Research article

Applications of $ q $-difference symmetric operator in harmonic univalent functions

  • Received: 31 May 2021 Accepted: 08 September 2021 Published: 15 October 2021
  • MSC : Primary: 05A30, 30C45; Secondary: 11B65, 47B38

  • In this paper, for the first time, we apply symmetric $ q $ -calculus operator theory to define symmetric Salagean $ q $-differential operator. We introduce a new class $ \widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) $ of harmonic univalent functions $ f $ associated with newly defined symmetric Salagean $ q $-differential operator for complex harmonic functions. A sufficient coefficient condition for the functions $ f $ to be sense preserving and univalent and in the same class is obtained. It is proved that this coefficient condition is necessary for the functions in its subclass $ \overline{\widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) } $ and obtain sharp coefficient bounds, distortion theorems and covering results. Furthermore, we also highlight some known consequence of our main results.

    Citation: Caihuan Zhang, Shahid Khan, Aftab Hussain, Nazar Khan, Saqib Hussain, Nasir Khan. Applications of $ q $-difference symmetric operator in harmonic univalent functions[J]. AIMS Mathematics, 2022, 7(1): 667-680. doi: 10.3934/math.2022042

    Related Papers:

  • In this paper, for the first time, we apply symmetric $ q $ -calculus operator theory to define symmetric Salagean $ q $-differential operator. We introduce a new class $ \widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) $ of harmonic univalent functions $ f $ associated with newly defined symmetric Salagean $ q $-differential operator for complex harmonic functions. A sufficient coefficient condition for the functions $ f $ to be sense preserving and univalent and in the same class is obtained. It is proved that this coefficient condition is necessary for the functions in its subclass $ \overline{\widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) } $ and obtain sharp coefficient bounds, distortion theorems and covering results. Furthermore, we also highlight some known consequence of our main results.



