The $ r $-Lah numbers generalize the Lah numbers to the $ r $-Stirling numbers in the same sense. The Stirling numbers and the central factorial numbers are one of the important tools in enumerative combinatorics. The $ r $-Lah number counts the number of partitions of a set with $ n+r $ elements into $ k+r $ ordered blocks such that $ r $ distinguished elements have to be in distinct ordered blocks. In this paper, the $ r $-central Lah numbers and the $ r $-central Lah-Bell numbers ($ r\in \mathbb{N} $) are introduced parallel to the $ r $-extended central factorial numbers of the second kind and $ r $-extended central Bell polynomials. In addition, some identities related to these numbers including the generating functions, explicit formulas, binomial convolutions are derived. Moreover, the $ r $-central Lah numbers and the $ r $-central Lah-Bell numbers are shown to be represented by Riemann integral, respectively.
Citation: Hye Kyung Kim. Note on $ r $-central Lah numbers and $ r $-central Lah-Bell numbers[J]. AIMS Mathematics, 2022, 7(2): 2929-2939. doi: 10.3934/math.2022161
The $ r $-Lah numbers generalize the Lah numbers to the $ r $-Stirling numbers in the same sense. The Stirling numbers and the central factorial numbers are one of the important tools in enumerative combinatorics. The $ r $-Lah number counts the number of partitions of a set with $ n+r $ elements into $ k+r $ ordered blocks such that $ r $ distinguished elements have to be in distinct ordered blocks. In this paper, the $ r $-central Lah numbers and the $ r $-central Lah-Bell numbers ($ r\in \mathbb{N} $) are introduced parallel to the $ r $-extended central factorial numbers of the second kind and $ r $-extended central Bell polynomials. In addition, some identities related to these numbers including the generating functions, explicit formulas, binomial convolutions are derived. Moreover, the $ r $-central Lah numbers and the $ r $-central Lah-Bell numbers are shown to be represented by Riemann integral, respectively.
[1] | H. Belbachir, Y. Djemmada, On central Fubini-like numbers and polynomials, Miskolc Math. Notes, 22 (2021), 77–90. doi: 10.18514/MMN.2021.2809. doi: 10.18514/MMN.2021.2809 |
[2] | H. Belbachir, Y. Djemmada, Generalized geometric polynomials via Steffensen's generalized factorials and Tanny's operators, Indian J. Pure Appl. Math., 51 (2020), 1713–1727. doi: 10.1007/s13226-020-0491-8. doi: 10.1007/s13226-020-0491-8 |
[3] | A. Z. Broder, The $r$-Stirling numbers, Discrete Math., 49 (1984), 241–259. doi: 10.1016/0012-365X(84)90161-4. |
[4] | P. L. Butzer, M. Schmidt, E. L. Stark, L. Vogt, Central factorial numbers; their main properties and some applications, Numer. Funct. Anal. Optim., 10 (1989), 419–488. doi: 10.1080/01630568908816313. doi: 10.1080/01630568908816313 |
[5] | C. A. Charalambides, Central factorial numbers and related expansions, Fibonacci Quart., 19 (1981), 451–456. |
[6] | M. W. Coffet, A set of identites for a class of alternating binomial sums arising in computing applications, arXiv. Available from: https://arXiv.org/abs/math-ph/0608049. |
[7] | L. Comtet, Advanced combinatorics: The art of finite and infinite expansions, Dordrecht: D. Reidel Publishing Company, 1974. |
[8] | M. Eastwood, H. Goldschmidt, Zero-energy felds on complex projective space, J. Differ. Geom., 94 (2013), 129–157. doi: 10.4310/jdg/1361889063. doi: 10.4310/jdg/1361889063 |
[9] | D. S. Kim, D. V. Dolgy, D. Kim, T. Kim, Some identities on $r$-central factorial numbers and $r$-central Bell polynomials, Adv. Differ. Equ., 2019 (2019), 245. doi: 10.1186/s13662-019-2195-0. doi: 10.1186/s13662-019-2195-0 |
[10] | D. S. Kim, H. Y. Kim, D. Kim, T. Kim, On $r$-central incomplete and complete Bell polynomials, Symmetry, 11 (2019), 724. doi: 10.3390/sym11050724. doi: 10.3390/sym11050724 |
[11] | D. S. Kim, T. Kim, Lah-Bell numbers and polynomials, Proc. Jangjeon Math. Soc., 23 (2020), 577–586. |
[12] | D. S. Kim, J. Kwon, D. V. Dolgy, T. Kim, On central Fubini polynomials associated with central factorial numbers of the second kind, Proc. Jangjeon Math. Soc., 21 (2018), 589–598. |
[13] | H. K. Kim, Central Lah numbers and central Lah-Bell numbers, 2021. doi: 10.13140/RG.2.2.24556.08321/1. |
[14] | H. K. Kim, D. S. Lee, Note on extended Lah-Bell polynomials and degenerate extended Lah-Bell polynomials. Adv. Stud. Contemp. Math., 30 (2020), 547–558. |
[15] | T. Kim, A note on central factorial numbers, Proc. Jangjeon. Math. Soc., 21 (2018), 575–588. |
[16] | T. Kim, D. S. Kim, $r$-extended Lah-Bell numbers and polynomials associated with $r$-Lah numbers, Proc. Jangjeon Math. Soc., 24 (2021), 507–514. |
[17] | T. Kim, D. S. Kim, A note on central Bell numbers and polynomials. Russ. J. Math. Phys., 27 (2020), 76–81. doi: 10.1134/S1061920820010070. |
[18] | I. Lah, A new kind of numbers and its application in the actuarial mathematics, Bol. Inst. Acyuar. Port., 9 (1954), 7–15. |
[19] | A. F. Loureiro, New results on the Bochner condition about classical orthogonal polynomials, J. Math. Anal. Appl., 364 (2010), 307–323. doi: 10.1016/j.jmaa.2009.12.003. doi: 10.1016/j.jmaa.2009.12.003 |
[20] | Y. Ma, D. S. Kim, T. Kim, H. Kim, H. Lee, Some identities of Lah-Bell polynomials, Adv. Differ. Equ., 2020 (2020), 510. doi: 10.1186/s13662-020-02966-6. doi: 10.1186/s13662-020-02966-6 |
[21] | I. Martinjak, R. Skrekovski, Lah numbers and Lindstrom's lemma, C. R. Math., 356 (2018), 5–7. doi: 10.1016/j.crma.2017.11.010. doi: 10.1016/j.crma.2017.11.010 |
[22] | M. Mihoubi, Bell polynomials and binomial type sequences, Discrete Math., 308 (2008), 2450–2459. doi: 10.1016/j.disc.2007.05.010. doi: 10.1016/j.disc.2007.05.010 |
[23] | G. Nyul, G. Racz, The $r$-Lah numbers, Discrete Math., 338 (2015), 1660–1666, doi: 10.1016/j.disc.2014.03.029. |
[24] | G. Nyul, G. Racz, Sums of $r$-Lah numbers and $r$-Lah polynomials, Ars Math. Contemp, 18 (2020), 211–222. doi: 10.26493/1855-3974.1793.c4d. doi: 10.26493/1855-3974.1793.c4d |
[25] | C. Ramirez, M. Shattuck, A (p, q)-analogue of the r-Whitney-Lah numbers, J. Integer Seq., 19 (2016), 16.5.6. |
[26] | J. Riordan, Combinatorial identities, New York: John Wiley and Sons, Inc., 1968. |
[27] | J. F. Steffensen, Interpolation, Baltimore 1927. |