δx, µx) − d(δy, µy)|
}
,

for x, y ∈ X.

Theorem 2.7. On (X, d, µ, δ,G), let (X, d) be a complete metric space with an (h-ϕ)M-contraction (µ, δ).
Suppose that the following criteria are satisfied.

(1) δ is continuous, and δ(X) is closed.
(2) µ(X) ⊆ δ(X).
(3) The transitivity property E(G) holds.
(4) At least one of the statements below is satisfied.

(a) µ is G-continuous, and µ and δ are d-compatible,
(b) (X, d,G) has the property A in [34], and

if lim
n→∞

h(δxn, δyn) = 1, then lim
n→∞

d(µxn, µyn) = 0.

Consequently, we obtain that

X(µ, δ) , ∅ ⇐⇒ C(µ, δ) , ∅.

Proof. (⇐) This derives from Lemma 1.2.
(⇒) Assume that X(µ, δ) , ∅ and x0 ∈ X with (δx0, µx0) ∈ E(G). According to the assumption that

µ(X) ⊆ δ(X) and µ(x0) ∈ X, we could establish a sequence {xn} in X such that δxn = µxn−1 for every
n ∈ N. If there exists n0 ∈ N such that δxn0 = δxn0−1, then xn0−1 is a coincidence point of µ and δ. We
may therefore now assume that δxn , δxn−1 for all n ∈ N.

AIMS Mathematics Volume 8, Issue 3, 7394–7418.



7403

Because (δx0, µx0) = (δx0, δx1) ∈ E(G) and µ is δ-edge preserving with respect to G, it is precise
to state that (µx0, µx1) = (δx1, δx2) ∈ E(G). We obtain (δxn−1, δxn) ∈ E(G) for every n ∈ N through
mathematical induction. As (µ, δ) is an (h-ϕ)M-contraction with respect to d, for each n ≥ 0,

ϕ(d(δxn+1, δxn+2)) = ϕ(d(µxn, µxn+1))
≤ h(δxn, δxn+1)ϕ(M(δxn, δxn+1))
≤ ϕ(M(δxn, δxn+1)). (2.7)

Additionally, a straightforward calculation demonstrates that

M(δxn, δxn+1) = max
{

d(δxn, µxn)[1 + d(δxn+1, µxn+1)]
1 + d(δxn, δxn+1)

+ |d(δxn, δxn+1) − d(δxn, µxn)|,

d(δxn+1, µxn+1)[1 + d(δxn, µxn)]
1 + d(δxn, δxn+1)

+ |d(δxn, δxn+1) − d(δxn, µxn)|,

d(δxn, δxn+1) + |d(δxn, µxn) − d(δxn+1, µxn+1)|
}

= max
{

d(δxn, δxn+1)[1 + d(δxn+1, δxn+2)]
1 + d(δxn, δxn+1)

+ |d(δxn, δxn+1) − d(δxn, δxn+1)|,

d(δxn+1, δxn+2)[1 + d(δxn, δxn+1)]
1 + d(δxn, δxn+1)

+ |d(δxn, δxn+1) − d(δxn, δxn+1)|,

d(δxn, δxn+1) + |d(δxn, δxn+1) − d(δxn+1, δxn+2)|
}

= max
{

d(δxn, δxn+1)[1 + d(δxn+1, δxn+2)]
1 + d(δxn, δxn+1)

,

d(δxn+1, δxn+2), d(δxn, δxn+1) + |d(δxn, δxn+1) − d(δxn+1, δxn+2)|
}
.

If we denote by
gn = d(δxn, δxn+1).

We have

M(δxn, δxn+1) ≤ max
{
δn(1 + δn+1)

1 + δn
, δn+1, δn + |δn − δn+1|

}
.

Now, suppose that δn is not decreasing, then there exists C ∈ N such that δC ≤ δC+1, we have

M(δxC, δxC+1) = δC+1,

then by the inequality (2.7), we have

ϕ(δC+1) ≤ h(δxC, δxC+1)ϕ(M(δxC, δxC+1)) = h(δxC, δxC+1)ϕ(δC+1) ≤ ϕ(δC+1).

Since for every n ∈ N, δxn , δxn−1, we have δC+1 = d(δxC+1, δxC+2) > 0 which follows from the above
inequality, we get h(δxC, δxC+1) = 1. By the fact that h ∈ A(X), we obtain d(δxC, δxC+1) = 0. It is a
contradiction. Therefore, δn is decreasing, δn > δn+1 for all n ≥ 0, we have

M(δxn, δxn+1) = max{2δn − δn+1, δn, δn+1}.
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Since δn is bounded below, the sequence converges. Let

lim
n→∞

δn = C ≥ 0.

Contrarily, suppose that C > 0. Due to the property of ϕ, lim
n→∞

ϕ(δn) = ϕ(C) > 0. By (2.7), it is
demonstrated that

φ(δn+1) = φ(d(µxn, µxn+1))
≤ h(δxn, δxn+1)φ(M(δxn, δxn+1))
≤ φ(M(δxn, δxn+1)).

In the inequality above, when we take n→ ∞, we obtain

1 = lim
n→∞

φ(δn+1)
φ(M(δxn, δxn+1))

≤ lim
n→∞

h(δxn, δxn+1) ≤ 1.

Therefore, lim
n→∞

h(δxn, δxn+1) = 1. According to the notion of auxiliary functions,

lim
n→∞

d(δxn, δxn+1) = lim
n→∞

δn = 0,

which contradicts to the assumption. So, lim
n→∞

d(δxn, δxn+1) = 0.
The sequence {δxn} has to be Cauchy, as we will demonstrate next. Contrarily, suppose that {δxn}

is not Cauchy. Then there exists ε > 0 such that, for all k ∈ N, there are nk,mk ∈ N with nk > mk ≥ k
satisfying nk is the smallest number such that

d(δxnk , δxmk) ≥ ε and d(δxnk−1, δxmk) < ε.

By Lemma 2.2, this implies

lim
k→∞

d(δxmk+1, δxnk+1) = lim
k→∞

d(δxmk , δxnk) = ε.

We determine that (δxmk , δxnk) ∈ E(G) for each k ∈ N owing to the transitivity property of E(G). As a
result,

ϕ(d(δxmk+1, δxnk+1)) = ϕ(d(µxmk , µxnk))
≤ h(δxmk , δxnk)ϕ(M(δxmk , δxnk)), (2.8)

where

M(δxmk , δxnk)

= max
{

d(δxmk , µxmk)[1 + d(δxnk , µxnk)]
1 + d(δxmk , δxnk)

+ |d(δxmk , δxnk) − d(δxmk , µxmk)|,

d(δxnk , µxnk)[1 + d(δxmk , µxmk)]
1 + d(δxmk , δxnk)

+ |d(δxmk , δxnk) − d(δxmk , µxmk)|,

d(δxmk , δxnk) + |d(δxmk , µxmk) − d(δxnk , µxnk)|
}
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= max
{

d(δxmk , δxmk+1)[1 + d(δxnk , δxnk+1)]
1 + d(δxmk , δxnk)

+ |d(δxmk , δxnk) − d(δxmk , δxmk+1)|,

d(δxnk , δxnk+1)[1 + d(δxmk , δxmk+1)]
1 + d(δxmk , δxnk)

+ |d(δxmk , δxnk) − d(δxmk , δxmk+1)|,

d(δxmk , δxnk) + |d(δxmk , δxmk+1) − d(δxnk , δxnk+1)|
}
.

Since lim
n→∞

d(δxn, δxn+1) = 0, applying the preceding equality with k → ∞ means that

lim
k→∞

M(δxmk , δxnk) = lim
k→∞

d(δxmk , δxnk) = ε > 0.

Combining the aforementioned fact with the inequality (2.8), we obtain

1 = lim
k→∞

ϕ(d(δxmk+1, δxnk+1))
ϕ(M(δxmk , δxnk))

≤ lim
k→∞

h(δxmk , δxnk) ≤ 1.

As a result, lim
k→∞

h(δxmk , δxnk) = 1. Then, lim
k→∞

d(δxmk , δxnk) = 0, which contradicts to (2.3). That {δxn} is
Cauchy in (X, d) must therefore be true.

