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1. Introduction

Fractional derivative extends the classical integer order derivative to an arbitrary order case.
Fractional order differential equations can better describe various phenomenon than integer order
differential equations in many complex and widespread fields of engineering and science such as
biology, physics, finance, electrical circuits, signal processing, control theory, and diffusion processes,
there has been a rapid growth in the number of fractional differential equations from both theoretical
and applied perspectives, see [1–18] and references cited therein.

Note that most of the results on the current works are based on Riemann-Liouville type and Caputo
type fractional differential equations in the past ten years. Hadamard type fractional derivative is first
introduced in 1892 [19], which contains logarithmic function of arbitrary exponent in the kernel of
integral appearing in its definition. Hadamard type integrals arise in the formulation of many problems
in mechanics such as in fracture analysis. For details and applications of Hadamard type fractional
derivative and integral, see [3, 20–22]. Recently, more and more scholars pay special attention to
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Hadamard type fractional differential equations on the finite interval [23–28]. For example, by applying
Leray-Schauder’s alternative and Banach’s contraction principle, Ahmad and Ntouyas [29] established
the existence and uniqueness of solutions for a coupled system of nonlinear fractional differential
equations with a fully Hadamard type integral boundary conditions:

HDαu(t) = f (t, u(t), v(t)), 1 < t < e, 1 < α ≤ 2,

HDβv(t) = g(t, v(t), u(t)), 1 < t < e, 1 < β ≤ 2,

u(1) = 0, u(e) = HIru(σ1) =
1

Γ(r)

∫ σ1

1

(
logσ1 − log s

)r−1 u(s)
ds
s
,

v(1) = 0, v(e) = HIru(σ2) =
1

Γ(r)

∫ σ2

1

(
logσ2 − log s

)r−1 v(s)
ds
s
,

(1.1)

where γ > 0, 1 < σ1, σ2 < e, HD(·) are the Hadamard type fractional derivative and HIr is the Hadamard
type fractional integral of order r, f , g : [1, e] × R × R are given continuous functions.

In [30] by means of comparison principle and the monotone iterative technique combined with
the method of upper and lower solutions, Yang investigated the extremal iterative solutions for the
following coupled system of nonlinear Hadamard type fractional differential equations:

(HDα
a+ x)(t) = f (t, x(t), y(t)), 0 < α ≤ 1, a < t ≤ b,

(HDα
a+y)(t) = g(t, x(t), y(t)), 0 < α ≤ 1, a < t ≤ b,

(H J1−α
a+ x)(a+) = x∗, (H J1−α

a+ y)(a+) = y∗,

(1.2)

where f , g ∈ C([a, b]×R×R,R), HDα
a+ and H Jαa+ are the left-sided Hadamard type fractional derivative

and Hadamard type fractional integral of order α, respectively.
On the other hand, some authors have also focused on the existence of solutions for Hadamard

type fractional differential equations on the infinite intervals, see [31–36] and the references quoted
therein. In another study [37], by applying standard fixed point theorems, Tariboon et al. obtained
the existence of positive solutions of the Hadamard type fractional differential system with coupled
integral boundary conditions:

HDpx(t) + f (t, x(t), y(t)) = 0, 1 < p ≤ 2, t ∈ [1,+∞),

HDqy(t) + g(t, x(t), y(t)) = 0, 1 < q ≤ 2, t ∈ [1,+∞),

x(0) = 0, HDp−1x(+∞) =
∑m

i=1 λi
HIαiy(η),

y(0) = 0, HDq−1y(+∞) =
∑n

j=1 σ j
HIβ j x(ξ),

(1.3)

In [38] Zhang and Liu focused on a class of Hadamard type fractional differential equation with
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nonlocal boundary conditions on an infinite interval:
HDα

1+ x(t) + a(t) f (t, x(t)) = 0, 2 < α ≤ 3, t ∈ (1,+∞),

x(0) = x′(0) = 0, HDα−1
1+

x(+∞) =
∑m

i=1 αi
HIβi

1+
x(η) + b

∑n
j=1 σ jx(ξ j),

(1.4)

where HDα
1+
, HIβi

1+
are the Hadamard type fractional derivative of order α and the Hadamard type

fractional integral of order βi > 0 (i = 1, 2, 3, · · · ,m), 1 < η < ξ1 < ξ2 < · · · < ξn. b, αi, σ j ≥ 0 (i =

1, 2, 3, · · · ,m; j = 1, 2, 3, · · · , n) are given constants satisfy certain prior conditions. By using various
fixed point methods, the authors not only obtained the existence and uniqueness of solutions, but also
the iterative sequences of approximate solutions.

Motivated by the mentioned results above, a nature and meaningful question is if we know the
existence of solution for the following Hadamard type fractional differential system (1.5), how can
we seek it? This idea lead us to develop the research of approximate sequences of positive solutions
for the following Hadamard type fractional differential system with Hadamard type fractional integral
boundary conditions:

HDα1u(t) + f1(t, u(t), v(t), HDα1−1u(t), HDα2−1v(t)) = 0, 1 < α1 ≤ 2, t ∈ J,

HDα2v(t) + f2(t, v(t), u(t), HDα1−1u(t), HDα2−1v(t)) = 0, 1 < α2 ≤ 2, t ∈ J,

u(0) = 0, HDα1−1u(+∞) =
∑m1

i=1 λ1i
HIβ1iu(η1), η1 ∈ J,

v(0) = 0, HDα2−1v(+∞) =
∑m2

i=1 λ2i
HIβ2iv(η2), η2 ∈ J

(1.5)

where J = [1,+∞), HDα j , HIβ ji are the common Hadamard type fractional derivative of order α j and
the Hadamard type fractional integral of order β ji > 0, f j ∈ C(J ×R×R×R×R,R+), λ ji > 0 are given
constants and satisfy Ω j = Γ(α j) −

∑m j

i=1
λ jiΓ(α j)

Γ(α j+β ji)
(log η j)α j+β ji−1 > 0, j = 1, 2; i = 1, 2, · · · ,m j,m j ∈ N+.

In this paper, we emphasize that the nonlinearity terms f j of the system (1.5) involve multiple
unknown functions and the lower-order Hadamard type fractional derivative of multiple unknown
functions. By utilizing the monotone iterative method, we establish some explicit monotone iterative
sequences for approximating the extreme positive solutions and the unique positive solution, which
are more valuable and interesting than just constructing the existence of solutions. Further we extend
the iterative methods that are often used in a single equation to the system which is different
from [31, 34, 38–42]. Finally we give some examples to verify the application of main results.

2. Preliminaries

First we recall some Hadamard type fractional calculus definitions and lemmas that are helpful to
the proof of main results.

Definition 2.1 (see [1]). The Hadamard type fractional derivative of order q for a integrable function
g : [1,∞)→ R is given by

HDqg(t) =
1

Γ(n − q)

(
t

d
dt

)n ∫ t

1

(
log t − log s

)n−q−1 g(s)
ds
s
, n − 1 < q < n,
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where n = [q] + 1, [q] denotes the integer part of the real number q and log(·) = loge(·).
Definition 2.2 (see [1]). The Hadamard type fractional integral of order q for a integrable function

g is given by
HIqg(t) =

1
Γ(q)

∫ t

1

(
log t − log s

)q−1 g(s)
ds
s
, q > 0,

provided the integral exists.
Lemma 2.1 (see [1, 32]). If a, α, β > 0, then(HDα

a (log t − log a)β−1)(x) =
Γ(β)

Γ(β − α)
(log x − log a)β−α−1.