    加载中


    [1] L. C. Biedenharn, The quantum group $SUq$(2) and a $q$-analogue of the boson operators, J. Phys. A, 22 (1984), 873–878. doi: 10.1088/0305-4470/22/18/004. doi: 10.1088/0305-4470/22/18/004
    [2] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. AI Math., 9 (1984), 3–25. doi: 10.5186/aasfm.1984.0905. doi: 10.5186/aasfm.1984.0905
    [3] A. M. Da Cruz, N. Martins, The $q$-symmetric variational calculus, Comput. Math. Appl., 64 (2012), 2241–2250. doi: 10.1016/j.camwa.2012.01.076. doi: 10.1016/j.camwa.2012.01.076
    [4] P. L. Duren, Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, Vol. 156, Cambridge University Press, Cambridge, London and New York, 2004. doi: 10.1017/CBO9780511546600.
    [5] W. Hengartner, G. Schober, Univalent harmonic functions, Trans. Am. Math. Soc., 299 (1987), 1–31. doi: 10.2307/2000478. doi: 10.2307/2000478
    [6] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84. doi: 10.1080/17476939008814407. doi: 10.1080/17476939008814407
    [7] F. H. Jackson, On $q$-functions and a certain difference operator, Trans. R. Soc. Edinburgh, 46 (1908), 253–281. doi: 10.1017/S0080456800002751. doi: 10.1017/S0080456800002751
    [8] J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl., 235 (1999), 470–477.
    [9] J. M. Jahangiri, Harmonic univalent functions defined by $q$ -calculus operators, Int. J. Math. Anal. Appl., 5 (2018), 39–43.
    [10] J. M. Jahangiri, Y. C. Kim, H. M. Srivastava, Construction of a certain class of harmonic close-to-convex functions associated with the Alexander integral transform, Integr. Transforms Spec. Funct., 14 (2003), 237–242. doi: 10.1080/1065246031000074380. doi: 10.1080/1065246031000074380
    [11] J. M. Jahangiri, G. Murugusundaramoorthy, K. Vijaya, Salagean-type harmonic univalent functions, Southwest J. Pure Appl. Math., 2 (2002), 77–82.
    [12] B. Kamel, S. Yosr, On some symmetric $q$-special functions, Le Mat., 68 (2013), 107–122. doi: 10.4418/2013.68.2.8. doi: 10.4418/2013.68.2.8
    [13] S. Kanas, S. Altinkaya, S. Yalcin, Subclass of $k$ uniformly starlike functions defined by symmetric $q$-derivative operator, Ukr. Math. J., 70 (2019), 1727–1740.
    [14] S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. doi: 10.2478/s12175-014-0268-9. doi: 10.2478/s12175-014-0268-9
    [15] B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent $q$-starlike functions involving higher-order $q$-Derivatives, Mathematics, 8 (2020), 1470. doi: 10.3390/math8091470. doi: 10.3390/math8091470
    [16] B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Tahir, Applications of higher-order derivatives to subclasses of multivalent $q$-starlike functions, Maejo Int. J. Sci. Technol., 15 (2021), 61–72.
    [17] B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Q. Z. Ahmad, Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain, Mathematics, 8 (2020), 1334. doi: 10.3390/math8081334. doi: 10.3390/math8081334
    [18] B. Khan, H. M. Srivastava, M. Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain integral operator to the subclasses of analytic and bi-univalent functions, AIMS Math., 6 (2021), 1024–1039. doi: 10.3934/math.2021061. doi: 10.3934/math.2021061
    [19] B. Khan, H. M. Srivastava, N. Khan, M. Darus, Q. Z. Ahmad, M. Tahir, Applications of certain conic domains to a subclass of $q$-starlike functions associated with the Janowski functions, Symmetry, 13 (2021), 574. doi: 10.3390/sym13040574. doi: 10.3390/sym13040574
    [20] S. Khan, S. Hussain, M. Darus, Inclusion relations of $q$ -Bessel functions associated with generalized conic domain, AIMS Math., 6 (2021), 3624–3640. doi: 10.3934/math.2021216. doi: 10.3934/math.2021216
    [21] S. Khan, S. Hussain, M. Naeem, M. Darus, A. Rasheed, A subclass of $q$-starlike functions defined by using a symmetric $q$ -derivative operator and related with generalized symmetric conic domains, Mathematics, 9 (2021), 917. doi: 10.3390/math9090917. doi: 10.3390/math9090917
    [22] S. Khan, S. Hussain, M. A. Zaighum, M. Darus, A subclass of uniformly convex functions and a corresponding subclass of starlike function with fixed coefficient associated with $q$-Analogus of Ruscheweyh operator, Math. Slovaca, 69 (2019), 825–832. doi: 10.1515/ms-2017-0271. doi: 10.1515/ms-2017-0271
    [23] O. S. Kwon, S. Khan, Y. J. Sim, S. Hussain, Bounds for the coefficient of Faber polynomial of meromorphic starlike and convex functions, Symmetry, 1 (2019), 1368–1381. doi: 10.3390/sym11111368. doi: 10.3390/sym11111368
    [24] A. Lavagno, Basic-deformed quantum mechanics, Rep. Math. Phys., 64 (2009), 79–88. doi: 10.1016/S0034-4877(09)90021-0. doi: 10.1016/S0034-4877(09)90021-0
    [25] S. Porwal, A. Gupta, An application of $q$-calculus to harmonic univalent functions, J. Qual. Meas. Anal., 14 (2018), 81–90.
    [26] G. S. Salagean, Subclasses of univalent functions, Complex Analysis - Fifth Romanian Finish Seminar, Bucharest, 1981,362–372. doi: 10.1007/BFb0066543. doi: 10.1007/BFb0066543
    [27] T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc., 42 (1990), 237–248. doi: 10.1112/jlms/s2-42.2.237. doi: 10.1112/jlms/s2-42.2.237
    [28] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: H. M. Srivastava and S. Owa, Editors, Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989,329–354.
    [29] H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327–344.
    [30] H. M. Srivastava, Q. Z. Ahmad, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of $q$-starlike functions associated with a general conic domain, Mathematics, 7 (2019), 181. doi: 10.3390/math7020181. doi: 10.3390/math7020181
    [31] H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain $q$-integral operator, Stud. Univ. Babe s-Bolyai Math., 63 (2018), 419–436. doi: 10.24193/subbmath.2018.4.01. doi: 10.24193/subbmath.2018.4.01
    [32] H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad, S. Hussain, Fekete-Szegö type problems and their applications for a subclass of $q$-starlike functions with respect to symmetrical points, Mathematics, 8 (2020), 842. doi: 10.3390/math8050842. doi: 10.3390/math8050842
    [33] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for $q$-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407–425. doi: 10.14492/hokmj/1562810517. doi: 10.14492/hokmj/1562810517
    [34] H. M. Srivastava, N. Khan, S. Khan, Q. Z. Ahmad, B. Khan, A class of $k$-symmetric harmonic functions involving a certain $q$-derivative operator, Mathematics, 9 (2021), 1812. doi: 10.3390/math91518. doi: 10.3390/math91518
    [35] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of $q$-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1–14. doi: 10.3390/sym11020292. doi: 10.3390/sym11020292
    [36] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of $q$-starlike functions associated with the Janowski functions, Filomat, 33 (2019), 2613–2626. doi: 10.2298/FIL1909613S. doi: 10.2298/FIL1909613S
    [37] H. Tang, S. Khan, S. Hussain, N. Khan, Hankel and Toeplitz determinant for a subclass of multivalent $q$-starlike functions of order $ \alpha $, AIMS Math., 6 (2021), 5421–5439. doi: 10.3934/math.2021320. doi: 10.3934/math.2021320
    [38] Z. G. Wang, S. Hussain, M. Naeem, T. Mahmood, S. Khan, A subclass of univalent functions associated with $q$-analogue of Choi-Saigo-Srivastava operator, Hacet. J. Math. Stat., 49 (2020), 1471–1479. doi: 10.15672/hujms.576878. doi: 10.15672/hujms.576878
    [39] X. Zhang, S. Khan, S. Hussain, H. Tang, Z. Shareef, New subclass of $q$-starlike functions associated with generalized conic domain, AIMS Math., 5 (2020), 4830–4848. doi: 10.3934/math.2020308. doi: 10.3934/math.2020308
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2357) PDF downloads(111) Cited by(6)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog