We establish the existence of infinitely many solutions for some nonlinear fractional differential equations under suitable oscillating behaviour of the nonlinear term. These problems have a variational structure and we prove our main results by using a critical point theorem due to Ricceri.
Citation: Armin Hadjian, Juan J. Nieto. Existence of solutions of Dirichlet problems for one dimensional fractional equations[J]. AIMS Mathematics, 2022, 7(4): 6034-6049. doi: 10.3934/math.2022336
We establish the existence of infinitely many solutions for some nonlinear fractional differential equations under suitable oscillating behaviour of the nonlinear term. These problems have a variational structure and we prove our main results by using a critical point theorem due to Ricceri.
[1] | G. A. Afrouzi, A. Hadjian, A variational approach for boundary value problems for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 21 (2018), 1565–1584. https://doi.org/10.1515/fca-2018-0082 doi: 10.1515/fca-2018-0082 |
[2] | G. A. Afrouzi, S. M. Kolagar, A. Hadjian, J. Xu, A variational approach for fractional boundary value systems depending on two parameters, Filomat, 32 (2018), 517–530. https://doi.org/10.2298/FIL1802517A doi: 10.2298/FIL1802517A |
[3] | D. Averna, A. Sciammetta, E. Tornatore, Infinitely many solutions to boundary value problem for fractional differential equations, Fract. Calc. Appl. Anal., 21 (2018), 1585–1597. https://doi.org/10.1515/fca-2018-0083 doi: 10.1515/fca-2018-0083 |
[4] | D. Averna, S. Tersian, E. Tornatore, On the existence and multiplicity of solutions for Dirichlet's problem for fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 253–266. https://doi.org/10.1515/fca-2016-0014 doi: 10.1515/fca-2016-0014 |
[5] | C. Bai, Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem, Electron. J. Differ. Eq., 2012 (2012), 176. |
[6] | A. S. Berdyshev, B. J. Kadirkulov, J. J. Nieto, Solvability of an elliptic partial differential equation with boundary condition involving fractional derivatives, Complex Var. Elliptic Equ., 59 (2014), 680–692. https://doi.org/10.1080/17476933.2013.777711 doi: 10.1080/17476933.2013.777711 |
[7] | G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75 (2012), 2992–3007. https://doi.org/10.1016/j.na.2011.12.003 doi: 10.1016/j.na.2011.12.003 |
[8] | G. Bonanno, G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the $p$-Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 737–752. https://doi.org/10.1017/S0308210509000845 doi: 10.1017/S0308210509000845 |
[9] | J. F. Bonder, Z. Cheng, H. Mikayelyan, Optimal rearrangement problem and normalized obstacle problem in the fractional setting, Adv. Nonlinear Anal., 9 (2020), 1592–1606. https://doi.org/10.1515/anona-2020-0067 doi: 10.1515/anona-2020-0067 |
[10] | M. J. Ceballos-Lira, A. Pérez, Global solutions and blowing-up solutions for a nonautonomous and nonlocal in space reaction-diffusion system with Dirichlet boundary conditions, Fract. Calc. Appl. Anal., 23 (2020), 1025–1053. https://doi.org/10.1515/fca-2020-0054 doi: 10.1515/fca-2020-0054 |
[11] | P. Chen, Z. Cao, S. Chen, X. Tang, Ground states for a fractional reaction-diffusion system, J. Appl. Anal. Comput., 11 (2021), 556–567. https://doi.org/10.11948/20200349 doi: 10.11948/20200349 |
[12] | J. N. Corvellec, V. V. Motreanu, C. Saccon, Doubly resonant semilinear elliptic problems via nonsmooth critical point theory, J. Differ. Equations, 248 (2010), 2064–2091. https://doi.org/10.1016/j.jde.2009.11.005 doi: 10.1016/j.jde.2009.11.005 |
[13] | M. Ferrara, A. Hadjian, Variational approach to fractional boundary value problems with two control parameters, Electron. J. Differ. Eq., 2015 (2015), 138. |
[14] | M. Galewski, G. Molica Bisci, Existence results for one-dimensional fractional equations, Math. Methods Appl. Sci., 39 (2016), 1480–1492. https://doi.org/10.1002/mma.3582 doi: 10.1002/mma.3582 |