Lemma 2.2 Let h j ∈ C[1,∞) with 0 <
∫ ∞

1
h j(s)ds

s < ∞ and Ω j > 0, j = 1, 2, then the following
Hadamard type fractional differential system with Hadamard type fractional integral boundary
conditions 

HDα1u(t) + h1(t) = 0, 1 < α1 ≤ 2, t ∈ J,

HDα2v(t) + h2(t) = 0, 1 < α2 ≤ 2, t ∈ J,

u(0) = 0, HDα1−1u(+∞) =
∑m1

i=1 λ1i
HIβ1iu(η1),

v(0) = 0, HDα2−1v(+∞) =
∑m2

i=1 λ2i
HIβ2iv(η2),

(2.1)

has a unique solution: 
u(t) =

∫ +∞

1
G1(t, s)h1(s)

ds
s
,

v(t) =

∫ +∞

1
G2(t, s)h2(s)

ds
s
,

(2.2)

where

G j(t, s) = g j(t, s) +

m j∑
i=1

λ ji(log t)α j−1

Ω jΓ(α j + β ji)
g ji(η j, s), j = 1, 2, (2.3)

and

g j(t, s) =
1

Γ(α j)


(log t)α j−1 − (log t − log s)α j−1, 1 ≤ s ≤ t < +∞,

(log t)α j−1, 1 ≤ t ≤ s < +∞,

(2.4)

g ji(η j, s) =


(log η j)α j+β ji−1 − (log η j − log s)α j+β ji−1, 1 ≤ s ≤ η j < +∞,

(log η j)α j+β ji−1, 1 ≤ η j ≤ s < +∞.

(2.5)

Proof. Utilizing Lemmas 2.5 of [32], we can derive directly the above results.
Remark 2.1 Applying definition 2.1 of Hadamard type fractional derivative and Lemma 2.1, from

(2.2), (2.3), (2.4) and (2.5), by a simple computation, one can obtain
HDα1−1u(t) =

∫ +∞

1
G∗1(t, s)h1(s)

ds
s
,

HDα2−1v(t) =

∫ +∞

1
G∗2(t, s)h2(s)

ds
s
,
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where

G∗j(t, s) = k(t, s) +

m j∑
i=1

λ jiΓ(α j)
Ω jΓ(α j + β ji)

g ji(η j, s), j = 1, 2, (2.6)

and

k(t, s) =


0, 1 ≤ s ≤ t < +∞,

1, 1 ≤ t ≤ s < +∞.

(2.7)

For convenience, we introduce the following notations:

Λ j =
1

Γ(α j)
+

m j∑
i=1

λ jiΓ(α j)
Ω jΓ(α j + β ji)

(log η j)α j+β ji−1, Ξ j = 1 +

m j∑
i=1

λ jiΓ(α j)
Ω jΓ(α j + β ji)

(log η j)α j+β ji−1, j = 1, 2.

Lemma 2.3 (see [32]). The Green’s function G j(t, s) defined by (2.3) has the following properties:
(A1): G j(t, s) ≥ 0 and G j(t, s) are continuous for all (t, s) ∈ J × J, j = 1, 2;

(A2):
G j(t, s)

1 + (log t)α j
≤ Λ j for all (t, s) ∈ J × J, j = 1, 2.

Remark 2.2 The Green’s function G j(t, s) and G∗j(t, s) defined by (2.3) and (2.6) still have the
following properties:

(B1): G j(t, s) ≤ Λ j(log t)α j−1 for (t, s) ∈ J × J, j = 1, 2;
(B2): 0 ≤ G∗j(t, s) ≤ Ξ j for (t, s) ∈ J × J, j = 1, 2.
Proof. From (2.4) and (2.5), it is obvious that

g j(t, s) ≤
(log t)α j−1

Γ(α j)
, g ji(η j, s) ≤ (log η j)α j+β ji−1, (t, s) ∈ J × J,

then
G j(t, s) ≤ Λ j(log t)α j−1, (t, s) ∈ J × J,

so (B1) holds. And from (2.6) and (2.7), it is easy to that (B2) holds.
Lemma 2.4 (see [32, 33]). Let U ⊂ X be a bounded set. Then U is a relatively compact in X if the

following conditions hold:

(i) For any u ∈ U,
u(t)

1 + (log t)α−1 and HDα−1u(t) are equicontinuous on any compact interval of J;

(ii) For any ε > 0, there is a constant C = C(ε) > 1 such that |
u(t1)

1 + (log t1)α−1 −
u(t2)

1 + (log t2)α−1 | < ε

and |HDα−1u(t1) − Dα−1u(t2)| < ε for any t1, t2 ≥ C and u ∈ U.
Next we present some assumptions that will play an important role in subsequent discussion.

(C1) Ω j = Γ(α j) −
m j∑
i=1

λ jiΓ(α j)
Γ(α j+β ji)

(log η j)α j+β ji−1 > 0 and f j(t, 0, 0, 0, 0) . 0,∀t ∈ J, j = 1, 2;

(C2) There exist some nonnegative integrable functions a j0(t), a jk(t) defined on J and some
constants 0 < γ jk < 1 satisfy

| f j(t, u1, u2, u3, u4)| ≤ a j0(t) +

4∑
k=1

a jk(t)|uk|
γ jk ,∀t ∈ J, uk ∈ R, j = 1, 2, k = 1, 2, 3, 4,
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and ∫ +∞

1
a j0(t)

dt
t

= a∗j0 < +∞,

∫ +∞

0
a j1(t)

[
1 + (log t)α j−1

]γ j1 dt
t

= a∗j1 < +∞,∫ +∞

1
a j2(t)

[
1 + (log t)α j−1

]γ j2 dt
t

= a∗j2 < +∞,

∫ +∞

1
a j3(t)

dt
t

= a∗j3 < +∞,∫ +∞

1
a j4(t)

dt
t

= a∗j4 < +∞, j = 1, 2;

(C3) Functions f j are nondecreasing with respect to the second, third, fourth and last variables on
J, j = 1, 2;

(C4) There exist some nonnegative integrable functions b jk(t)( j = 1, 2, k = 1, 2, 3, 4) defined on J
satisfy

| f j(t, u1, u2, u3, u4) − f j(t, ū1, ū2, ū3, ū4)| ≤
4∑

k=1

b jk(t)|uk − ūk|,∀t ∈ J, uk, ūk ∈ R,

and ∫ +∞

1
b j1(t)

[
1 + (log t)α j−1

]dt
t

= b∗j1 < +∞,

∫ +∞

1
b j2(t)

[
1 + tα j−1

]dt
t

= b∗j2 < +∞,∫ +∞

1
b j3(t)

dt
t

= b∗j3 < +∞,

∫ +∞

1
b j4(t)

dt
t

= b∗j4 < +∞,

∫ +∞

1
| f j(t, 0, 0, 0, 0)|

dt
t

= % j < +∞.

3. Main results

In this paper, we will use two Banach spaces which are define by

X =
{
u ∈ C(J,R), HDα1−1u ∈ C(J,R)| sup

t∈J

|u(t)|
1 + (log t)α1−1 < +∞, sup

t∈J
|HDα1−1u(t)| < +∞

}
equipped with the norm ‖u‖X = max{‖u‖1, ‖HDα1−1u‖}, where ‖u‖1 = supt∈J

|u(t)|
1+(log t)α1−1 and ‖HDα1−1u‖ =

supt∈J |
HDα1−1u(t)|, and

Y =
{
v ∈ C(J,R), HDα2−1v ∈ C(J,R)| sup

t∈J

|v(t)|
1 + (log t)α2−1 < +∞, sup

t∈J
|HDα2−1v(t)| < +∞

}
equipped with the norm ‖u‖Y = max{‖v‖2, ‖HDα2−1v‖}, where ‖v‖2 = supt∈J

|v(t)|
1+tα2−1 and ‖HDα2−1v‖ =

supt∈J |
HDα2−1v(t)|. Then the space (X, ‖ · ‖X) and (Y, ‖ · ‖Y) are two Banach spaces which can be shown

similarly to Lemma 2.7 of the literature [32]. Moreover, the product space (X × Y, ‖ · ‖X×Y) is also a
Banach space with the norm

‖ · ‖X×Y = max{‖u‖X, ‖v‖Y}.

Lemma 3.1 If assumption (C2) holds, then for any (u, v) ∈ X × Y ,∫ +∞

1
| fi(t, u(t), v(t), HDα1−1u(t), HDα2−1v(t))|

dt
t
≤ a∗j0 +

4∑
k=1

a∗jk||(u, v)||γik
X×Y , j = 1, 2.

AIMS Mathematics Volume 6, Issue 7, 7229–7250.



7235

Proof. For any (u, v) ∈ X × Y , by assumption (C2), one can obtain

| f j(t, u(t), v(t), HDα1−1u(t), HDα2−1v(t))|
≤a j0(t) + a j1(t)|u(t)|γ j1 + a j2(t)|v(t)|γ j2 + a j3(t)|HDα1−1u(t))|γ j3 + a j4(t)|HDα2−1v(t))|γ j4

≤a j0(t) + a j1(t))[1 + (log t)α1−1]γ j1
|u(t)|γ j1

[1 + (log t)α1−1]γ j1

+ a j2(t))[1 + (log t)α2−1]γ j2
|v(t)|γ j2

[1 + (log t)α2−1]γ j2

+ a j3(t)|HDα1−1u(t)|γ j3 + a j4(t)|HDα2−1v(t)|γ j4

≤a j0(t) + a j1(t))[1 + (log t)α1−1]γ j1 ||u||γ j1

X + a j2(t))[1 + (log t)α2−1]γ j2 ||v||γ j2

Y

+ a j3(t)||u||γ j3

X + a j4(t)||v||γ j4

Y , j = 1, 2.

Thus we have ∫ +∞

1
| f j(t, u(t), v(t), HDα1−1u(t), HDα2−1v(t))|

dt
t

≤

∫ +∞

1

(
a j0(t) + a j1(t))[1 + (log t)α1−1]γ j1 ||u||γ j1

X + a j2(t))[1 + (log t)α2−1]γ j2 ||v||γ j2

Y

+ a j3(t)||u||γ j3

X + a j4(t)||v||γ j4

Y

)dt
t

≤a∗j0 + a∗j1||u||
γ j1

X + a∗i2||v||
γ j2

Y + a∗j3||u||
γ j3

X + a∗j4||v||
γ j4

Y

≤a∗j0 +

4∑
k=1

a∗jk||(u, v)||γ jk

X×Y , j = 1, 2.

Lemma 3.2 If assumption (C4) holds, then for any (u, v) ∈ X × Y ,∫ +∞

1
| f j(t, u(t), v(t), HDα1−1u(t), HDα2−1v(t))|

dt
t
≤

4∑
k=1

b∗jk||(u, v)||X×Y + % j, j = 1, 2.

Proof. For any (u, v) ∈ X × Y , by assumption (C4), one can obtain

| f j(t, u(t), v(t), HDα1−1u(t), HDα2−1v(t))|
=| f j(t, u(t), v(t), HDα1−1u(t), HDα2−1v(t)) − f j(t, 0, 0, 0, 0) + fi(t, 0, 0, 0, 0)|
≤| f j(t, u(t), v(t), HDα1−1u(t), HDα2−1v(t)) − f j(t, 0, 0, 0, 0)| + | f j(t, 0, 0, 0, 0)|

≤b j1(t)[1 + (log t)α1−1]
|u(t)|

[1 + (log t)α1−1]
+ b j2(t)[1 + (log t)α2−1]

|v(t)|
[1 + (log t)α2−1]

+ b j3(t)|HDα1−1u(t)| + b j4(t)|HDα2−1v(t)| + | f j(t, 0, 0, 0, 0)|
≤b j1(t)[1 + (log t)α1−1]||u||X + b j2(t)[1 + (log t)α2−1]||v||Y + b j3(t)||u||X + b j4(t)||v||Y

+ | f j(t, 0, 0, 0, 0)|, j = 1, 2.

Thus we have∫ +∞

1
| f j(t, u(t), v(t), HDα1−1u(t), HDα2−1v(t))|

dt
t
≤b∗j1||u||X + b∗j2||v||Y + b∗j3||u||X + b∗j4||v||Y + % j

≤

4∑
k=1

b∗jk||(u, v)||X×Y + % j, j = 1, 2.
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Define two cones P1 = {u ∈ X|u(t) ≥ 0, HDα1−1u(t) ≥ 0, t ∈ J} and
P2 = {v ∈ Y |v(t) ≥ 0, HDα2−1v(t) ≥ 0, t ∈ J}, then P1 × P2 ⊂ X × Y is also a cone by
P1 × P2 = {(u, v) ∈ X × Y |u(t) ≥ 0, v(t) ≥ 0, HDα1−1u(t) ≥ 0, HDα2−1v(t) ≥ 0, t ∈ J}.

From Lemma 2.2, we can know that the system (2.2) is equivalent to the following system of
Hammerstein-type integral equations:

 u(t)
v(t)

 =


∫ +∞

1
G1(t, s) f1(u,v)(s)

ds
s∫ +∞

1
G2(t, s) f2(u,v)(s)

ds
s

 :=
 T1(u, v)(t)

T2(u, v)(t)

 , for (u, v) ∈ P1 × P2, t ∈ J, (3.1)

and for convenience, we set

f1(u,v)(s) = f1
(
s, u(s), v(s), HDα1−1u(s), HDα2−1v(s)

)
,

f2(u,v)(s) = f2
(
s, u(s), v(s), HDα1−1u(s), HDα2−1v(s)

)
.

Therefore one can define an operator T : P1 × P2 → P1 × P2 as follows:

T (u, v)(t) = (T1,T2) (u, v)(t), for (u, v) ∈ P1 × P2, t ∈ J. (3.2)

By Remark 2.1, one can also define

 HDα1−1T1(u, v)(t)
HDα2−1T2(u, v)(t)

 =


∫ +∞

1
G∗1(t, s) f1(u,v)(s)

ds
s∫ +∞

1
G∗2(t, s) f2(u,v)(s)

ds
s

 , for (u, v) ∈ P1 × P2, t ∈ J. (3.3)

Therefore, if (u, v) ∈ P1 × P2/(0, 0) is a fixed point of the operator T , then (u, v) is a positive
solution for the Hadamard type fractional differential system (1.5). It is obvious that the system (1.5)
has a positive solution if and only if the operator equation (u, v) = T (u, v) has a positive fixed point in
P1 × P2, where T is given as (3.2). Next we will directly consider the existence of fixed points of the
operator T .

Lemma 3.3 If assumption (C1), (C2) and (C3) hold, then the operator T : P1 × P2 → P1 × P2 is
completely continuous.

Proof. Due to G j(t, s) ≥ 0,G∗j(t, s) ≥ 0 and f j ≥ 0, we have T j(u, v)(t) ≥ 0, HDα j−1T j(u, v)(t) ≥ 0,
for any (u, v) ∈ P1 × P2, t ∈ J, j = 1, 2, so it is easy to know T : P1 × P2 → P1 × P2.

