Research article Special Issues

Approximate iterative sequences for positive solutions of a Hadamard type fractional differential system involving Hadamard type fractional derivatives

  • Received: 04 March 2021 Accepted: 12 April 2021 Published: 29 April 2021
  • MSC : 34A05, 34B18, 26A33

  • In this paper, we focus on a class of Hadamard type fractional differential system involving Hadamard type fractional derivatives on an infinite interval. By utilizing the monotone iterative technique and Banach's contraction mapping principle, some explicit monotone iterative sequences for approximating the extreme positive solutions and the unique positive solution for the system are constructed.

    Citation: Yaohong Li, Jiafa Xu, Honglin Luo. Approximate iterative sequences for positive solutions of a Hadamard type fractional differential system involving Hadamard type fractional derivatives[J]. AIMS Mathematics, 2021, 6(7): 7229-7250. doi: 10.3934/math.2021424

    Related Papers:

  • In this paper, we focus on a class of Hadamard type fractional differential system involving Hadamard type fractional derivatives on an infinite interval. By utilizing the monotone iterative technique and Banach's contraction mapping principle, some explicit monotone iterative sequences for approximating the extreme positive solutions and the unique positive solution for the system are constructed.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Volume 204 of North-Holland Mathematics Studies, Amsterdam, The Netherlands: Elsevier, 2006.
    [2] Y. Zhou, J. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, Singapore: World Scientific, 2014.
    [3] Y. Wang, H. Wang, Triple positive solutions for fractional differential equation boundary value problems at resonance, Appl. Math. Lett., 106 (2020), 106376. doi: 10.1016/j.aml.2020.106376
    [4] Y. Li, J. Liu, D. O'Regan, J. Xu, Nontrivial solutions for a system of fractional q-difference equations involving q-integral boundary conditions, Mathematics, 8 (2020), 828. doi: 10.3390/math8050828
    [5] B. Liu, Y. Liu, Positive solutions of a two-point boundary value problem for singular fractional differential equations in Banach space, J. Funct. Space Appl., 2013 (2013), 585639.
    [6] Y. Liu, H. Yu, Bifurcation of positive solutions for a class of boundary value problems of fractional differential inclusions, Abstr. Appl. Anal., 2013 (2013), 942831.
    [7] Y. Liu, Positive solutions using bifurcation techniques for boundary value problems of fractional differential equations, Abstr. Appl. Anal., 2013 (2013), 162418.
    [8] T. Qi, Y. Liu, Y. Cui, Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary conditions, J. Funct. Space Appl., 2017 (2017), 6703860.
    [9] T. Qi, Y. Liu, Y. Zou, Existence result for a class of coupled fractional differential systems with integral boundary value conditions, J. Nonlinear Sci. Appl., 10 (2017), 4034–4045. doi: 10.22436/jnsa.010.07.52
    [10] Y. Wang, Y. Liu, Y. Cui, Multiple solutions for a nonlinear fractional boundary value problem via critical point theory, J. Funct. Space Appl., 2017 (2017), 8548975.
    [11] Y. Wang, Y. Liu, Y. Cui, Multiple sign-changing solutions for nonlinear fractional Kirchhoff equations, Bound. Value Probl., 2018 (2018), 193. doi: 10.1186/s13661-018-1114-8
    [12] Y. Liu, Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations, J. Nonlinear Sci. Appl., 8 (2015), 340–353.
    [13] Y. Wang, Y. Liu, Y. Cui, Infinitely many solutions for impulsive fractional boundary value problem with p-Laplacian, Bound. Value Probl., 2018 (2018), 94. doi: 10.1186/s13661-018-1012-0
    [14] W. Cheng, J. Xu, D. O'Regan, Y. Cui, Positive solutions for a nonlinear discrete fractional boundary value problems with a $p$-Laplacian operator, J. Appl. Anal. Comput., 9 (2019), 1959–1972.
    [15] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, Existence of mild solutions for impulsive neutral Hilfer fractional evolution equations, Adv. Differ. Equations, 2020 (2020), 155. doi: 10.1186/s13662-020-02615-y
    [16] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators, Adv. Differ. Equations, 2020 (2020), 615. doi: 10.1186/s13662-020-03074-1
    [17] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, Study of Hilfer fractional evolution equations by the properties of controllability and stability, Alex. Eng. J., 60 (2021), 3741–3749. doi: 10.1016/j.aej.2021.02.014
    [18] A. Devi, A. Kumar, T. Abdeljawad, A. Khan, Stability analysis of solutions and existence theory of fractional Lagevin equation, Alex. Eng. J., 60 (2021), 3641–3647. doi: 10.1016/j.aej.2021.02.011