[15] | B. Ge, V. Rădulescu, J. C. Zhang, Infinitely many positive solutions of fractional boundary value problems, Topol. Methods Nonlinear Anal., 49 (2017), 647–664. https://doi.org/10.12775/TMNA.2017.001 doi: 10.12775/TMNA.2017.001 |
[16] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[17] | F. Jiao, Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 62 (2011), 1181–1199. https://doi.org/10.1016/j.camwa.2011.03.086 doi: 10.1016/j.camwa.2011.03.086 |
[18] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-holland mathematics studies, Vol. 204, Amsterdam: Elsevier, 2006. |
[19] | A. Kristály, V. D. Rădulescu, C. G. Varga, Variational principles in mathematical physics, geometry, and economics: Qualitative analysis of nonlinear equations and unilateral problems, Encyclopedia of Mathematics and its Applications, No. 136, Cambridge: Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511760631 |
[20] | V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677–2682. https://doi.org/10.1016/j.na.2007.08.042 doi: 10.1016/j.na.2007.08.042 |
[21] | F. Li, Z. Liang, Q. Zhang, Existence of solutions to a class of nonlinear second order two-point boundary value problems, J. Math. Anal. Appl., 312 (2005), 357–373. https://doi.org/10.1016/j.jmaa.2005.03.043 doi: 10.1016/j.jmaa.2005.03.043 |
[22] | J. Manimaran, L. Shangerganesh, A. Debbouche, Finite element error analysis of a time-fractional nonlocal diffusion equation with the Dirichlet energy, J. Comput. Appl. Math., 382 (2021), 113066. https://doi.org/10.1016/j.cam.2020.113066 doi: 10.1016/j.cam.2020.113066 |
[23] | J. Mawhin, M. Willem, Critical point theorey and Hamiltonian systems, New York: Springer, 1989. https://doi.org/10.1007/978-1-4757-2061-7 |
[24] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[25] | T. Mukherjee, K. Sreenadh, On Dirichlet problem for fractional $p$-Laplacian with singular non-linearity, Adv. Nonlinear Anal., 8 (2019), 52–72. https://doi.org/10.1515/anona-2016-0100 doi: 10.1515/anona-2016-0100 |
[26] | I. Podlubny, Fractional differential equations, In: Mathematics in science and engineering, Vol. 198, New York: Academic Press, 1999. |
[27] | P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Rhode Island: American Mathematical Society, 1986. |
[28] | B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401–410. https://doi.org/10.1016/S0377-0427(99)00269-1 doi: 10.1016/S0377-0427(99)00269-1 |
[29] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Switzerland: Gordon and Breach, 1993. |
[30] | C. L. Tang, X. P. Wu, Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems, J. Differ. Equations, 248 (2010), 660–692. https://doi.org/10.1016/j.jde.2009.11.007 doi: 10.1016/j.jde.2009.11.007 |
[31] | Y. Tian, J. J. Nieto, The applications of critical-point theory to discontinuous fractional-order differential equations, Proc. Edinburgh Math. Soc., 60 (2017), 1021–1051. https://doi.org/10.1017/S001309151600050X doi: 10.1017/S001309151600050X |
[32] | M. P. Tran, T. N. Nguyen, New gradient estimates for solutions to quasilinear divergence form elliptic equations with general Dirichlet boundary data, J. Differ. Equations, 268 (2020), 1427–1462. https://doi.org/10.1016/j.jde.2019.08.052 doi: 10.1016/j.jde.2019.08.052 |
[33] | M. Xiang, B. Zhang, V. D. Rădulescu, Superlinear Schrödinger-Kirchhoff type problems involving the fractional $p$-Laplacian and critical exponent, Adv. Nonlinear Anal., 9 (2020), 690–709. https://doi.org/10.1515/anona-2020-0021 doi: 10.1515/anona-2020-0021 |
[34] | M. Zhen, B. Zhang, V. D. Rădulescu, Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case, Discrete Contin. Dyn. Syst., 41 (2021), 2653–2676. https://doi.org/10.3934/dcds.2020379 doi: 10.3934/dcds.2020379 |