Next we show in four steps that the operator T : P1 × P2 → P1 × P2 is completely continuous.
Step 1 Take U = {(u, v)|(u, v) ∈ P1 × P2, ||(u, v)||X×Y ≤ M}. For any (u, v) ∈ U, by Lemma 2.3,

Lemma 3.1 and Remark 2.2, one can obtain

||T1(u, v)||1 = sup
t∈J

∣∣∣∣ ∫ +∞

1

G1(t, s)
1 + (log t)α1−1 f1(u,v)(s)

ds
s

∣∣∣∣ ≤ Λ1

∫ +∞

1
| f1(u,v)(s)|

ds
s

≤ Λ1

(
a∗10 +

4∑
k=1

a∗1k||(u, v)||γ1k
X×Y

)
< ∞

(3.4)
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and

||HDα1−1T1(u, v)|| = sup
t∈J

∣∣∣∣ ∫ ∞

1
G∗1(t, s) f1(u,v)(s)

ds
s

∣∣∣∣ ≤ Ξ1

∫ +∞

1
| f1(u,v)(s)|

ds
s

≤ Ξ1

(
a∗10 +

4∑
k=1

a∗1k||(u, v)||γ1k
X×Y

)
< ∞.

(3.5)

Thus

||T1(u, v)||X ≤ max{Λ1,Ξ1}
(
a∗10 +

4∑
k=1

a∗1kMγ1k
)
.

Similarly

||T2(u, v)||Y ≤ max{Λ2,Ξ2}
(
a∗20 +

4∑
k=1

a∗2kMγ2k
)
.

Then

||T (u, v)||X×Y = max
{
‖T1(u, v)‖X, ‖T2(u, v)‖Y

}
≤ max{Λ1,Ξ1,Λ2,Ξ2}max

(
a∗10 +

4∑
k=1

a∗1kMγ1k , a∗20 +
4∑

k=1
a∗2kMγ2k

)
< ∞.

which implies that TU is uniformly bounded for any (u, v) ∈ U.
Step 2 Let I ⊂ J be any compact interval. Then, for all t1, t2 ∈ I, t2 > t1 and (u, v) ∈ U, we have∣∣∣∣ T1(u, v)(t2)
1 + (log t2)α1−1 −

T1(u, v)(t1)

1 + (log t)α1−1
1

∣∣∣∣ ≤ ∣∣∣∣ ∫ +∞

1

( G1(t2, s)
1 + (log t2)α1−1 −

G1(t1, s)
1 + (log t1)α1−1

)
f1(u,v)(s)

ds
s

∣∣∣∣
≤

∫ +∞

1

∣∣∣∣ G1(t2, s)
1 + (log t2)α1−1 −

G1(t1, s)
1 + (log t1)α1−1

∣∣∣∣∣∣∣ f1(u,v)(s)
∣∣∣ds

s
.

(3.6)

Noticing that G1(t, s)/1 + (log t)α1−1 is uniformly continuous for any (t, s) ∈ I × I. Moreover the
function G1(t, s)/1 + (log t)α1−1 is only associated with t for s ≥ t, which implies that G1(t, s)/1 +

(log t)α1−1 is uniformly continuous on I × (J \ I). That is, for all s ∈ J and t1, t2 ∈ I,∀ε > 0,∃δ(ε) > 0
if |t1 − t2| < δ such that ∣∣∣∣ G1(t2, s)

1 + (log t2)α1−1 −
G1(t1, s)

1 + (log t1)α1−1

∣∣∣∣ < ε. (3.7)

By Lemma 3.1, for all (u, v) ∈ U, we have∫ +∞

1
| f1(u,v)(s)|

ds
s
≤ a∗10 +

4∑
k=1

a∗1kMγ1k < ∞. (3.8)

For all t1, t2 ∈ I, t2 > t1 and (u, v) ∈ U, together (3.6), (3.7) and (3.8) mean that

∀ε > 0,∃δ(ε) > 0 such that i f |t1 − t2| < δ then
∣∣∣∣ T1(u, v)(t2)
1 + (log t2)α1−1 −

T1(u, v)(t1)

1 + (log t)α1−1
1

∣∣∣∣ < ε.
That is, T1(u, v)(t)/1 + (log t)α1−1 is equicontinuous on I.

Note that
HDα1−1T1(u, v)(t) =

∫ +∞

1
G∗1(t, s) f1(u,v)(s)ds
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and function G∗1(t, s) ∈ C(J × J) is independent of t, which implies that HDα1−1T1(u, v)(t) is
equicontinuous on I.

In the same way, one can easily show that T2(u, v)(t)/1 + (log t)α2−1 and Dα2−1T2(u, v)(t) are
equicontinuous. Hence T1 and T2 are equicontinuous on I. Then the operator T is equicontinuous for
all (u, v) ∈ U on any compact interval I of J.

Step 3 Now we prove the operator T is equiconvergent at +∞. Due to

lim
t→+∞

G j(t, s)
1 + (log t)α j−1 =

1
Γ(α j)

+

m j∑
i=1

λ jiΓ(α j)
Ω jΓ(α j + β ji)

g ji(η j, s)

≤
1

Γ(α j)
+

m j∑
i=1

λ jiΓ(α j)
Ω jΓ(α j + β ji)

(log η j)α j+β ji−1 < +∞, j = 1, 2,

one can infer that for any ε > 0, there exists a constant C = C(ε) > 0, for any t1, t2 ≥ C and s ∈ J, such
that ∣∣∣∣ G j(t2, s)

1 + (log t2)α j−1 −
G j(t1, s)

1 + (log t1)α j−1

∣∣∣∣ < ε, j = 1, 2,

with the help of Lemma 3.1 and (3.6), which mean that T j(u, v)(t)/1 + (log t)α j−1( j = 1, 2) are
equiconvergent at +∞. Meanwhile function G∗j(t, s)( j = 1, 2) are independent of t, one can easily
show that HDα j−1T j(u, v)(t)( j = 1, 2) are equiconvergent at +∞.

From Step 1, Step 2 and Step 3, Lemma 2.4 holds. So the operator T is relatively compact in
P1 × P2.

Step 4 Finally we prove that the operator T : P1 × P2 → P1 × P2 is continuous. Set (un, vn), (u, v) ∈
P1 × P2 and (un, vn) → (u, v)(n → ∞). So ||(un, vn)||X×Y < +∞, ||(u, v)||X×Y < +∞. Similar to (3.4) and
(3.5), one has

||T1(un, vn)||1 = sup
t∈J

∣∣∣∣ ∫ +∞

0

G1(t, s)
1 + (log t)α1−1 f1(un,Vn)(s)

ds
s

∣∣∣∣ ≤ Λ1

[
a∗10 +

4∑
k=1

a∗1k||(un, vn)||γ1k
X×Y

]
,

and

||HDα1−1T1(un, vn)|| = sup
t∈J

∣∣∣∣ ∫ +∞

0
G∗1(t, s) f1(un,vn)(s)ds

∣∣∣∣ ≤ Ξ1

[
a∗10 +

4∑
k=1

a∗1k||(un, vn)||γ1k
X×Y

]
.

Via the Lebesgue dominated convergence theorem and continuity of function f1, we know

lim
n→∞

∫ +∞

1

G1(t, s)
1 + (log t)α1−1 f1(un,vn)(s)

ds
s

=

∫ +∞

1

G1(t, s)
1 + (log t)α1−1 f1(u,v)(s)

ds
s
,

and

lim
n→∞

∫ +∞

1
G∗1(t, s) f1(un,vn)(s)

ds
s

=

∫ ∞

1
G∗1(t, s) f1(u,v)(s)

ds
s
.

Again

‖T1(un, vn) − T1(u, v)‖1 ≤ sup
t∈J

∫ +∞

1

G1(t, s)
1 + (log t)α1−1

∣∣∣∣ f1(un,vn)(s) − f1(u,v)(s)
∣∣∣∣ds

s
→ 0, n→ ∞,
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and

‖HDα1−1T1(un, vn) − HDα1−1T1(u, v)‖1 ≤ sup
t∈J

∫ +∞

1
K∗1(t, s)

∣∣∣∣ f1(un,vn)(s) − f1(u,v)(s)
∣∣∣∣ds

s
→ 0, n→ ∞.

Therefore, as n→ ∞,

‖T1(un, vn) − T1(u, v)‖X = max
{
‖T1(un, vn) − T1(u, v)‖1, ‖HDα1−1T1(un, vn) −H Dα1−1T1(u, v)‖

}
→ 0.

This implies that the operator T1 is continuous. At the same way, one can obtain than the operator T2

is continuous. That is, the operator T is continuous.
Summarize all of the above discussions, one can infer that the operator T : P1 × P2 → P1 × P2 is

completely continuous. So the proof of Lemma 3.3 is completed.
For convenience, we set

Υ = max
{
Λ1,Λ2,Ξ1,Ξ2

}
.

Define a partial order over the product space: (
u1

v1

)
≥

(
u2

v2

)
if u1(t) ≥ u2(t), v1(t) ≥ v2(t), HDα1−1u1(t) ≥ HDα1−1u2(t), HDα2−1v1(t) ≥ HDα2−1v2(t), t ∈ J.

Theorem 3.1 If assumption (C1), (C2) and (C3) hold, then the system (1.5) exist two positive
solutions (u∗, v∗) and (w∗, z∗) satisfying 0 ≤ ‖(u∗, v∗)‖X×Y ≤ R and 0 ≤ ‖(w∗, z∗)‖X×Y ≤ R, where R is a
positive preset constant. Moreover, there exist lim

n→∞
(un, vn) = (u∗, v∗) and lim

n→∞
(wn, zn) = (w∗, z∗), where

(un, vn) and (wn, zn) are given by the following monotone iterative sequences un(t)
vn(t)

 =

 T1(un−1, vn−1)(t)
T2(un−1, vn−1)(t)

 , n = 1, 2, . . . , with
 u0(t)

v0(t)

 =

 R(log t)α1−1

R(log t)α2−1

 (3.9)

and  wn(t)
zn(t)

 =

 T1(wn−1, zn−1)(t)
T2(wn−1, zn−1)(t)

 , n = 1, 2, . . . , with
 w0(t)

z0(t)

 =

 0
0

 . (3.10)

In addition  w0(t)
z0(t)

 ≤  w1(t)
z1(t)

 ≤ · · · ≤  wn(t)
zn(t)

 ≤ · · · ≤  w∗

z∗

 ≤ · · · ≤  u∗

v∗

 ≤ · · · ≤  un(t)
vn(t)


≤ · · · ≤

 u1(t)
v1(t)

 ≤  u0(t)
v0(t)

 (3.11)

and  HDα1−1w0(t)
HDα2−1z0(t)

 ≤  HDα1−1w1(t)
HDα2−1z1(t)

 ≤ · · · ≤  HDα1−1wn(t)
HDα2−1zn(t)

 ≤ · · · ≤  HDα1−1w∗

HDα2−1z∗

 ≤ · · · ≤ HDα1−1u∗

HDα2−1v∗

 ≤ · · · ≤  HDα1−1un(t)
HDα2−1vn(t)

 ≤ · · · ≤  HDα1−1u1(t)
HDα2−1v1(t)

 ≤  HDα1−1u0(t)
HDα2−1v0(t)

 . (3.12)
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Proof. First, Lemma 3.3 means the fact that T (P1 × P2) ⊂ P1 × P2 for any (u, v) ∈ P1 × P2, t ∈ J.
Next, for 0 ≤ γ1k, γ2k < 1(k = 1, 2, 3, 4), set

R ≥ max
{
5a∗10Υ, 5a∗20Υ, (5Υa∗1k)

1/(1−γ1k), (5Υa∗2k)
1/(1−γ2k), k = 1, 2, 3, 4

}
,

and UR = {(u, v) ∈ P1 × P2 : ||(u, v)||X×Y ≤ R}. For any (u, v) ∈ UR, similar to (3.4) and (3.5), one can
obtain

||T1(u, v)||1 ≤ Λ1

[
a∗10 +

4∑
k=1

a∗1k||(u, v)||γ1k
X×Y

]
≤ Υ

[
a∗10 +

4∑
k=1

a∗1kR
γ1k

]
≤ R

and

|HDα1−1T1(u, v)|| ≤ Ξ1

[
a∗10 +

4∑
k=1

a∗1k||(u, v)||γ1k
X×Y

]
≤ Υ

[
a∗10 +

4∑
k=1

a∗1kR
γ1k

]
≤ R.

This implies that ||T1(u, v)||X ≤ R for all (u, v) ∈ UR. In the same way, ||T2(u, v)||Y ≤ R. Consequently
one has

||T (u, v)||X×Y = max
{
‖T1(u, v)‖X, ‖T2(u, v)‖Y

}
≤ R.

That is, T (UR) ⊂ UR.
Via the complete continuity of the operator T , we present the sequences (un, vn) and (wn, zn) by

(un, vn) = T (un−1, vn−1), (wn, zn)= T (wn−1, zn−1) for n = 1, 2, · · · . In virtue of (3.9) and (3.10), it is
obvious that (u0(t), v0(t)), (w0(t), z0(t)) ∈ UR.

Due to T (UR) ⊂ UR, it is easy to see that (un, vn), (wn, zn) ∈ T (UR) for n = 1, 2, · · · . Thus we just
need to show that there exist (u∗, v∗) and (w∗, z∗) satisfying lim

n→∞
(un, vn) = (u∗, v∗) and lim

n→∞
(wn, zn) =

(w∗, z∗), which are two monotone sequences for approximating positive solutions of the system (1.5).
For t ∈ J, (un, vn) ∈ UR, from Lemma 2.2 and (3.9), one has

u1(t) = T1(u0, v0)(t) =

∫ +∞

1
G1(t, s) f1(u0,v0)(s)

ds
s
≤ Λ1

[
a∗10 +

4∑
k=1

a∗1kR
γ1k

]
(log t)α1−1

≤R(log t)α1−1 = u0(t)

and

v1(t) = T2(u0, v0)(t) =

∫ +∞

1
G2(t, s) f2(u0,v0)(s)

ds
s
≤ Λ2

[
a∗20 +

4∑
k=1

a∗2kR
γ2k

]
(log t)α2−1

≤R(log t)α2−1 = v0(t),

that is  u1(t)
v1(t)

 =

 T1(u0, v0)(t)
T2(u0, v0)(t)

 ≤  R(log t)α1−1

R(log t)α2−1

 =

 u0(t)
v0(t)

 . (3.13)

Next we consider the monotonicity of the Hadamard type fractional derivative of (u, v). By (3.13)
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we have
HDα1−1u1(t) =HDα1−1T1(u0, v0)(t) =

∫ +∞

1
G∗1(t, s) f1(u0,v0)(s)

ds
s

≤Ξ1

[
a∗10 +

4∑
k=1

a∗1kR
γ1k

]
≤ R = HDα1−1u0(t),

HDα2−1v1(t) =HDα2−1T2(u0, v0)(t) =

∫ +∞

1
G∗2(t, s) f2(u0,v0)(s)

ds
s

≤Ξ2

[
a∗20 +

4∑
k=1

a∗2kR
γ2k

]
≤ R = HDα2−1v0(t),

that is  HDα1−1u1(t)
HDα2−1v1(t)

 =

 HDα1−1T1(u0, v0)(t)
HDα2−1T2(u0, v0)(t)

 ≤  R

R

 =

 HDα1−1u0(t)
HDα2−1v0(t)

 (3.14)

Then, by (3.13) and (3.14), for any t ∈ J, via the monotonicity conditions (C3) of functions
f j( j = 1, 2), we do the second iteration(

u2(t)
v2(t)

)
=

(
T1(u1, v1)(t)
T2(u1, v1)(t)

)
≤

(
T1(u0, v0)(t)
T2(u0, v0)(t)

)
=

(
u1(t)
v1(t)

)
,

(
HDα1−1u2(t)
HDα2−1v2(t)

)
=

(
HDα1−1T1(u1, v1)(t)
HDα2−1T2(u1, v1)(t)

)
≤

(
HDα1−1T1(u0, v0)(t)
HDα2−1T2(u0, v0)(t)

)
=

(
HDα1−1u1(t)
HDα2−1v1(t)

)
.

For t ∈ J, by method of induction, the sequences {(un, vn)}∞n=0 satisfy(
un+1(t)
vn+1(t)

)
≤

(
un(t)
vn(t)

)
,

(
HDα1−1un+1(t)
HDα2−1vn+1(t)

)
≤

(
HDα1−1un(t)
HDα2−1vn(t)

)
.

With the help of iterative sequences (un+1, vn+1) = T (un, vn) and the complete continuity of the operator
T , one can easily infer that (un, vn)→ (u∗, v∗) and T (u∗, v∗) = (u∗, v∗) .

For the sequences {(wn, zn)}∞n=0, we employ a similar discussion. For t ∈ J, we have

(
w1(t)
z1(t)

)
=

(
T1(w0, z0)(t)
T2(w0, z0)(t)

)
=


∫ +∞

1
G1(t, s) f1(w0,z0)(s)

ds
s∫ +∞

1
G2(t, s) f2(w0,z0)(s)

ds
s

 ≥
(
0
0

)
=

(
w0(t)
z0(t)

)
,

(
HDα1−1w1(t)
HDα2−1z1(t)

)
=

(
HDα1−1T1(w0, z0)(t)
HDα2−1T2(w0, z0)(t)

)
=


∫ +∞

1
G∗1(t, s) f1(w0,z0)(s)

ds
s∫ +∞

1
G∗2(t, s) f1(w0,z0)(s)

ds
s

 ≥
(
0
0

)
=

(
HDα1−1w0(t)
HDα2−1z0(t)

)
.

Using the the monotonicity condition (C3) of functions f j, one has(
w2(t)
z2(t)

)
=

(
T1(w1, z1)(t)
T2(w1, z1)(t)

)
≥

(
T1(w0, z0)(t)
T2(w0, z0)(t)

)
=

(
w1(t)
z1(t)

)
,

(
HDα1−1w2(t)
HDα2−1z2(t)

)
=

(
HDα1−1T1(w1, z1)(t)
HDα2−1T2(w1, z1)(t)

)
≥

(
HDα1−1T1(w0, z0)(t)
HDα2−1T2(w0, z0)(t)

)
=

(
HDα1−1w1(t)
HDα2−1z1(t)

)
.
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Analogously, for n = 0, 1, 2, . . . and t ∈ J, one has(
wn+1(t)
zn+1(t)

)
≥

(
wn(t)
zn(t)

)
,

(
HDα1−1wn+1(t)
HDα2−1zn+1(t)

)
≥

(
HDα1−1wn(t)
HDα2−1zn(t)

)
.

In virtue of the iterative sequences (wn+1, zn+1) = T (wn, zn) and the complete continuity of the operator
T , it is also easy to conclude that (wn, zn) → (w∗, z∗) and T (w∗, z∗) = (w∗, z∗) . Finally we demonstrate
that (u∗, v∗) and (w∗, z∗) are the minimal and maximal positive solutions of the system (1.5). Suppose
that (ξ(t), η(t)) is any positive solution of the Hadamard type fractional differential system (1.5), then
T (ξ(t), η(t)) = (ξ(t), η(t)) and (

w0(t)
z0(t)

)
=

(
0
0

)
≤

(
ξ(t)
η(t)

)
≤

(
Rtα1−1

Rtα2−1

)
=

(
u0(t)
v0(t)

)
,

(
HDα1−1w0(t)
HDα2−1z0(t)

)
≤

(
HDα1−1ξ(t)
HDα2−1η(t)

)
≤

(
HDα1−1u0(t)
HDα2−1v0(t)

)
.

Using the monotone conditions (C3) of the operator T , we obtain(
w1(t)
z1(t)

)
=

(
T1(w0, z0)(t)
T2(w0, z0)(t)

)
≤

(
ξ(t)
η(t)

)
≤

(
T1(u0, v0)(t)
T2(u0, v0)(t)

)
=

(
u1(t)
v1(t)

)
,

(
HDα1−1w1(t)
HDα2−1z1(t)

)
≤

(
HDα1−1ξ(t)
HDα2−1η(t)

)
≤

(
HDα1−1u1(t)
HDα2−1v1(t)

)
.

Repeating the above process, we have(
wn(t)
zn(t)

)
≤

(
ξ(t)
η(t)

)
≤

(
un(t)
vn(t)

)
,

(
HDα1−1wn(t)
HDα2−1zn(t)

)
≤

(
HDα1−1ξ(t)
HDα2−1η(t)

)
≤

(
HDα1−1un(t)
HDα2−1vn(t)

)
,

which combine lim
n→∞

(wn, zn) = (w∗, z∗) and lim
n→∞

(un, un) = (u∗, v∗), we gain the results (3.11) and (3.12).
On the other hand, due to f (t, 0, 0, 0, 0) , 0 for all t ∈ J, we know that (0, 0) isn’t a solution of the

Hadamard type fractional differential system (1.5). From (3.11) and (3.12), it is clear that (w∗, z∗) and
(u∗, v∗) are two extreme positive solutions of the system (1.5), which can be constructed via limit of
two monotone iterative sequences in (3.9) and (3.10).

Theorem 3.2 If assumption (C1), (C4) and

m = Υ max
{ 4∑

k=1

b1k,

4∑
k=1

b2k

}
< 1 (3.15)

hold, then the system (1.5) has a unique positive solution (x, y) in P1×P2. Further there exists a iterative
sequence (un, vn) such that lim

n→∞
(un, vn) = (x, y) is satisfied uniformly on any finite interval of J, where un(t)
vn(t)

 =

 T1(un−1, vn−1)(t)
T2(un−1, vn−1)(t)

 , n = 1, 2, · · · . (3.16)
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Moreover there exists an error estimate for the approximation sequence

||(un, vn) − (x, y)||X×Y =
mn

1 − m
||(u1, v1) − (u0, v0)||X×Y , n = 1, 2, · · · . (3.17)

Proof. Take
r ≥ Υ%/(1 − m),

where m is defined by (3.15) and % = max{%1, %2}, % j ( j = 1, 2) are defined by the aussumption (C4).
First we show that TUr ⊂ Ur, where Ur = {(u, v) ∈ P1 × P2, ||(u, v)||X×Y ≤ r}. For any (u, v) ∈ Ur, by

Lemma 3.2 and Remark 2.2, we have

||T1(u, v)||1 ≤ Λ1

( 4∑
k=1

b∗1kr + %1

)
and

||HDα1−1T1(u, v)|| ≤ Ξ1

( 4∑
k=1

b∗1kr + %1

)
,

which implies

||T1(u, v)||X ≤ Υ
( 4∑

k=1

b∗1kr + %1

)
≤ mr + Υ%1, ∀(u, v) ∈ Ur.