    [19] J. Hadamard, Essai surletude des fonctions donnees parleur developpmentde Taylor, J. Mat. Pure Appl. Ser., 8 (1892), 101–186.
    [20] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400. doi: 10.1016/S0022-247X(02)00049-5
    [21] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., 269 (2002), 1–27. doi: 10.1016/S0022-247X(02)00001-X
    [22] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15. doi: 10.1016/S0022-247X(02)00066-5
    [23] H. Huang, W. Liu, Positive solutions for a class of nonlinear Hadamard fractional differential equations with a parameter, Adv. Differ. Equations, 2018 (2018), 96. doi: 10.1186/s13662-018-1551-9
    [24] W. Yang, Y. Qin, Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions, Scienceasia, 43 (2017), 201–206. doi: 10.2306/scienceasia1513-1874.2017.43.201
    [25] J, Jiang, D. O'Regan, J. Xu, Z. Fu, Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, J. Inequal. Appl., 2019 (2019), 18. doi: 10.1186/s13660-019-1963-4
    [26] H. Zhang, Y. Li, J. Xu, Positive solutions for a system of fractional integral boundary value problems involving Hadamard-type fractional derivatives, Complexity, 2019 (2019), 204.
    [27] X. Du, Y. Meng, H. Pang, Iterative positive solutions to a coupled Hadamard-type fractional differential system on infinite domain with the multistrip and multipoint mixed boundary conditions, J. Funct. Spaces, 2020 (2020), 6508075.
    [28] J. Xu, J. Jiang, D. O'Regan, Positive solutions for a class of p-Laplacian Hadamard fractional-order three-point boundary value problems, Mathematics, 8 (2020), 308. doi: 10.3390/math8030308
    [29] B. Ahmad, S. K. Ntouyas, A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 348–360.
    [30] W. Yang, Monotone iterative technique for a coupled system of nonlinear Hadamard fractional differential equations, J. Appl. Math. Comput., 59 (2019), 585–596. doi: 10.1007/s12190-018-1192-x
    [31] G. Wang, K. Pei, D. Baleanu, Explicit iteration to Hadamard fractional integro-differential equations on infinite domain, Adv. Differ. Equations, 2016 (2016), 11. doi: 10.1186/s13662-015-0737-7
    [32] P. Thiramanus, S. K. Ntouyas, J. Tariboon, Positive solutions for Hadamard fractional differential equations on infinite domain, Adv. Differ. Equations, 2016 (2016), 18. doi: 10.1186/s13662-016-0752-3
    [33] K, Pei, G. Wang, Y. Sun, Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain, Appl. Math. Comput., 312 (2017), 158–168.
    [34] G. Wang, K. Pei, R. P. Agarwal, L. H. Zhang, B. Ahmad, Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230–239. doi: 10.1016/j.cam.2018.04.062
    [35] W. Zhang, W. Liu, Existence of solutions for several higher-order Hadamard-type fractional differential equations with integral boundary conditions on infinite interval, Bound. Value Probl., 2018 (2018), 27. doi: 10.1186/s13661-018-0947-5
    [36] S. Li, C. Zhai, Positive solutions for a new class of Hadamard fractional differential equations on infinite intervals, J. Inequal. Appl., 2019 (2019), 9. doi: 10.1186/s13660-019-1960-7
    [37] J. Tariboon, S. K. Ntouyas, S. Asawasamrit, C. Promsakon, Positive solutions for Hadamard differential systems with fractional integral conditions on an unbounded domain, Open Math., 15 (2017), 645–666. doi: 10.1515/math-2017-0057
    [38] W. Zhang, W. Liu, Existence, uniqueness, and multiplicity results on positive solutions for a class of Hadamard-type fractional boundary value problem on an infinite interval, Math. Meth. Appl. Sci., 43 (2020), 2251–2275. doi: 10.1002/mma.6038
    [39] X. Li, X. Liu, M. Jia, L. Zhang, The positive solutions of infinite-point boundary value problem of fractional differential equations on the infinite interval, Adv. Differ. Equations, 2017 (2017), 126. doi: 10.1186/s13662-017-1185-3
    [40] L. Zhang, B. Ahmad, G. Wang, Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line, Bull. Aust. Math. Soc., 91 (2015), 116–128. doi: 10.1017/S0004972714000550
    [41] L. Zhang, B. Ahmad, G. Wang, Monotone iterative method for a class of nonlinear fractional differential equations on unbounded domains in Banach spaces, Filomat, 31 (2017), 1331–1338. doi: 10.2298/FIL1705331Z
    [42] G. Wang, Z. Bai, L. Zhang, successive iterations for the unique positive solution of a nonlinear fractional $q$-integral boundary problem, J. Appl. Anal. Comput., 9 (2019), 1204–1215.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2104) PDF downloads(135) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog