Let $ G $ be a simple connected graph with the vertex set $ V(G) $ and $ d_{B}(u, v) $ be the biharmonic distance between two vertices $ u $ and $ v $ in $ G $. The biharmonic index $ BH(G) $ of $ G $ is defined as
$ BH(G) = \frac{1}{2}\sum\limits_{u\in V(G)}\sum\limits_{v\in V(G)}d_{B}^2(u, v) = n\sum\limits_{i = 2}^{n}\frac{1}{\lambda_i^2(G)}, $
where $ \lambda_i(G) $ is the $ i $-th eigenvalue of the Laplacian matrix of $ G $ with $ n $ vertices. In this paper, we provide the mathematical relationships between the biharmonic index and some classic topological indices: the first Zagreb index, the forgotten topological index and the Kirchhoff index. In addition, the extremal value on the biharmonic index for all graphs with diameter two, trees and firefly graphs are given, respectively. Finally, some graph operations on the biharmonic index are presented.
Citation: Zhen Lin. The biharmonic index of connected graphs[J]. AIMS Mathematics, 2022, 7(4): 6050-6065. doi: 10.3934/math.2022337
Let $ G $ be a simple connected graph with the vertex set $ V(G) $ and $ d_{B}(u, v) $ be the biharmonic distance between two vertices $ u $ and $ v $ in $ G $. The biharmonic index $ BH(G) $ of $ G $ is defined as
$ BH(G) = \frac{1}{2}\sum\limits_{u\in V(G)}\sum\limits_{v\in V(G)}d_{B}^2(u, v) = n\sum\limits_{i = 2}^{n}\frac{1}{\lambda_i^2(G)}, $
where $ \lambda_i(G) $ is the $ i $-th eigenvalue of the Laplacian matrix of $ G $ with $ n $ vertices. In this paper, we provide the mathematical relationships between the biharmonic index and some classic topological indices: the first Zagreb index, the forgotten topological index and the Kirchhoff index. In addition, the extremal value on the biharmonic index for all graphs with diameter two, trees and firefly graphs are given, respectively. Finally, some graph operations on the biharmonic index are presented.
[1] | M. S. Alsharafi, M. M. Shubatah, A. Q. Alameri, The forgotten index of complement graph operations and its applications of molecular graph, Open J. Discret. Appl. Math., 3 (2020), 53–61. https://doi.org/10.30538/psrp-odam2020.0043 doi: 10.30538/psrp-odam2020.0043 |
[2] | S. Barik, R. B. Bapat, S. Pati, On the Laplacian spectra of product graphs, Appl. Anal. Discrete Math., 9 (2015), 39–58. |
[3] | B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem., 78 (2017), 17–100. |
[4] | M. Barahona, L. M. Pecora, Synchronization in small-world systems, Phys. Rev. Lett., 89 (2002), 054101. https://doi.org/10.1103/PhysRevLett.89.054101 doi: 10.1103/PhysRevLett.89.054101 |
[5] | M. V. Diudea, QSPR/QSAR Studies by molecular descriptors, Huntington: Nova, 2001. |
[6] | K. C. Das, Proof of conjectures involving algebraic connectivity of graphs, Linear Algebra Appl., 438 (2013), 3291–3302. https://doi.org/10.1016/j.laa.2012.11.036 doi: 10.1016/j.laa.2012.11.036 |
[7] | J. Devillers, A. T. Balaban, Topological indices and related descriptors in QSAR and QSPR, Amsterdam: Gordon and Breach, 1999. |
[8] | M. Fiedler, Algebraic connectivity of graphs, Czech. Math. J., 23 (1973), 298–305. |
[9] | B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem., 53 (2015), 1184–1190. https://doi.org/10.1007/s10910-015-0480-z doi: 10.1007/s10910-015-0480-z |
[10] | G. H. Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem., 65 (2011), 79–84. |
[11] | J. M. Guo, On the second largest Laplacian eigenvalue of trees, Linear Algebra Appl., 404 (2005), 251–261. https://doi.org/10.1016/j.laa.2005.02.031 doi: 10.1016/j.laa.2005.02.031 |
[12] | A. Ghosh, S. Boyd, A. Saberi, Minimizing effective resistance of a graph, SIAM Rev., 50 (2008), 37–66. https://doi.org/10.1137/050645452 doi: 10.1137/050645452 |
[13] | I. Gutman, S. A Klavžar, B. Mohar, Fifty years of the Wiener index, MATCH Commun. Math. Comput. Chem., 1997, 1–259. |
[14] | R. Grone, R. Merris, The Laplacian spectrum of a graph Ⅱ, SIAM J. Discrete Math., 7 (1994), 221–229. https://doi.org/10.1137/S0895480191222653 doi: 10.1137/S0895480191222653 |
[15] | I. Gutman, B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide, J. Chem. Inf. Comput. Sci., 36 (1996), 982–985. https://doi.org/10.1021/ci960007t doi: 10.1021/ci960007t |