Similar

||T2(u, v)||Y ≤ Υ
( 4∑

k=1

b∗2kr + %2

)
≤ mr + Υ%2, ∀(u, v) ∈ Ur.

So one has
||T (u, v)||X×Y ≤ mr + Υ% ≤ r,∀(u, v) ∈ Ur.

Now we demonstrate that operator T is a contraction. For any (u1, v1), (u2, v2) ∈ Ur, by assumption
(C4), we have

||T1(u1, v1) − T1(u2, v2)||1

≤ sup
t∈J

∫ +∞

1

G1(t, s)
1 + (log t)α1−1

∣∣∣∣ f1(u1,v1)(s) − f1(u2,v2)(s)
∣∣∣∣ds

s

≤Λ1

∫ +∞

1

[
b11(s)(1 + (log s)α1−1)

|u1(s) − u2(s)|
1 + (log s)α1−1 + b12(s)(1 + (log s)α2−1)

|v1(s) − v2(s)|
1 + (log s)α2−1

+ b13(s)|HDα1−1u1(s) −H Dα1−1u2(s)|
]

+ b14(s)|HDα2−1v1(s) −H Dα2−1v2(s)|
]ds

s

≤Λ1

4∑
k=1

b∗1k||(u1, v1) − (u2, v2)||X×Y

and

||HDα1−1T1(u1, v1) −H Dα1−1T1(u2, v2)|| ≤ sup
t∈J

∫ +∞

0
G∗1(t, s)

∣∣∣∣ f1(u1,v1)(s) − f1(u2,v2)(s)
∣∣∣∣ds

≤Ξ1

4∑
k=1

b∗1k||(u1, v1) − (u2, v2)||X×Y ,
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which implies

||T1(u1, v1) − T1(u2, v2)||X ≤ Υ

4∑
k=1

b∗1k||(u1, v1) − (u2, v2)||X×Y . (3.18)

In the same way, one can obtain

||T2(u1, v1) − T2(u2, v2)||Y ≤ Υ

4∑
k=2

b∗2k||(u1, v1) − (u2, v2)||X×Y . (3.19)

By (3.18) and (3.19), we gain

||T (u1, v1) − T (u2, v2)||X×Y ≤ m||(u1, v1) − (u2, v2)||X×Y ,∀(u1, v1), (u2, v2) ∈ Ur. (3.20)

Due to m < 1, then operator T is a contraction. With the help of the Banach fixed-point theorem, T has
a unique fixed point (x, y) in Ur. That is, the system (1.5) has a unique positive solution (x, y).

Further, for any (u0, v0) ∈ Ur, ‖(un, vn) − (x, y)‖X×Y → 0 as n → ∞, where un = T1(un−1, vn−1), vn =

T2(un−1, vn−1), n = 1, 2, · · · . From (3.20), we have

||(un, vn) − (un−1, vn−1)||X×Y ≤ mn−1||(u1, v1) − (u0, v0)||X×Y ,

and

||(un, vn) − (u j, v j)||X×Y ≤ ||(un, vn) − (un−1, vn−1)||X×Y + ||(un−1, vn−1) − (un−2, vn−2)||X×Y

+ · · · + ||(u j+1, v j+1) − (u j, v j)||X×Y

≤
mn(1 − m j−n)

1 − m
||(u1, v1) − (u0, v0)||X×Y .

(3.21)

Taking j→ +∞ on both sides of (3.21), one can obtain

||(un, vn) − (x, y)||X×Y ≤
mn

1 − m
||u1 − u0||X×Y .

So the proof of Theorem 3.2 is completed.

4. Examples

Example 4.1 Consider the following Hadamard type fractional differential system

−HD1.8u(t) = e−2t +
e−t|u(t)|0.1

[1 + (log t)0.8]0.1 +
e−2t|v(t)|0.3

[1 + (log t)0.5]0.3 +
t|HD0.8u(t)|0.2

2(4 + t)2 +
t|HD0.5v(t)|0.4

5(1 + t2)
,

−HD1.5v(t) = t−5 +
e−3t|u(t)|0.2

[1 + (log t)0.8]0.2 +
e−4t|v(t)|0.4

[1 + (log t)0.5]0.4 +
t|HD1.5u(t)|0.2

5(1 + t2)
+

t|HD0.5v(t)|0.6

(9 + t)2 ,

u(1) = 0, HD0.8u(+∞) = 0.2HI1.8u(2.5) + 0.1HI2.8u(2.5),

v(1) = 0, HD0.5v(+∞) = 0.1HI1.5u(1.5) + 0.3HI2.5u(1.5) + 2HI3.5u(1.5),

(4.1)
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where α1 = 1.8, α2 = 1.5, β11 = 1.8, β12 = 2.8, λ11 = 0.2, λ12 = 0.1, β21 = 1.5, β22 = 2.5, β23 =

3.5, λ21 = 0.1, λ22 = 0.3, λ23 = 2, η1 = 2.5, η2 = 1.5 and

f1(t, u1, u2, u3, u4) = e−2t +
e−t|u1|

0.1

[1 + (log t)0.8]0.1 +
e−2t|u2|

0.3

[1 + (log t)0.5]0.3 +
t|u3|

0.2

2(4 + t)2 +
t|u4|

0.4

5(1 + t2)
,

f2(t, u1, u2, u3, u4) = t−5 +
e−3t|u1|

0.2

[1 + (log t)0.8]0.2 +
e−4t|u2)|0.4

[1 + (log t)0.5]0.4 +
t|u3|

0.2

5(1 + t2)
+

t|u4|
0.6

(9 + t)2 .

Here γ11 = 0.1, γ12 = 0.3, γ13 = 0.2, γ14 = 0.4, γ21 = 0.2, γ22 = 0.4, γ23 = 0.2, γ23 = 0.2, γ24 =

0.6.
We find that f1(t, 0, 0, 0, 0) . 0, f1(t, 0, 0, 0, 0) . 0, for ∀t ∈ J and

Ω1 = Γ(α1) −
2∑

i=1

λ1iΓ(α1)
Γ(α1+β1i)

(log η1)α1+β1i−1 ≈ 0.885609 > 0, Ω2 = Γ(α2) −
3∑

i=1

λ2iΓ(α2)
Γ(α2+β2i)

(log η2)α2+β2i−1 ≈

0.872852 > 0. So assumption (C1) holds.
Noting that

| f1(t, u1, u2, u3, u4)| ≤ e−2t +
e−t|u1|

0.1

[1 + (log t)0.8]0.1 +
e−2t|u2|

0.3

[1 + (log t)0.5]0.3 +
t|u3|

0.2

2(4 + t)2 +
t|u4|

0.4

5(1 + t2)
= a10(t) + a11(t)|u1|

0.1 + a12(t)|u2|
0.3 + a13(t)|u3|

0.2 + a14(t)|u4|
0.4,

| f2(t, u1, u2, u3, u4)| ≤ t−5 +
e−3t|u1|

0.2

[1 + (log t)0.8]0.2 +
e−4t|u2)|0.4

[1 + (log t)0.5]0.4 +
t|u3|

0.2

5(1 + t2)
+

t|u4|
0.6

(9 + t)2

= a20(t) + a21(t)|u1|
0.2 + a22(t)|u2|

0.2 + a23(t)|u3|
0.2 + a24(t)|u4|

0.6

and

a∗10 =

∫ +∞

1
a10(t)