Since δ(X) is a d-closed subset of (X, d), which is complete, it follows that there exists x, u ∈ X such
that u = δx ∈ δ(X) satisfying

lim
n→∞

δxn = lim
n→∞

µxn = u. (2.9)

Since assumption (a), by Lemma 2.3 which indicates that u is a coincidence point of µ and δ. Thus
u ∈ C(µ, δ).

Assume that the statement (b) is satisfied. Because of (2.9), we assert that x must be a coincidence
point of µ and δ. On the other hand, suppose that x is not a coincidence point of µ and δ. As a result,
µx , δx and thus d(µx, δx) > 0. Since the triple (X, d,G) has the property A, (δxn, δx) ∈ E(G) for all
n ∈ N. Consequently,

d(δx, µx) ≤ d(δx, µxnk) + d(µxnk , µx).

Hence,
d(δx, µx) − d(δx, µxnk) ≤ d(µxnk , µx).

The definition of ϕ actually proves that

ϕ(d(δx, µx) − d(δx, µxnk)) ≤ ϕ(d(µxnk , µx))
≤ h(δxnk , δx)ϕ(M(δxnk , δx))
< ϕ(M(δxnk , δx)), (2.10)

where

M(δxnk , δx) = max
{

d(δxnk , µxnk)[1 + d(δx, µx)]
1 + d(δxnk , δx)

+ |d(δxnk , δx) − d(δxnk , µxnk)|,

d(δx, µx)[1 + d(δxnk , µxnk)]
1 + d(δxnk , δx)

+ |d(δxnk , δx) − d(δxnk , µxnk)|,
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d(δxnk , δx) + |d(δxnk , µxnk) − d(δx, µx)|
}
.

In the equation above, when we take n→ ∞ and use (2.9), we obtain

lim
k→∞

M(δxnk , δx) = d(δx, µx) > 0.

By the attribute of ϕ, we get

lim
k→∞

ϕ(M(δxnk , δx)) = ϕ(d(δx, µx)) > 0.

Then, taking k → ∞ in (2.10) gives us that lim
k→∞

h(δxnk , δx) = 1. This implies

d(δx, µx) = lim
k→∞

d(µxnk , µx) = 0,

which is a contradiction. As a result, µx = δx, and we can derive that µ and δ have x as one of their
coincidence points. �

By applying an additional assumption, as in the following theorem, we could reach a stronger
conclusion on the presence of a common fixed point.

Theorem 2.8. Let us apply all the notations and requirements from Theorem 2.5. Moreover, suppose
additionally that

(6) It is precise to state that (δx, δy) is in E(G) for any x, y ∈ C(µ, δ) with δx , δy.

Consequently, we obtain
X(µ, δ) , ∅ if and only if Cm(µ, δ) , ∅.

Proof. By proving Theorem 2.5, it is sufficient to account for the only if case with the assumption
that the statement (6) above holds. There exists an element x ∈ X such that δx = µx, according to
Theorem 2.5.

Initially, let us assume that y ∈ X is also a coincidence point, i.e., δy = µy. We will show that δx =

δy. Contrarily, suppose that δx , δy, we have d(δx, δy) > 0. By statement (6) above, (δx, δy) ∈ E(G),
which concludes

ϕ(d(µx, µy)) ≤ h(δx, δy)ϕ(R(δx, δy)) ≤ ϕ(R(δx, δy)) = ϕ(d(µx, µy)).

Due to the property of ϕ, h(δx, δy) = 1, we have d(δx, δy) = 0. It is a contradiction. Therefore, δx = δy.
The next step is to put x0 = x and utilize the statement (2) from Theorem 2.5 to establish a sequence

{xn} such that δxn = µxn−1 for every n ∈ N. As x is a coincidence point, we could suppose that xn = x,
then δxn = µx for each n ∈ N.

In order for δz = δδx = δµx, allow z = δx. Note also that δxn = µx = µxn−1 for any n ∈ N.
Therefore,

lim
n→∞

µxn = lim
n→∞

δxn = µx

in (X, d′). Furthermore,
lim
n→∞

d′(δµxn, µδxn) = 0,

because µ and δ are d′-compatible. This indicates that δµx = µδx. Thus, δz = δµx = µδx = µz so
z ∈ C(µ, δ). Following the proof above, we have µz = δz = δx = z. Hence, z ∈ Cm(µ, δ). �
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Theorem 2.9. Let us apply all the notations and requirements from Theorem 2.7. Moreover, suppose
additionally that

(6) It is precise to state that (δx, δy) is in E(G) for any x, y ∈ C(µ, δ) with δx , δy.

Consequently, we obtain
X(µ, δ) , ∅ if and only if Cm(µ, δ) , ∅.

To support our main findings, we provide an example.

Example 2.10. Let X = [0,∞) ⊆ R, and d, d′ : X × X → [0,∞) be such that

d(x, y) = |x − y| and d′(x, y) = L|x − y|,

for all x, y ∈ X with a constant L ∈ (1,∞). We note that d and d′ are metrics. Additionally, it is obvious
that d < d′ by the way we specify our metrics. Then, assume

E(G) = {(x, y) : x = y or x, y ∈ [0, 1] with x ≤ y}.

Moreover, let µ : X → X and δ : X → X be given by

δx = x2 and µx = ln
(
1 +

x2

7

)
,

for all x ∈ X. In order for the pair (µ, δ) to be an (h-ϕ)R-contraction with regard to d, the conditions (1)
and (2) must be satisfied, which we shall demonstrate.

First, let (δx, δy) ∈ E(G). It is noticeable that (µx, µy) ∈ E(G) if x = y. In contrast, if (δx, δy) ∈ E(G)
and δx ≤ δy, then δx = x2, δy = y2 ∈ [0, 1] and x2 = δx ≤ δy = y2. Hence,

µx = ln
(
1 +

x2

7

)
≤ ln

(
1 +

y2

7

)
= µy

and µx, µy ∈ [0, 1]. Thus, (µx, µy) ∈ E(G).
Second, set φ(t) = 7t, and define h : X × X → [0, 1) by the following equation.

h(x, y) =


arctan

(
|x−y|

7

)
ψ(x, y)

if x , y,

0 if x = y

where

ψ(x, y) = 2 |x − y| + ln
(
7 + x
7 + y

)
.

We first note that the function

ψ(x, y) = 2 |x − y| + ln
(
7 + x
7 + y

)
is positive for x, y > 0. In the case of x > y, it is easy to see that ψ(x, y) > 0. On the other hand, we
observe that

ψ(x, y) = 2(y − x) + ln
(
7 + x
7 + y

)
= (y − x) + y − ln

(
1 +

y
7

)
− x + ln

(
1 +

x
7

)
.
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Since, the function γ(x) = x− ln
(
1 +

x
7

)
is an increasing function. As a result, we conclude that ψ(x, y)

is a positive function, therefore, h(x, y) is also a positive function. It is straightforward to prove that
φ ∈ Φ and h ∈ A(X). The profile of the function h(x, y) is plotted in Figure 1.

Figure 1. The profile of the function h(x, y).

Next, let x, y ∈ X such that (δx, δy) ∈ E(G). If δx = δy, then x = y so that the requirement (2) holds.
In the case of x2 = δx < δy = y2, it follows that

φ(d(µx, µy)) = 7d(µx, µy) = 7
∣∣∣∣ ln (

1 +
x2

7

)
− ln

(
1 +

y2

7

)∣∣∣∣
= 7 ln

1 +
y2

7

1 + x2

7


= 7 ln

1 +

y2

7 −
x2

7

1 + x2

7


≤ 7 ln

(
1 +

∣∣∣∣ x2

7
−

y2

7

∣∣∣∣)
≤ 7 arctan

(∣∣∣∣ x2

7
−

y2

7

∣∣∣∣)
≤

7 arctan
(
|x2 − y2|

)
ψ(x2, y2)

ψ(x2, y2).

To obtain the requirements, using x < y, we see that

ψ(x2, y2) = 2(y2 − x2) − ln
(
1 +

y2

7

)
+ ln

(
1 +

x2

7

)
= d(x, y) +

[
y2 − ln

(
1 +

y2

7

)
− x2 + ln

(
1 +

x2

7

)]
= d(x, y) +

∣∣∣d(δy, µy) − d(δx, f̂ y)
∣∣∣ ,
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which yields

φ(d(µx, µy)) ≤ h(x, y) (d(x, y) + |d(δy, µy) − d(δx, µy)|) ≤ h(x, y)R(δx, δy).

Consequently, the pair (µ, δ) satisfies condition (2).
We will demonstrate that the requirements (1) through (5) of Theorem 2.5 attained in the final part

of this example.
(1) δ : (X, d′)→ (X, d′) is obviously continuous, and δ(X) = [0,∞) is also d′-closed,
(2) It is observable that µ(X) = δ(X) = X,
(3) The transitivity property E(G) holds,
(4) Because d < d′, we shall demonstrate that µ : (X, d)→ (X, d′) is δ-Cauchy. Assuming ε > 0 and

a sequence {xn} in X where {δxn} is Cauchy in (X, d), there exists N ∈ N such that d(δxn, δxm) <
ε

L
for

any n,m ≥ N. Therefore,

d′(µxn, µxm) = L|µxn − µym|

= L

∣∣∣∣∣∣ln
(
1 +

(xn)2

7

)
− ln

(
1 +

(xm)2

7

)∣∣∣∣∣∣
= L

∣∣∣∣∣∣∣ln
1 +

(xm)2

7

1 +
(xn)2

7


∣∣∣∣∣∣∣

= L

∣∣∣∣∣∣∣ln
1 +

(xm)2

7 −
(xn)2

7

1 +
(xn)2

7


∣∣∣∣∣∣∣

≤ L
[
ln

(
1 +

∣∣∣∣∣∣ (xn)2

7
−

(xm)2

7

∣∣∣∣∣∣
)]

≤ L

∣∣∣∣∣∣ (xn)2

7
−

(xm)2

7

∣∣∣∣∣∣
< L

∣∣∣(xn)2 − (xm)2
∣∣∣

= Ld(δxn, δxm)

< L
(
ε

L

)
= ε.

This pertains to µ : (X, d)→ (X, d′) being δ-Cauchy.
(5) µ : (X, d′)→ (X, d′) is obviously G-continuous. In addition, µ and δ are d′-compatible since for

every sequence {xn} in X with
lim
n→∞

δxn = lim
n→∞

µxn = x,

it has the consequence that ln
(
1 +

x
7

)
= x. This concludes x = 0. As n→ ∞,

d′(δµxn, µδxn) = L

∣∣∣∣∣∣∣
(
ln

(
1 +

(xn)2

7

))2

− ln
(
1 +

(xn)4

7

)∣∣∣∣∣∣∣→ 0.

Finally, it is noticeable that (δ0, µ0) = (0, 0) ∈ E(G) so X(µ, δ) is nonempty. From Theorem 2.5,
C(µ, δ) is nonempty. In actuality, it is clear that 0 ∈ C(µ, δ).
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3. Application to nonlinear two-term fractional differential equations with nonlocal boundary
conditions

Numerous scientific studies state that the theory of fractional differential equations has become
more popular as a result of its applications in a variety of engineering and scientific fields, for instance,
see [10–14]. Therefore, we apply our findings in this section to investigate the existence of any
solutions to curtain Caputo fractional boundary value problems with nonlocal boundary conditions.
Multi-term fractional differential equations have recently made significant contributions [15–23].
Motivated by [21–23], we study the nonlinear two-term fractional differential equations in the
following form:

cDαy(t) + bcDβy(t) = f (t, y(t)), t ∈ [0, 1], (3.1)

with the nonlocal boundary conditions

y(0) = 0, and y(1) = y(η), η ∈ (0, 1) (3.2)

where α, β are arbitrary real constants with 0 ≤ β ≤ 1 < α ≤ 2, and f : [0, 1] × R → R is continuous.
It is worth noting that nonlocal BVPs appear to be more intriguing than local ones due to their greater
naturalness and the variety of applications they offer. Additionally, the local conditions y(0) = 0
and y′(1) = 0 can be considered as the limit case of (3.2) when η → 1−. Here, we provide some
scientific publications related to the nonlocal BVPs equations, which are relevant to the developing
topic in [19, 20, 25–27].

Recalling the definition of the Caputo fractional derivative and its related definitions is necessary
before moving on to the outcomes of existence. Let α be a positive real number. The Caputo derivative
of fractional order α is defined as follows for a continuous function y(t):

cDαy = Idαe−αDdαey,

where dαe is the smallest integer which is greater than α and Iα is the Riemann-Liouville integral
operator of order α ≥ 0 defined by

Iαy(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds.

Noting that when α = 0, the operator I0 is referred to the identity operator and the gamma function Γ

is defined by

Γ(α) =

∫ ∞

0
tα−1e−tdt.

The fractional integral satisfies the following equalities:

IαIβy(t) = Iα+βy(t), α, β ≥ 0,

Iαtk =
Γ(k + 1)

Γ(α + k + 1)
tα+k, α, k ≥ −1.

Additionally, according to the α−order Caputo fractional derivative and its integer-ordered, we get

IαDαy(t) = y(t) −
m−1∑
k=0

y(k)(0)
tk

k!
, m − 1 < m ≤ α. (3.3)

AIMS Mathematics Volume 8, Issue 3, 7394–7418.



7411

In order to obtain our goal, we suppose that y : [0, 1] → R is a solution of the systems (3.1)
and (3.2). We see that

Iα f (t, y(t)) = Iα[cDαy(t)] + bIα[cDβy(t)]
= y(t) + a0 + a1t + bIα−βIβ[cDβy(t)]
= y(t) + a0 + a1t + bIα−β[y(t) + a0]

= y(t) + a0 + a1t + bIα−βy(t) +
a0b

Γ(α − β + 1)
tα−β.

Consequently, we have

y(t) = a0 +
a0b

Γ(α − β + 1)
tα−β + a1t + bIα−βy(t) − Iα f (t, y(t)). (3.4)

This implies that the initial value problem (BVP) (3.1) and (3.2) is equivalent to the Volterra integral
equation in a specific type. We have a0 = 0 by applying the boundary conditions y(0) = 0. The solution
is consequently condensed to

y(t) = a1t + bIα−βy(t) − Iα f (t, y(t)).

Applying the boundary condition y(1) = y(η) allows us to have the coefficient

a1 =
1

1 − η

[
1

Γ(α)

∫ 1

0
Gα(s; η) f (s, y(s))ds −

b
Γ(α − β)

∫ 1

0
Gα−β(s; η) f (s, y(s))ds

]
,

where the function G : R × R→ R is defined by

Gγ(s; η) =

{
(1 − s)γ−1 − (η − s)γ−1, 0 ≤ s ≤ η,
(1 − s)γ−1, s > η.

Substituting the value of a1 in the expressions for y(t), we get the solution of the BVP (3.1) and (3.2)
as the solution of the Volterra integral equation in the following form:

y(t) =
t

1 − η

[
1

Γ(α)

∫ 1

0
Gα(s; η) f (s, y(s))ds −

b
Γ(α − β)

∫ 1

0
Gα−β(s; η) f (s, y(s))ds

]
+

b
Γ(α − β)

∫ t

0
(t − s)α−β−1y(s)ds −

1
Γ(α)

∫ t

0
(t − s)α−1 f (s, y(s))ds. (3.5)

Next, an integral operator is typically used to establish a fixed point problem. In our case, we consider
the integral operator T : C[0, 1]→ C[0, 1] defined by

T (y)(t) =
t

1 − η

[
1

Γ(α)

∫ 1

0
Gα(s; η) f (s, y(s))ds −

b
Γ(α − β)

∫ 1

0
Gα−β(s; η) f (s, y(s))ds

]
+

b
Γ(α − β)

∫ t

0
(t − s)α−β−1y(s)ds −

1
Γ(α)

∫ t

0
(t − s)α−1 f (s, y(s))ds. (3.6)
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We can observe that the solution of BVP (3.1) and (3.2) is given by Ty = y. In order to achieve the
existence of the solutions, we let ξ : R2 → R, E(G) = {(u, v) ∈ R2 : ξ(u, v) ≥ 0} and consider the
following conditions:

(H1) There exists u0 ∈ C[0, 1] such that ξ(u0,T (u0)) ≥ 0 for all t ∈ [0, 1].
(H2) For all t ∈ [0, 1] and u, v ∈ C[0, 1],

ξ(u, v) ≥ 0 =⇒ ξ(Tu(t),Tv(t)) ≥ 0.

