Consider two digital spaces $ (X_i, k_i), i \in \{1, 2\} $, (in the sense of Rosenfeld model) satisfying the almost fixed point property(AFPP for brevity). Then, the problem of whether the AFPP for the digital spaces is, or is not necessarily invariant under Cartesian products plays an important role in digital topology, which remains open. Given a Cartesian product $ (X_1 \times X_2, k) $ with a certain $ k $-adjacency, after proving that the AFPP for digital spaces is not necessarily invariant under Cartesian products, the present paper proposes a certain condition of which the AFPP for digital spaces holds under Cartesian products. Indeed, we find that the product property of the AFPP is strongly related to both the sets $ X_i $ and the $ k_i $-adjacency, $ i \in \{1, 2\} $. Eventually, assume two $ k_i $-connected digital spaces $ (X_i, k_i), i \in \{1, 2\} $, and a digital product $ X_1 \times X_2 $ with a normal $ k $-adjacency such that $ N_k^\star(p, 1) = N_k(p, 1) $ for each point $ p \in X_1 \times X_2 $ (see Remark 4.2(1)). Then we obtain that each of $ (X_i, k_i), i \in \{1, 2\} $, has the AFPP if and only if $ (X_1 \times X_2, k) $ has the AFPP.
Citation: Jeong Min Kang, Sang-Eon Han. The product property of the almost fixed point property for digital spaces[J]. AIMS Mathematics, 2021, 6(7): 7215-7228. doi: 10.3934/math.2021423
Consider two digital spaces $ (X_i, k_i), i \in \{1, 2\} $, (in the sense of Rosenfeld model) satisfying the almost fixed point property(AFPP for brevity). Then, the problem of whether the AFPP for the digital spaces is, or is not necessarily invariant under Cartesian products plays an important role in digital topology, which remains open. Given a Cartesian product $ (X_1 \times X_2, k) $ with a certain $ k $-adjacency, after proving that the AFPP for digital spaces is not necessarily invariant under Cartesian products, the present paper proposes a certain condition of which the AFPP for digital spaces holds under Cartesian products. Indeed, we find that the product property of the AFPP is strongly related to both the sets $ X_i $ and the $ k_i $-adjacency, $ i \in \{1, 2\} $. Eventually, assume two $ k_i $-connected digital spaces $ (X_i, k_i), i \in \{1, 2\} $, and a digital product $ X_1 \times X_2 $ with a normal $ k $-adjacency such that $ N_k^\star(p, 1) = N_k(p, 1) $ for each point $ p \in X_1 \times X_2 $ (see Remark 4.2(1)). Then we obtain that each of $ (X_i, k_i), i \in \{1, 2\} $, has the AFPP if and only if $ (X_1 \times X_2, k) $ has the AFPP.
[1] | C. Berge, Graphs and hypergraphs, 2 Eds., Holland, Amsterdam, 1976. |
[2] | L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vis., 10 (1999), 51–62. doi: 10.1023/A:1008370600456 |
[3] | R. F. Brown, The fixed point property and cartesian products, Am. Math. Mon., 89 (1982), 654–668. doi: 10.1080/00029890.1982.11995510 |
[4] | Y. J. Cho, Fixed point theory and Applications, New York: Nova Science Publications Inc., 2001. |
[5] | M. Edelstein, An extension of Banach's contraction principle, P. Am. Math. Soc., 12 (1961), 7–10. |
[6] | O. Ege, I. Karaca, Banach fixed point theorem for digital images, Journal of Non-linear Sciences and Applications, 8 (2015), 237–245. |
[7] | B. Halpern, Almost fixed points for subsets of ${\mathbb Z}^n$, J. Comb. Theory A, 11 (1971), 251–257. doi: 10.1016/0097-3165(71)90052-5 |
[8] | S.-E. Han, Non-product property of the digital fundamental group, Inform. Sciences, 171 (2005), 73–91. doi: 10.1016/j.ins.2004.03.018 |
[9] | S.-E. Han, On the simplicial complex stemmed from a digital graph, Honam Math. J., 27 (2005), 115–129. |
[10] | S.-E. Han, Fixed point theorems for digital images, Honam Math. J., 37 (2015), 595–608. doi: 10.5831/HMJ.2015.37.4.595 |
[11] | S.-E. Han, Banach fixed point theorem from the viewpoint of digital topology, J. Nonlinear Sci. Appl., 9 (2016), 895–905. doi: 10.22436/jnsa.009.03.19 |
[12] | S.-E. Han, Fixed point property for digital spaces, J. Nonlinear Sci. Appl., 10 (2017), 2510–2523. doi: 10.22436/jnsa.010.05.20 |
[13] | S.-E. Han, Estimation of the complexity of a digital image form the viewpoint of fixed point theory, Appl. Math. Comput., 347 (2019), 236–248. |
[14] | S.-E. Han, Remarks on the preservation of the almost fixed point property involving several types of digitizations, Mathematics, 7 (2019), 954. doi: 10.3390/math7100954 |
[15] | S.-E. Han, Digital $k$-contractibility of an $n$-times iterated connected sum of simple closed $k$-surfaces and almost fixed point property, Mathematics, 8 (2020), 345. doi: 10.3390/math8030345 |
[16] | G. T. Herman, Oriented surfaces in digital spaces, CVGIP: Graphical Models and Image Processing, 55 (1993), 381–396. doi: 10.1006/cgip.1993.1029 |
[17] | A. Hossain, R. Ferdausi, S. Mondal, H. Rashid, Banach and Edelstein fixed point theorems for digital images, J. Math. Sci. Appl., 5 (2017), 36–39. |
[18] | A. Idzik, Almost fixed point theorems, P. Am. Math. Soc., 104 (1988), 779–784. doi: 10.1090/S0002-9939-1988-0964857-2 |
[19] | D. Jain, Common fixed point theorem for intimate mappings in digital metric spaces, IJMTT, 56 (2018), 91–94. doi: 10.14445/22315373/IJMTT-V56P511 |
[20] | K. Jyoti, A. Rani, Digital expansions endowed with fixed point theory, Turkish Journal of Analysis and Number Theory, 5 (2017), 146–152. doi: 10.12691/tjant-5-5-1 |
[21] | I. S. Kim, S. H. Park, Almost fixed point theorems of the Fort type, Indian J. Pure Appl. Math., 34 (2003), 765–771. |
[22] | T. Y. Kong, A. Rosenfeld, Topological algorithms for the digital image processing, Amsterdam: Elsevier Science, 1996. |
[23] | K. Kuratowski, Topology, 2 Eds., New York-London-Warszawa: Elsevier Science, 1968. |
[24] | L. N. Mishra, K. Jyoti, A. Rani, Vandana, Fixed point theorems with digital contractions image processing, Nonlinear Science Letters A, 9 (2018), 104–115. |
[25] | J. R. Munkres, Topology, New Jersey: Prentice-Hall Inc., 1975. |
[26] | S. Reich, The almost fixed point property for nonexpansive mapping, P. Am. Math. Soc., 88 (1983), 44–46. doi: 10.1090/S0002-9939-1983-0691276-4 |
[27] | A. Rosenfeld, Digital topology, Am. Math. Mon., 86 (1979), 76–87. |
[28] | A. Rosenfeld, Continuous functions on digital pictures, Pattern Recogn. Lett., 4 (1986), 177–184. doi: 10.1016/0167-8655(86)90017-6 |