Research article

Energy analysis of the ADI-FDTD method with fourth-order accuracy in time for Maxwell's equations

  • Received: 28 June 2022 Revised: 31 August 2022 Accepted: 01 September 2022 Published: 28 September 2022
  • MSC : 65M06, 65N15

  • In this work, the ADI-FDTD method with fourth-order accuracy in time for the 2-D Maxwell's equations without sources and charges is proposed. We mainly focus on energy analysis of the proposed ADI-FDTD method. By using the energy method, we derive the numerical energy identity of the ADI-FDTD method and show that the ADI-FDTD method is approximately energy-preserving. In comparison with the energy in theory, the numerical one has two perturbation terms and can be used in computation in order to keep it approximately energy-preserving. Numerical experiments are given to show the performance of the proposed ADI-FDTD method which confirm the theoretical results.

    Citation: Li Zhang, Maohua Ran, Hanyue Zhang. Energy analysis of the ADI-FDTD method with fourth-order accuracy in time for Maxwell's equations[J]. AIMS Mathematics, 2023, 8(1): 264-284. doi: 10.3934/math.2023012

    Related Papers:

  • In this work, the ADI-FDTD method with fourth-order accuracy in time for the 2-D Maxwell's equations without sources and charges is proposed. We mainly focus on energy analysis of the proposed ADI-FDTD method. By using the energy method, we derive the numerical energy identity of the ADI-FDTD method and show that the ADI-FDTD method is approximately energy-preserving. In comparison with the energy in theory, the numerical one has two perturbation terms and can be used in computation in order to keep it approximately energy-preserving. Numerical experiments are given to show the performance of the proposed ADI-FDTD method which confirm the theoretical results.