(H3) For all v, u,w ∈ C[0, 1] and t ∈ [0, 1],

ξ(u(t), v(t)) ≥ 0 and ξ(v(t),w(t)) ≥ 0 together imply ξ(u(t),w(t)) ≥ 0.

(H4) For any t ∈ [0, 1] and for all u, v ∈ R with ξ(u, v) ≥ 0, there is a positive constant L such that

| f (t, u) − f (t, v)| ≤ L|u − v|.

Here, we provide the following useful lemma related to the conditions that appeared in the main
theorem of this section. The results can be verified straightforwardly, therefore, we leave the proof.

Lemma 3.1. Assume that (H1)–(H3) hold. If E(G) = {(u, v) ∈ R2 : ξ(u, v) ≥ 0}, then we have the
following:

(1) There exists u0 ∈ C[0, 1] such that (u0,T (u0)) ∈ E(G) for all t ∈ [0, 1],
(2) For all t ∈ [0, 1] and u, v ∈ C[0, 1],

(u(t), v(t)) ∈ E(G) =⇒ (Tu(t),Tv(t)) ∈ E(G),

(3) The transitivity property of E(G) holds.

Before going though the existence theorem of the BVP (3.1) and (3.2), we introduce the solution
space C([0, 1]) equipped by the metric

dσ(u, v) = max
t∈[0,1]

|u(t) − v(t)|
eσt , u, v ∈ C([0, 1]).

We note that the metric space (C[0, 1], dσ) is complete.

Theorem 3.2. Assume that the conditions (H1)–(H4) hold. If σ is sufficiently large such that

2
(1 − η)

[
(3 − η)L
σα

+
(3 − η)|b|
σα−β

]
< 1,

then T has at least one fixed point u∗ ∈ (C[0, 1], dσ), which means the BVP (3.1) and (3.2) has at least
one solution u∗ ∈ (C[0, 1], dσ).

Proof. Let E(G) = {(u, v) ∈ R2 : ξ(u, v) ≥ 0}. From Lemma 3.1, We have X( f , g) , ∅, T is edge-
preserving with regard to G and E(G) satisfies the transitivity property. Now, in order to demonstrate
this, we concentrate on the actual contraction property of T . As a result, we begin by the condition (H4)
that, for u, v ∈ C[0, 1] such that (u, v) ∈ E(G),
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|T (u)(t) − T (v)(t)| =
∣∣∣∣ t
1 − η

1
Γ(α)

∫ 1

0
Gα(s; η)( f (s, u(s)) − f (s, v(s)))ds

−
t

1 − η
b

Γ(α − β)

∫ 1

0
Gα−β(s; η)( f (s, u(s)) − f (s, v(s)))ds

+
b

Γ(α − β)

∫ t

0
(t − s)α−β−1(u(s) − v(s))ds

−
1

Γ(α)

∫ t

0
(t − s)α−1( f (s, u(s)) − f (s, v(s)))ds

∣∣∣∣
≤

L
(1 − η)Γ(α)

∫ 1

0
|Gα(s; η)| |u(s) − v(s)|ds

+
L|b|

(1 − η)Γ(α − β)

∫ 1

0
|Gα−β(s; η)||u(s) − v(s)|ds

+
|b|

Γ(α − β)

∫ t

0
(t − s)α−β−1|u(s) − v(s)|ds

+
L

Γ(α)

∫ t

0
(t − s)α−1|u(s) − v(s)|ds

=
L

(1 − η)Γ(α)

∫ 1

0
|Gα(s; η)| eσs |u(s) − v(s)|

eσs ds

+
Lb

(1 − η)Γ(α − β)

∫ 1

0
|Gα−β(s; η)|eσs |u(s) − v(s)|

eσs ds

+
|b|

Γ(α − β)

∫ t

0
(t − s)α−β−1eσs |u(s) − v(s)|

eσs ds

+
L

Γ(α)

∫ t

0
(t − s)α−1eσs |u(s) − v(s)|

eσs ds

=
[ L
(1 − η)Γ(α)

∫ 1

0
|Gα(s; η)| eσsds +

Lb
(1 − η)Γ(α − β)

∫ 1

0
|Gα−β(s; η)|eσsds

+
|b|

Γ(α − β)

∫ t

0
(t − s)α−β−1eσsds +

L
Γ(α)

∫ t

0
(t − s)α−1eσsds

]
dσ(u, v).