[16] | R. Grone, R. Merris, V. S. Sunder, The Laplacian spectral of graphs, SIAM J. Matrix Anal. Appl., 11 (1990), 218–238. https://doi.org/10.1137/0611016 doi: 10.1137/0611016 |
[17] | W. Gao, M. K. Siddiqui, M. Imran, M. K. Jamil, M. R. Farahani, Forgotten topological index of chemical structure in drugs, Saudi Pharm. J., 24 (2016), 258–264. https://doi.org/10.1016/j.jsps.2016.04.012 doi: 10.1016/j.jsps.2016.04.012 |
[18] | I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total $p$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1 |
[19] | D. P. Jacobs, E. R. Oliveira, V. Trevisan, Most Laplacian eigenvalues of a tree are small, J. Comb. Theory B, 146 (2021), 1–33. https://doi.org/10.1016/j.jctb.2020.07.003 doi: 10.1016/j.jctb.2020.07.003 |
[20] | D. J. Klein, M. Randić, Resistance distance, J. Math. Chem., 12 (1993), 81–95. https://doi.org/10.1007/BF01164627 doi: 10.1007/BF01164627 |
[21] | M. Knor, R. Škrekovski, A. Tepeh, Mathematical aspects of Wiener index, Ars Math. Contemp., 11 (2016), 327–352. https://doi.org/10.26493/1855-3974.795.ebf doi: 10.26493/1855-3974.795.ebf |
[22] | J. X. Li, J. M. Guo, W. C. Shiu, S. B. B. Altinda, D. Bozkurt, Bounding the sum of powers of normalized Laplacian eigenvalues of a graph, Appl. Math. Comput., 324 (2018), 82–92. https://doi.org/10.1016/j.amc.2017.12.003 doi: 10.1016/j.amc.2017.12.003 |
[23] | X. Li, R. N. Mohapatra, R. S. Rodriguez, Grüss-type inequalities, J. Math. Anal. Appl., 267 (2002), 434–443. https://doi.org/10.1006/jmaa.2001.7565 doi: 10.1006/jmaa.2001.7565 |
[24] | J. S. Li, Y. L. Pan, A note on the second largest eigenvalue of the Laplacian matrix of a graph, Linear Multilinear A, 48 (2000), 117–121. https://doi.org/10.1080/03081080008818663 doi: 10.1080/03081080008818663 |
[25] | Y. Lipman, R. M. Rustamov, T. A. Funkhouser, Biharmonic distance, ACM T. Graphic, 29 (2010), 1–11. https://doi.org/10.1145/1805964.1805971 doi: 10.1145/1805964.1805971 |
[26] | R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl., 197–198 (1994), 143–176. https://doi.org/10.1016/0024-3795(94)90486-3 doi: 10.1016/0024-3795(94)90486-3 |
[27] | R. Merris, Laplacian graph eigenvectors, Linear Algebra Appl., 278 (1998), 221–236. https://doi.org/10.1016/S0024-3795(97)10080-5 doi: 10.1016/S0024-3795(97)10080-5 |
[28] | L. A. J. Müller, K. G. Kugler, M. Netzer, A. Graber, M. Dehmer, A network-based approach to classify the three domains of life, Biol. Direct, 6 (2011), 53. https://doi.org/10.1186/1745-6150-6-53 doi: 10.1186/1745-6150-6-53 |
[29] | A. Mehler, A. Lücking, P. Wei, A network model of interpersonal alignment in dialog, Entropy, 12 (2010), 1440–1483. https://doi.org/10.3390/e12061440 doi: 10.3390/e12061440 |
[30] | M. R. Oboudi, A new lower bound for the energy of graphs, Linear Algebra Appl., 580 (2019), 384–395. https://doi.org/10.1016/j.laa.2019.06.026 doi: 10.1016/j.laa.2019.06.026 |
[31] | T. Puzyn, J. Leszczynski, M. T. D. Cronin, Recent advances in QSAR studies-methods and applications, Dordrecht: Springer, 2010. |
[32] | G. Pólya, Aufgaben und Lehrsütze ans der analysis, Band I: Reihen, Integralrechnung, Funktiontheorie (in German), Berlin: Springer Verlag, 1970. |
[33] | J. Radon, Über die absolut additiven mengenfunktionen, Wiener-Sitzungsber, 122 (1913), 1295–1438. |
[34] | S. D. Stankov, M. M. Matejić, I. Ž. Milovanović, E. I. Milovanović, Ș. B. B. Altındağ, Some new bounds on the first Zagreb index, Electron. J. Math., 1 (2021), 101–107. https://doi.org/10.47443/ejm.2021.0014 doi: 10.47443/ejm.2021.0014 |
[35] | H. Wiener, Structural determination of paraffin boiling point, J. Amer. Chem. Soc., 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005 doi: 10.1021/ja01193a005 |
[36] | Y. L. Wei, R. H. Li, W. H. Yang, Biharmonic distance of graphs, arXiv: 2110.02656. |
[37] | Y. H. Yi, B. L. Yang, Z. Z. Zhang, S. Patterson, Biharmonic distance and the performance of second-order consensus networks with stochastic disturbances, 2018 Annual American Control Conference (ACC), 2018, 4943–4950. https://doi.org/10.23919/ACC.2018.8431294 |
[38] | Z. B. Zhang, W. Y. Xu, Y. H. Yi, Z. Z. Zhang, Fast approximation of coherence for second-order noisy consensus networks, IEEE T. Cybernetics, 52 (2022), 677–686. https://doi.org/10.1109/TCYB.2020.2965586 doi: 10.1109/TCYB.2020.2965586 |