dt
t

=

∫ +∞

1
e−2t dt

t
≤

∫ +∞

1
e−2tdt =

1
2e2 < ∞,

a∗11 =

∫ +∞

1
a11(t)[1 + (log t)0.8]0.1 dt

t
=

∫ +∞

1

e−t

[1 + (log t)0.8]0.1 [1 + (log t)0.8]0.1 dt
t
≤

1
e
< ∞,

a∗12 =

∫ +∞

1
a12(t)[1 + (log t)0.5]0.3 dt

t
=

∫ +∞

1

e−2t

[1 + (log t)0.5]0.3 [1 + (log t)0.5]0.3 dt
t
≤

1
2e2 < ∞,

a∗13 =

∫ +∞

1
a13(t)

dt
t

=

∫ +∞

1

t
2(4 + t)2

dt
t

=
1

10
< ∞,

a∗14 =

∫ +∞

1
a14(t)

dt
t

=

∫ +∞

1

t
5(1 + t2)

dt
t

=
π

10
< ∞,

a∗20 =

∫ +∞

1
a20(t)

dt
t

=

∫ +∞

1
t−5 dt

t
=

1
5
< ∞,

a∗21 =

∫ +∞

1
a11(t)[1 + (log t)0.8]0.2 dt

t
=

∫ +∞

1

e−3t

[1 + (log t)0.8]0.2 [1 + (log t)0.8]0.2 dt
t
≤

1
3e3 < ∞,

a∗22 =

∫ +∞

1
a12(t)[1 + (log t)0.5]0.4 dt

t
=

∫ +∞

1

e−4t

[1 + (log t)0.5]0.3 [1 + (log t)0.5]0.4 dt
t
≤

1
4e4 < ∞,

a∗23 =

∫ +∞

1
a13(t)

dt
t

=

∫ +∞

1

t
5(1 + t2)

dt
t
≤

π

10
< ∞,

a∗24 =

∫ +∞

1
a14(t)

dt
t

=

∫ +∞

1

t
(9 + t)2

dt
t
≤

1
10

< ∞,
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which imply that assumption (C2) holds.

From the expression of function f j, we can infer that f j is increasing respect to the variables
u1, u2, u3, u4,∀t ∈ J, j = 1, 2. Hence assumption (C3) is also satisfied . By Theorem 3.1, it follows that
the system (4.1) have two pairs of positive solutions (u∗, v∗) and (w∗, z∗), which can be constructed via
the limit of two explicit monotone iterative sequences in (3.11) and (3.12).

Example 4.2 Consider the following Hadamard type fractional differential system



−HD1.8u(t) = e−2t +
e−t|u(t)|

[1 + (log t)0.8]
+

e−2t|v(t)|0.3

[1 + (log t)0.5]
+

t|HD0.8u(t)|
2(4 + t)2 +

t|HD0.5v(t)|
5(1 + t2)

,

−HD1.5v(t) = t−5 +
e−3t|u(t)|

[1 + (log t)0.8]
+

e−4t|v(t)|0.4

[1 + (log t)0.5]
+

t|HD1.5u(t)|
5(1 + t2)

+
t|HD0.5v(t)|

(9 + t)2 ,

u(1) = 0, HD0.8u(+∞) = 0.2HI1.8u(2.5) + 0.1HI2.8u(2.5),

v(1) = 0, HD0.5v(+∞) = 0.1HI1.5u(1.5) + 0.3HI2.5u(1.5) + 2HI3.5u(1.5),

(4.2)

where α1 = 1.8, α2 = 1.5, β11 = 1.8, β12 = 2.8, λ11 = 0.2, λ12 = 0.1, β21 = 1.5, β22 = 2.5, β23 =

3.5, λ21 = 0.1, λ22 = 0.3, λ23 = 2, η1 = 2.5, η2 = 1.5 and

f1(t, u1, u2, u3, u4) = e−2t +
e−t|u1|

1 + (log t)0.8 +
e−2t|u2|

[1 + (log t)0.5]
+

t|u3|

2(4 + t)2 +
t|u4|

5(1 + t2)
,

f2(t, u1, u2, u3, u4) = t−5 +
e−3t|u1|

1 + (log t)0.8 +
e−4t|u2)|

[1 + (log t)0.5]
+

t|u3|

5(1 + t2)
+

t|u4|

(9 + t)2 .

Same to example (4.1), it is easy to verify that assumption (C1) hods.

Observing that

| f1(t, u1, u2, u3, u4) − f1(t, u1, u2, u3, u4)|

≤
e−t

1 + (log t)0.8 |u1 − u1| +
e−2t

1 + (log t)0.5 |u2 − u2| +
t

2(4 + t)2 |u3 − u3| +
t

5(1 + t2)
|u4 − u4|

=b11(t)|u1 − u1| + b12(t)|u2 − u2| + b13(t)|u3 − u3| + b14(t)|u4 − u4|,

| f2(t, u1, u2, u3, u4) − f2(t, u1, u2, u3, u4)|

≤
e−3t

1 + (log t)0.8 |u1 − u1| +
e−4t

1 + (log t)0.5 |u2 − u2| +
t

5(1 + t2)
|u3 − u3| +

t
(9 + t)2 |u4 − u4|

=b21(t)|u1 − u1| + b22(t)|u2 − u2| + b23(t)|u3 − u3| + b24(t)|u4 − u4|,
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by a same computation as example (4.1), one can obtain

b∗11 =

∫ +∞

1
b11(t)[1 + (log t)0.8]

dt
t
≤

1
e
< ∞, b∗12 =

∫ +∞

1
b12(t)[1 + (log t)0.5]

dt
t
≤

1
2e2 < ∞,

b∗13 =

∫ +∞

1
b13(t)

dt
t

=
1

10
< ∞, b∗14 =

∫ +∞

1
a14(t)

dt
t

=
π

10
< ∞,

b∗21 =

∫ +∞

1
b21(t)[1 + (log t)0.8]

dt
t
≤

1
3e3 < ∞, b

∗
22 =

∫ +∞

1
b22(t)[1 + (log t)0.5]

dt
t
≤

1
4e4 < ∞,

b∗23 =

∫ +∞

1
b13(t)

dt
t
≤

π

10
< ∞, b∗24 =

∫ +∞

1
b14(t)

dt
t
≤

1
10

< ∞,

λ1 =

∫ +∞

1
f1(t, 0, 0, 0, 0)dt =

∫ +∞

1
e−2t dt

t
≤

1
2e2 < ∞,

λ2 =

∫ +∞

1
f2(t, 0, 0, 0, 0)dt =

∫ +∞

1
t−5 dt

t
=

1
5
< ∞,

which show that assumption (C4) holds. By direct computation, one can obtain that
Λ1 = 1.125161, Λ2 = 1.143496, Ξ1 = 1.051490, Ξ2 = 1.015251, Υ = 1.143496,

m = Υ max
{ 4∑

k=1

b∗1k,

4∑
k=1

b∗2k

}
≤ 1.143496 ×max

{
0.849706, 0.435334

}
= 0.971635 < 1.

Hence all presupposed conditions of Theorem 3.2 are satisfied. Then the system (4.2) has a unique
positive solution (x, y), which can be constructed via the limit of the iterative sequence in (3.16).

5. Conclusions

In this paper, we consider a class of Hadamard type fractional differential system. By the aid of
monotone iterative technique and Banach’s contraction mapping principle, under certain nonlinear
and linear increasing conditions, we construct some explicit monotone iterative sequences for
approximating the extreme positive solutions and the unique positive solutions. Our results generalize
iterative solution of a single equation to the case of a system, and the nonlinear term contains
Hadamard type fractional derivative which can be used more widely. Further work is still needed
including discussions on iterative solution for Hadamard type fractional differential system with
coupling integral condition and additional studies on iterative solution for impulsive Hadamard type
fractional differential system.
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