By applying the fact that ∫ t

0
(t − s)γ−1eσsds ≤

Γ(γ)
σγ

, t ≥ 0, σ > 0,

for γ > 0, we have∫ 1

0
|Gγ(s; η)|eσsds ≤

∫ 1

0
(1 − s)γ−1eσsds +

∫ η

0
(η − s)γ−1eσsds ≤ 2

Γ(γ)
σγ

,

Consequently, we get

|T (u)(t) − T (v)(t)| ≤
1

(1 − η)

[
(3 − η)L
σα

+
(3 − η)|b|
σα−β

]
dσ(u, v),
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which implies

|T (u)(t) − T (v)(t)|
eσt ≤

1
(1 − η)

[
(3 − η)L
σα

+
(3 − η)|b|
σα−β

]
dσ(u, v), t ∈ [0, 1].

Here, we let ϕ(t) = t/2 which is ϕ ∈ Φ. Hence,

dσ(Tu,Tv) ≤
2

(1 − η)

[
(3 − η)L
σα

+
(3 − η)|b|
σα−β

]
ϕ(dσ(u, v)). (3.7)

Therefore, by applying the σ is sufficiently large such that

2
(1 − η)

[
(3 − η)L
σα

+
(3 − η)|b|
σα−β

]
< 1,

then we reach
dσ(Tu,Tv) ≤ φ(dσ(u, v)).

To this end, we define h : C[0, 1] ×C[0, 1]→ [0, 1] by

h(u, v) =

{φ(dσ(u,v))
dσ(u,v)

0
if u , v,
if u = v.

Finally, by utilizing Theorem 2.7, we then have T is (h, φ)M contraction. It follows that u∗ exists in
C[0, 1] such that Tu∗ = u∗ as desired. �

Additionally, one can observe the following for E(G) = R2:
(H∗1) There is a positive constant L such that

| f (t, u) − f (t, v)| ≤ L|u − v|,

for each t ∈ [0, 1] and u, v ∈ R.
The following corollary is provided by Theorem 3.2.

Corollary 3.3. If (H∗1) holds, then the BVP (3.1) and (3.2) has at least one solution u∗ ∈ C[0, 1].

Example 3.4. For 0 ≤ β ≤ 1 < α ≤ 2, we consider the following fractional differential equation

cDαy(t) + bcDβy(t) = L
√

t (arctan(y(t)) − g(t)) , t ∈ [0, 1], (3.8)

with the boundary conditions
y(0) = 0, and y(1) = y(η). (3.9)

Observe that f (t, y(t)) = L
√

t (y(t) − g(t)), we can have

| f (t, u(t)) − f (t, v(t))| = L
√

t |arctan(u(t)) − arctan(v(t))| ≤ L |u(t) − v(t)| , t ∈ [0, 1],

which yields the confirmation of the condition (H∗1). Consequently, Corollary 3.3 conclusion is
applicable, and then the BVP (3.8) and (3.9) has at least one solution on (C[0, 1], dσ), where

2
(1 − η)

[
(3 − η)L
σα

+
(3 − η)|b|
σα−β

]
< 1.
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4. Conclusions

In this study, we investigated the (h-ϕ)R and (h-ϕ)M contractions with two metrics endowed with a
directed graph and established the requirements that guarantee the existence of some common fixed
points. The obtained results extend and generalize the theorems given in the literature, including [31,
47, 52]. Furthermore, by applying our main results, the existence of solutions to a class of nonlinear
two-term fractional differential equations is successfully acquired. The nonlocal boundary conditions
are used in the problems, giving new consequences to study and analyze the existence of a solution
to the fractional BVPs. Additionally, some examples pertaining to the fixed point theorems and the
nonlocal BVPs equations are provided to support our theoretical results. Based on these findings,
we shall extend the fixed-point techniques and use them to investigate the existence of solutions to
nonlinear fractional equations in other types.
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