    加载中


    [1] K. S. Yee, Numerical solution of inition of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE T. Antenn. Propag., 14 (1966), 302–307. http://dx.doi.org/10.1109/TAP.1966.1138693 doi: 10.1109/TAP.1966.1138693
    [2] T. Namiki, A new FDTD algorithm based on alternating direction implicit method, IEEE T. Microw. Theory, 47 (1999), 2003–2007. http://dx.doi.org/10.1109/22.795075 doi: 10.1109/22.795075
    [3] P. Ciarlet, J. Zou, Fully discrete finite element approaches for time-dependent Maxwell's equations, Numer. Math., 82 (1999), 193–219. http://dx.doi.org/10.1007/s002110050417 doi: 10.1007/s002110050417
    [4] L. Mu, J. Wang, X. Ye, S. Zhang, A weak Galerkin finite element method for the Maxwell's equations, J. Sci. Comput., 65 (2016), 363–386. http://dx.doi.org/10.1007/s10915-014-9964-4 doi: 10.1007/s10915-014-9964-4
    [5] A. Taflove, M. E. Brodwin, Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations, IEEE T. Microw. Theory, 23 (1975), 623–630. http://dx.doi.org/10.1109/tmtt.1975.1128640 doi: 10.1109/tmtt.1975.1128640
    [6] J. E. Dendy, G. Fairweather, Alternating-direction Galerkin methods for parabolic and hyperbolic problems on rectangular polygons, SIAM J. Numer. Anal., 12 (1975), 144–163. http://dx.doi.org/10.2307/2156287 doi: 10.2307/2156287
    [7] R. Holland, Implicit three-dimensinal finite differencing of Maxwell's equations, IEEE T. Nucl. Sci., 31 (1984), 1322–1326. http://dx.doi.org/10.1109/tns.1984.4333504 doi: 10.1109/tns.1984.4333504
    [8] R. Leis, Initial boundary value problems in mathematical physics, New York, Wiley, 1986. http://dx.doi.org/10.1007/978-3-663-10649-4
    [9] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), 262–268. http://dx.doi.org/10.1016/0375-9601(90)90092-3 doi: 10.1016/0375-9601(90)90092-3
    [10] S. Li, L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 32 (1995), 1839–1875. http://dx.doi.org/10.2307/2158531 doi: 10.2307/2158531
    [11] A. Taflove, S. Hagness, Computational electrodynamics: The finite-difference time-domain method, 2Eds., Boston, Artech House, 2000. http://dx.doi.org/10.1016/0021-9169(96)80449-1
    [12] F. Zheng, Z. Chen, J. Zhang, Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method, IEEE T. Microw. Theory, 48 (2000), 1550–1558. http://dx.doi.org/10.1109/22.869007 doi: 10.1109/22.869007
    [13] T. Namiki, K. Ito, Investigation of numerical errors of the two-dimensional ADI-FDTD method, IEEE T. Microw. Theory, 48 (2000), 1950–1956. http://dx.doi.org/10.1109/22.883876 doi: 10.1109/22.883876
    [14] F. Zheng, Z. Chen, Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method, IEEE T. Microw. Theory, 49 (2001), 1006–1009. http://dx.doi.org/10.1109/22.920165 doi: 10.1109/22.920165
    [15] S. D. Gedney, G. Liu, J. A. Roden, A. Zhu, Perfectly matched layer media with CFS for an unconditional stable ADI-FDTD method, IEEE T. Antenn. Propag., 49 (2001), 1554–1559. http://dx.doi.org/10.1109/8.964091 doi: 10.1109/8.964091
    [16] J. Douglas, S. Kim, Improved accuracy for locally one-dimensional methods for parabolic equations, Math. Mod. Method. Appl. S., 11 (2001), 1563–1579. http://dx.doi.org/10.1142/s0218202501001471 doi: 10.1142/s0218202501001471
    [17] A. P. Zhao, Analysis of the numerical dispersion of the 2-D alternating-direction implicit FDTD method, IEEE T. Microw. Theory, 50 (2002), 1156–1164. http://dx.doi.org/10.1109/22.993419 doi: 10.1109/22.993419
    [18] Z. Q. Xie, C. H. Chan, B. Zhang, An explict four-order staggered finite-difference time-domain method for Maxwell's equations, J. Comput. Appl. Math., 147 (2002), 75–98. http://dx.doi.org/10.1016/S0377-0427(02)00394-1 doi: 10.1016/S0377-0427(02)00394-1
    [19] L. Gao, B. Zhang, D. Liang, The splitting finite-difference time-domain methods for Maxwell's equations in two dimensions, J. Comput. Appl. Math., 205 (2007), 207–230. http://dx.doi.org/10.1016/j.cam.2006.04.051 doi: 10.1016/j.cam.2006.04.051
    [20] B. Li, W. Sun, Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media, SIAM J. Numer. Anal., 51 (2013), 1959–1977. http://dx.doi.org/10.1137/120871821 doi: 10.1137/120871821
    [21] J. Wang, A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, J. Sci. Comput., 60 (2014), 390–407. http://dx.doi.org/10.1007/s10915-013-9799-4 doi: 10.1007/s10915-013-9799-4
    [22] D. Li, J. Wang, Unconditionally optimal error analysis of Crank-Nicolson Galerkin FEMs for a strongly nonlinear parabolic system, J. Sci. Comput., 72 (2017), 892–915. http://dx.doi.org/10.1007/s10915-017-0381-3 doi: 10.1007/s10915-017-0381-3
    [23] E. L. Tan, Y. H. Ding, ADI-FDTD Method with fourth order accuracy in time, IEEE T. Microw. Theory, 18 (2008), 296–298. http://dx.doi.org/10.1109/lmwc.2008.922099 doi: 10.1109/lmwc.2008.922099
    [24] W. Chen, X. Li, D. Liang, Energy-conserved splitting FDTD methods for Maxwell's equations, Numer. Math., 108 (2008), 445–485. http://dx.doi.org/10.1007/s00211-007-0123-9 doi: 10.1007/s00211-007-0123-9
    [25] W. Chen, X. Li, D. Liang, Symmetric energy-conserved splitting FDTD scheme for the Maxwell's equations, Commun. Comput. Phys., 6 (2009), 804–825. http://dx.doi.org/10.4208/cicp.2009.v6.p804 doi: 10.4208/cicp.2009.v6.p804
    [26] W. Li, D. Liang, Symmetric energy-conserved S-FDTD scheme for two-dimensional Maxwell's equations in negative index metamaterials, J. Sci. Comput., 69 (2016), 696–735. http://dx.doi.org/10.1007/s10915-016-0214-9 doi: 10.1007/s10915-016-0214-9
    [27] M. H. Carpenter, D. Gottlieb, S. Abarbanel, Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes, J. Comput. Phys., 111 (1994), 220–236. http://dx.doi.org/10.1006/jcph.1994.1057 doi: 10.1006/jcph.1994.1057
    [28] D. Appel$\ddot{o}$, V. A. Bokil, Y. Cheng, F. Li, Energy stable SBP-FDTD methods for Maxwell-Duffing models in nonlinear photonics, IEEE J. Multiscale Mu., 4 (2019), 329–336. http://dx.doi.org/10.1109/jmmct.2019.2959587 doi: 10.1109/jmmct.2019.2959587
    [29] N. Sharan, P. T. Brady, D. Livescu, Time stability of strong boundary conditions in finite-difference schemes for hyperbolic systems, SIAM J. Numer. Anal., 60 (2022), 1331–1362. http://dx.doi.org/10.1137/21M1419957 doi: 10.1137/21M1419957
    [30] D. Liang, Q. Yuan, The spatial fourth-order energy-conserved S-FDTD scheme for Maxwell's equations, J. Comput. Phys., 243 (2013), 344–364. http://dx.doi.org/10.1016/j.jcp.2013.02.040 doi: 10.1016/j.jcp.2013.02.040
    [31] L. Gao, X. Li, W. Chen, New energy identities and super convergence analysis of the energy conserved splitting FDTD methods for 3D Maxwell's equations, Math. Meth. Appl. Sci., 36 (2013), 440–455. http://dx.doi.org/10.1002/mma.2605 doi: 10.1002/mma.2605
    [32] L. Gao, M. Cao, R. Shi, H. Guo, Energy conservation and super convergence analysis of the EC-S-FDTD schemes for Maxwell's equations with periodic boundaries, Numer. Meth. Part. D. E., 35 (2019), 1562–1587. http://dx.doi.org/10.1002/num.22364 doi: 10.1002/num.22364
    [33] J. Xie, D. Liang, Z. Zhang, Energy-preserving local mesh-refined splitting FDTD schemes for two dimensional Maxwell's equations, J. Comput. Phys., 425 (2021), 109896. http://dx.doi.org/10.1016/j.jcp.2020.109896 doi: 10.1016/j.jcp.2020.109896
    [34] D. Wang, A. Xiao, W. Yang, A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys., 272 (2014), 644–655. http://dx.doi.org/10.1016/j.jcp.2014.04.047 doi: 10.1016/j.jcp.2014.04.047
    [35] P. Wang, C. Huang, An energy conservative difference scheme for the nonlinear fractional Schrödinger equations, J. Comput. Phys., 293 (2015), 238–251. http://dx.doi.org/10.1016/j.jcp.2014.03.037 doi: 10.1016/j.jcp.2014.03.037
    [36] M. Ran, C. Zhang, A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations, Commun. Nonlinear Sci., 41 (2016), 64–83. http://dx.doi.org/10.1016/j.cnsns.2016.04.026 doi: 10.1016/j.cnsns.2016.04.026
    [37] M. Ran, C. Zhang, A linearly implicit conservative scheme for the fractional nonlinear Schrödinger equation with wave operator, Int. J. Comput. Math., 93 (2016), 1103–1118. http://dx.doi.org/10.1080/00207160.2015.1016924 doi: 10.1080/00207160.2015.1016924
    [38] H. Li, Y. Wang, Q. Sheng, An energy-preserving Crank-Nicolson Galerkin method for Hamiltonian partial differential equations, Numer. Meth. Part. D. E., 32 (2016), 1485–1504. http://dx.doi.org/10.1002/num.22062 doi: 10.1002/num.22062
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1517) PDF downloads(153) Cited by(0)

Article outline

Figures and Tables

Figures(18)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog